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Abstract: Despite all the advance brought by LALR parsing method by DeRemer in
the late 60’s, conflicts continue to be removed in a non-productive way, by means of
analysis of a huge amount of textual and low level data dumped by the parser generator
tool. For the purpose of changing this scenario, we present a parser generator capable
of automatically removing some types of conflicts, along with a supported methodology
that guides the process of manual removal. We also discuss the internal algorithms and
how the created parsers are compact in terms of memory usage.
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1 Introduction

The usual way to build a bottom-up syntax analyzer is by writing syntax specifi-
cations that are readable by parser generator tools, such as YACC, Bison, CUP,
etc. These tools can only work with LALR(1) grammars, otherwise conflicts are
reported, i.e., non-determinism points resulted from the grammar. The number
of conflicts in a programming language can easily reach hundreds, if not more
than a thousand conflicts. To illustrate how frequent conflicts are, the original
grammars of Algol-60, Scheme and Notus[Tirelo and Bigonha 2006] program-
ming languages result in 61, 78 and 575 conflicts, respectively. In the first two
grammars, the average density is one conflict for each two productions; in the
latter there are two per production.

To remove the conflicts in a syntax specification, one must inspect each con-
flict. Parser generators assist users in conflict removal by writing log files. These
files consist of pure text data such as the list of conflicts and the LALR(1) au-
tomaton. Log files, however, tend to be too extensive for analysis. For the Notus
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programming language, Bison creates a log file of 54 Kb in size, having 6,244
words and 2,257 lines. Besides its size, log files contain a low level of abstraction
in their content, requiring expertise in LALR inner working. All together, these
factors contribute to a low productivity when building LALR parsers.

In order to change the current scenario, we present in this article an LALR
parser generator that automatically removes conflicts and supports a methodol-
ogy to guide the process in cases of manual removal. Such methodology is the
result of new techniques that extend the original work in [Passos et al. 2007].
In addition, we also discuss how the proposed tool generates parsers with little
memory requirements.

This article is organized as follows: Section 2 discusses the types of conflicts,
Section 3 presents the proposed parser generator, with its algorithms explained in
Section 4. Section 5 presents some experimental results and Section 6 concludes
the article.

2 Types of Conflicts

A conflict, either a shift/reduce or reduce/reduce, is reported by the parser
generator by two reasons: lack of right context and ambiguity.

Conflicts caused by lack of right context indicate that the number of in-
spected lookaheads is not enough to decide which action to execute – shift or
reduce within a set of possible reductions. Part of these conflicts can be removed
if the value of k is increased accordingly. This results in an LALR(k) parser,
where k = max({k′, such that k′ is the number of lookaheads needed to solve
a given conflict among all conflicts reported by the parser generator and k is
not infinite}). This solution, although correct, is unfeasible in most cases. If
we take, for example, the LALR(1) parsing table of Visual Basic .NET 1 and
make it LALR(3), the result matrix would contain 1,899,085,824 entries. The
other part of this set of conflicts can only be removed by rewriting the grammar,
assuming the language in question is indeed LALR. Such cases result from an
infinite amount of lookaheads necessary to solve a given conflict.

Conflicts caused by ambiguity must be removed by rewriting the grammar.
Again, this can only be performed if the language in question is LALR. Some
parser generators deal with ambiguity by means of precedence and associativity
or simply by performing a shift in a shift/reduce conflict.

A discussion of all types of conflicts can be found in [Passos et al. 2007].

1 This test was performed using the grammar provided in http://www.devincook.
com/goldparser/grammars/index.html.
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3 Proposed Tool

The proposed tool, named SAIDE2, is an integrated development environment
with an internal parser generator. Figure 1 shows the overall appearance of
SAIDE’s graphical interface. The text editor window is located in the upper
left corner, loaded with a syntax specification. After asking for the validation of
the grammar, the user starts the main cycle of the methodology supported by
the tool. The main cycle is divided in two major steps: automatic and manual
conflict removal.

In the automatic removal, SAIDE tries to remove all conflicts without user
intervention. The non-removed conflicts are then listed to the user. This listing
is performed using a heuristic that sorts all conflicts considering the order in
which they must be removed. A conflict must be listed before those that appear
as a consequence of the existence of the first. In order to calculate such removal
priority, SAIDE needs to know the whole set of conflicts. In Figure 1, the listing
of conflicts is shown below the editor.

After the listing, the manual removal step starts. According to the meth-
odology, to manually remove a conflict one must go through four phases: (i)
understanding; (ii) classification; (iii) editing and (iv) testing.

In the understanding phase, the user tries to deduce the cause of the conflict
using derivation trees. This has the advantage of manipulating a more intuitive
and higher level structure compared to the low level data available in log files.
Derivation trees are presented after the user clicks on the Debug conflict option,
shown as a hyperlink below the conflict’s item set. For expert users, low level
content is still available, as can be seen by the LALR automaton shown next to
the editor window, in Figure 1.

In the classification phase the user defines the category in which the conflict
belongs, i.e., determine whether a conflict is due to lack of right context or ambi-
guity. In the latter case, a catalog of some well known ambiguity constructions,
along with their solutions, is available for consultancy and can be extended with
user defined entries. At this phase, the user must define a strategy to rewrite the
grammar so the given conflict can be removed. The identification of the conflict’s
category adds confidence, as we expect that a strategy used in removing a past
conflict can be applied many times to other conflicts in the same category.

Next, the user edits the grammar in order to apply the strategy defined in
the last phase and submits the specification to be validated. The main cycle of
the methodology is then restarted and continues until no conflicts are reported.
2 SAIDE /saId/: Syntax Analyzer Integrated Development Environment.
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Figure 1: SAIDE’s main window.

4 Automatic Conflict Resolution

Deviating from conflict resolution based on nondeterminism like Generalized LR
Parsing [Tomita 1991], we address an automatic and deterministic resolution
approach. In this section we give an overview of the technique proposed by
Charles [Charles 1991], capable of removing some conflicts caused by lack of
right context.

Charles suggests LALR(k) generation as a mechanism to remove conflicts.
To perform this while decreasing storage needs, he proposes the extension of the
number of inspected lookaheads only when necessary to uniquely define which
parse action to execute. Thus, the parser inspects up to k tokens before choosing
a parse action. The value of k is limited by a constant kmax. This approach has
the advantage of reducing the number of entries in the LALR parsing table
when compared to complete LALR(k) tables. These parsers will be referred as
LALR(kv), with kv denoting the variable length characteristic of k.

To build the LALR(kv) parser, each entry (p, a) in the action table with at
least one conflict will become the start state of a deterministic finite automaton
(DFA). From p following the conflict symbol a, another state, represented as q, is
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reached. For all tokens t1, ..., tn that may follow a, the parsing actions in (q, ti) are
properly set. If at this point, all (q, ti) contain cardinality equal to one, then all
conflicts have been removed. Otherwise, if there is a least one entry (q, ti) whose
cardinality is greater than one, another level of lookaheads is calculated. These
lookaheads consist of the tokens that may follow ti, given a conflictual entry
(q, ti). This process continues until the conflicts are removed or the depth of the
DFA reaches kmax. The described scheme is depicted in terms of an example
in Figure 2. Suppose, that the original LALR parsing table entry (q, a) has
the following actions: {S2, R5, R6}. In this entry, there are three conflicts: two
shift/reduces ({S2, R5}, {S2, R6}) and a reduce/reduce ({R5, R6}). If kmax is
taken as three, q is made the start state of the DFA. From state q following a,
the destination q1 is reached. If b or c follow a, then a unique parsing action is
determined. At this point, the shift/reduce conflicts vanish. The entry, (q1, d) still
reports {R5, R6}, and the automaton is extended in another level of lookaheads.
The tokens that can be found after d are {b, c}. Extending d with these tokens
uniquely determines each reduction. Note that although kmax was three, in q1

only two lookaheads were used.

Figure 2: DFA to solve a given conflict by extending the number of lookaheads
respected the limit kmax = 3.

The action parsing table of an LALR(kv) parser is encoded as follows: each
action that points to a DFA becomes a lookahead action – Ln, where n is the first
line available in the table. The rest of the DFA’s transition table is appended
starting from the n-th line of the action parsing table. Note that this coding
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scheme preserves the original layout of the LALR(1) action parsing table, since
the columns are still indexed by a single token, in contrast with LALR(k) encod-
ing method. To illustrate the produced table, consider the following grammar:

bnf → rlist
rlist → rlist rule

| λ

rule → s “→” slist
slist → slist s

| λ

This grammar is not LALR(1); it is LALR(2). The following action parsing table
results from the LALR(kv) approach:

Action s “→” “$”

0 R3 R3
1 S3 R1
2 ACC
3 S5
4 R2 R2
5 R6 R6
6 L8 R4
7 R5 R5

Lookaheads 8 S7 R4 S7

An LALR(kv) parser works almost as an LALR(k) parser. The main diffe-
rence occurs when dealing with lookahead actions. Given an entry Ln in position
(q, a) in the action table, the parser switches to the appropriate DFA table. By
consulting the tokens that may follow a in the input, the parser tries to find a
path from the current DFA state that leads to a non-error parse action (diffe-
rent from blank). This possibly implies in making other lookahead actions, that
differ from conventional shift actions in the sense that the tokens consulted in
the input are not consumed in any way.

Charles’ algorithms to calculate the action tables for LALR(kv) parsers re-
strict the input grammars to the set of grammars that: (a) do not have cir-
cularity, i.e., given a nonterminal A, A derives A in one or more steps; (b)
do not imply in the existence of strong connected components (SCCs) in the
reads relation graph. The reads graph represents a relation between transitions
3 [DeRemer and Pennello 1982]:

(p, A) reads (q, B) iff GOTO0(p, A) = q e B
∗⇒ λ

3 (p,A) denotes a transition under A in state p in the LR(0) automaton.
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where GOTO0 is the transition function of the LR(0) automaton, defined over
(M0×V )→M0. The set M0 contains all LR(0) states and V is the vocabulary of
the grammar, made of the union of terminal (Σ) and nonterminal symbols (N).
In case a grammar does not fit in such characteristics the algorithm stops (such
grammars will be hereafter referred as NLALR grammars). If continuation is
performed, Charles states that there might be a chance of entering infinite loop.

5 SAIDE’s Internal Algorithms

This section presents the core algorithms we propose to support the methodol-
ogy discussed in Section 3. For those already discussed in [Passos et al. 2007],
no presentation is made. The algorithms are organized in three parts: conflict
removal, conflict listing and table compression.

5.1 Conflict Removal

Charles calculates the lookaheads necessary to extend a given token by sim-
ulating the steps of the LR(0) automaton. His algorithms stop as soon as the
grammar is found to be NLALR, ignoring the possibility of having non-inspected
automatic solvable conflict entries in the action table. If such entries exist, given
the LALR(kv) approach, users face a number of conflicts that is greater than
the real quantity. In addition, they may spend time manually removing con-
flicts that were supposed to disappear automatically. In this scenario, SAIDE’s
methodology as originally proposed becomes inapplicable.

SAIDE overcomes this by establishing the genuine set of conflicts that cannot
be solved. It uses six algorithms that are the result of modifications over the
ones originally proposed by Charles. Due to a proper infinite loop control, all
proposed algorithms are guaranteed to terminate, even in the presence of NLALR
grammars.

The whole process of solving conflicts starts with SWEEP, shown in Figure 3.
The SWEEP algorithm must be called for each state p that contains a conflict.
This procedure inspects the number of entries in the pairs (p, a)4 of the action
matrix, where a is a terminal symbol. If (p, a) has cardinality greater than two,
it determines all possible stacks (sources), given the initial stack [p], that result
in reading a. If (p, a) contains a shift action, then [p] is a valid stack. Reduce
actions must also be considered. If a reduction by A → ω belongs to (p, a),
then the start stack is one made of a predecessor state of p under ω. Function
PRED returns such predecessor states. In both cases, the stacks are stored in the
sources dictionary5 as part of pairs (stk, w), where w corresponds to the string of
4 The functions FST and SND will be used to retrieve the first and the second com-

ponent of a pair.
5 The sources dictionary is indexed by parsing actions.
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SWEEP(p)
1 for a ∈ Σ

2 do if |Action[p, a]| > 0 ∧ a �= $
3 then sources← ∅
4 for act ∈ Action[p, a]
5 do if act is a shift action
6 then sources[act]← {([p], a)}
7 else ASSERT(act = reduce by rule A→ α)
8 for p0 ∈ PRED(p, α)
9 do FOLLOW-SOURCESA(sources[act],

10 [p0], A, a, λ)
11 RESOLVE-CONFLICTS(p, a, sources, 2)

Figure 3: Main procedure to automatically remove conflicts.

tokens that would have been read by the LR(0) automaton having the stack stk.
Calling FOLLOW-SOURCESA completes the initial set of pairs (stk, w). After
the definition of all sources, RESOLVE-CONFLICTS is executed in an attempt
to remove the conflicts in (p, a).

The procedure FOLLOW-SOURCESA, shown in Figure 4, is a façade pro-
cedure to FOLLOW-SOURCESB. Five arguments are received: the set of pairs
(stack, w) – stored in sources, the current stack, the current symbol X ∈ V denot-
ing the transition that must be performed from the top state of the current stack,
a marking the terminal symbol that has to be eventually found as a transition
symbol, and w as the current processed string. Before FOLLOW-SOURCESB

starts simulating the LR(0) steps in order to find all stacks that will lead to the
reading of a, FOLLOW-SOURCESA puts the current stack in a tree format. The
idea of using a tree structure comes from [Kristensen and Madsen 1981] and is
used as a way to prevent infinite loop. Each node in the tree stores, besides its
list of children, a pair (state, z) as its value. Given a node n, the string z stands
as the string processed by the LR(0) automaton given the states from the root
of the tree to the node n. In the built tree, each node has a unique numeric
identifier. Instantiating nodes using NODE controls such uniqueness. The value
and the identifier of a node can be retrieved at any time by calling VALUE and
ID, respectively.

FOLLOW-SOURCESB, presented in Figure 5, aims to find from a given
initial stack, encoded as a path in the tree of states, the set of stacks that will
lead to the reading of a. Eight arguments must be received: the set of sources, as
in FOLLOW-SOURCESA, the current transition to be performed as part of the
LR(0) simulation – structured as a triple (source-state, transition-symbol, desti-

3454 Passos L.T., Bigonha M.A.S., Bigonha R.S.: An LALR Parser Generator ...



nation-state), the terminal a, the current processed string w, the root of the
tree, the current node tree and the sets visited and roots. When a appears as
a transition symbol, the procedure stores in sources the pair (stack, wa), where
stack is given by the states in the values of the nodes in the path in the tree from
root to node. The first part of infinite loop control in FOLLOW-SOURCESB

is located in lines 2 − 8. At that point, each time the procedure is activated,
FOLLOW-SOURCESB checks if the current stack and transition were visited in
a past time. Instead of storing the whole sequence of states on the stack, it is
enough to know the current node’s identifier, for it also defines a unique stack.
For optimization purposes, the pairs (id, transition) are stored in two distinct
sets: roots and visited. The roots set is only used for stacks whose size is one.
The size of the current stack is obtained by calling HEIGHT, which returns
the height from the root node to the current node. Note that if the size is one,
storing the node’s identifier is not necessary, since the root state corresponds to
the source state in the transition triple. For stacks greater than one in size, visited
is used. Lines 10−25 inspect all edges leaving q, where q is the destination state
of the transition parameter. Two possibilities arise: a transition over a nullable
symbol or a terminal symbol. From the first we must continue the simulation by
pushing q onto the stack. To do this, we add a new child node to the current
node’s children list. The created node stores a pair (q, w) as its value. Next,
FOLLOW-SOURCESB is recursively called. The second situation occurs when
there is a transition symbol from q that matches a. In this case, the current stack
is retrieved by getting the inverse order of the states from the current node to the
root of the tree, and the pair (stack, wa) is added to sources. Again, infinite loop
control is performed in the 11th line. To aid this control, we use the GET-FROM
function. Given a node nx and a value v, GET-FROM returns a non-nullable
reference to a node ny in the path from nx (inclusively) to the root of the tree
whose value coincide with v. If so, pushing q onto the stack results in a cycle:

([p1p2...pnq], w)
∗
	([p1p2...pnqq1q2...qnq], w). The lines 27− 40 are responsible for

making reductions. Reductions while simulating LR(0) may lead to underflow
situations, i.e., the act of popping more states than currently available on the
stack. If |γ1γ2| states should be popped, but only |γ2| are available on the stack,
being γ1γ2 the right hand side of a production, the predecessor state of the γ1

is retrieved and put as the top element of an unitary stack, used as a parameter
to a recursive call.

The procedure RESOLVE-CONFLICTS, shown in Figure 6, checks if a con-
flict is removed. If not, it extends the DFA in another level of lookaheads,
respected kmax. Four arguments are mandatory: a state q containing conflicts
under t, also a received parameter, the sources dictionary (as in SWEEP and
FOLLOW-SOURCESA) and n, the number of lookaheads used so far. Its ex-
ecution starts checking if n is greater than kmax or t is the EOF marker. In
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FOLLOW-SOURCESA(sources, stack, X, a, w)
1 ASSERT(stack = [p1...pn])
2 root← node← NODE((p1, λ))
3 for 2 ≤ i ≤ n

4 do node2 ← NODE((pi, λ))
5 ADD-CHILD(node,node2)
6 node← node2

7 SND(VALUE(node))← w

8 FOLLOW-SOURCESB(sources, (pn, X,GOTO0(pn, X)), a, w,

9 root,node, ∅, ∅)

Figure 4: Façade procedure FOLLOW-SOURCESA.

either case, the extension of lookaheads should not go further and the procedure
returns. Otherwise, a new line p is allocated in the action table, after its last
line, and each entry in p is given the empty set. Later, the conflict entry (q, t)
points to p by a lookahead action – Lp. Next, for each action indexing sources,
each source (stack, w) is inspected. Each token than can follow t, given stack, is
calculated by calling NEXT-LOOKAHEADSA. For each returned token a, the
appropriate actions are put into (p, a) in the action table. After determining
the values in p’s entries, for the entries whose cardinality is greater than one,
the conflict removal process continues by calling FOLLOW-SOURCESA. This is
necessary, since NEXT-LOOKAHEADSA returns the tokens that can extend t,
but not the context in which they were obtained (source stacks).

Analogous to FOLLOW-SOURCESA, NEXT-LOOKAHEADSA, shown in
Figure 7, is a façade procedure to NEXT-LOOKAHEADSB. It structures the
received stack in a tree format.

Having such tree, the procedure NEXT-LOOKAHEADSB, presented in Fig-
ure 8, fast calculates the tokens that can be found given a stack and a transition.
To achieve this, it uses the external functions READ1 and FOLLOW1, both de-
fined in [DeRemer and Pennello 1982]. From a state p and a symbol X , READ1

returns the tokens that can be read from GOTO0(p, X) either directly or under
nullable transitions; FOLLOW1 returns the tokens either in READ1(p, X) or in
FOLLOW1(p0, C), as long as C → α •Xβ ∈ p, β

∗⇒λ and p0 ∈ PRED(p, α)6.
Given a stack and a transition, NEXT-LOOKAHEADSB grabs all tokens re-
turned by READ1, i.e., the tokens that can be read given the current context.
Reductions are treated as in FOLLOW-SOURCESB, except that in cases of un-
6 Originally, READ1 and FOLLOW1 were defined over nonterminal transitions - in

NEXT-LOOKAHEADSB, READ1, as defined by Charles, was generalized to termi-
nal an nonterminal transitions.
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derflow, the simulation does not go further. Instead, the algorithm retrieves the
desired tokens by calling FOLLOW1. To reduce under non-underflow cases, the
procedure pops states by calling UP; given a node n and a value k, UP returns
the k-th ancestor of n. By using READ1 and FOLLOW1, which can be precom-
puted, NEXT-LOOKAHEADSB does not have to search for source stacks when
looking for lookaheads. The procedure’s infinite loop control is achieved just like
FOLLOW-SOURCESB, i.e., by storing all visited transitions.

The presented algorithms do not have the limitation of stopping when dealing
with NLALR grammars; termination is guaranteed to be reached under any
circumstances.

5.2 Conflict Listing

When using LALR(kv) action tables, the parser generator must not miscalculate
the number of remaining conflicts. To illustrate this, consider the following table
when kmax = 1:

a b c d e f $
8 S11, R8 R3, R8 R3
...

Using kmax = 2, the table is given by:

a b c d e f $
8 L13 L14 R3
...
13 S11, R8
14 R3, R8 R3, R8 R3, R8

Simply examining the number of conflictual entries in the latter table allows
identifying four conflicts, instead of the original two. When using kmax ≥ 2,
SAIDE performs a depth first search from the lookahead action in an entry (p, a),
and retrieves the actions in the entries that still contain conflicts. The obtained
set of actions acts is a subset of the original set of conflicts. When performing
the search, SAIDE also keeps track of all traversed edges of the DFA, and thus
obtain the strings of length up to kmax for which the conflict is not removed.
The number of conflicts for (p, a) is given by:

(|shift| × |reds|) + (λx. if x ≥ 2 then 1 else 0)|reds|
where

shift = {s | s ∈ acts ∧ s is a shift action}
reds = {r | r ∈ acts ∧ r is a reduce action}
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FOLLOW-SOURCESB(sources, transition, a, w, root,node, visited, roots)
1 stackSize← HEIGHT(node, root)
2 if stackSize = 1
3 then if transition ∈ roots
4 then return
5 else roots← roots ∪ {transition}
6 else if (ID(node), transition) ∈ visited
7 then return
8 else visited← visited ∪ {(ID(node), transition)}
9 ASSERT(transition = (ts, X, q))

10 for Y ∈ V | GOTO0(q, Y ) is defined

11 do if Y
∗⇒λ ∧GET-FROM(node, (q, w)) = nil

12 then node2 ← NODE((q, w))
13 ADD-CHILD(node,node2)
14 FOLLOW-SOURCESB

15 (sources, (q, Y,GOTO0(q, Y )), a, w,
16 root, node2, visited, roots)
17 else if Y = a
18 then node2 ← node
19 list← [FST(VALUE(node2))]
20 while (node2 ← PARENT(node2)) �= nil
21 do list← list + [FST(VALUE(node2))]
22
23 ASSERT(list = [pn...p1])
24 stack← [p1...pnq]
25 sources ← sources ∪ {(stack, wa)}
26 bottom← FST(VALUE(root))
27 for C → γ• ∈ ts | C �= S
28 do if |γ|+ 1 < stackSize
29 then node2 ← UP(node, |γ|)
30 SND(VALUE(node2))← w
31 ts2 ← FST(VALUE(node2))
32 FOLLOW-SOURCESB

33 (sources, (ts2, C,GOTO0(ts2, C)),
34 a, w, root, node2, visited, roots)
35 else ASSERT(γ = γ1γ2), where |γ2| = stackSize − 1
36 for p0 ∈ PRED(bottom, γ1)
37 do root2 ← NODE((p0, w))
38 FOLLOW-SOURCESB

39 (sources, (p0, C,GOTO0(p0, C)), a, w, root2,
40 root2, visited, roots)

Figure 5: Procedure FOLLOW-SOURCESB.

For the conflicts that could not be automatically removed, SAIDE lists them
in a heuristic manner. The heuristic here discussed builds a conflict graph, whose
vertexes represent LALR states with at least one non-solved conflict. A directed
edge connects p to q if there is a path from p to q in the LALR automaton, i.e.,
p propagates lookaheads to q. From this graph, a second one is built, formed by
the SCCs of the first. In this graph, a directed edge between two vertexes exists
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RESOLVE-CONFLICTS(q, t, sources, n)
1 if t = $ ∨ n > kmax

2 then return
3 allocate a new line p in the action table
4 for a ∈ Σ

5 do Action[p, a]← ∅
6 Action[q, t]← {Lp}
7 for act indexing sources
8 do for src ∈ sources[act]
9 do ASSERT(src = (stack, w))

10 la← NEXT-LOOKAHEADSA(stack, t)
11 for a ∈ la

12 do Action[p, a]← Action[p, a] ∪ {act}
13 for a ∈ (Σ − {$}) | |Action[p, a]| > 1
14 do for act ∈ Action[p, a]
15 do nSources← ∅
16 for src ∈ sources[act]
17 do ASSERT(src = (stack, w))
18 FOLLOW-SOURCESA(nSources[act], stack, t, a, w)
19
20 RESOLVE-CONFLICTS(p, a,nSources, n + 1)

Figure 6: Procedure RESOLVE-CONFLICTS.

if at least one vertex in the first SCC connects to another vertex in the second
SCC. The SCCs graph is then topologically sorted. From the obtained graph,
the conflicts are listed according to the order of the SCCs, from left to right.
Given an SCC c, all conflicts in state p ∈ c are put on the listing.

5.3 Table Compression

An important problem using LALR(k) parsers is due to space requirements, for
the size of the action table substantially grows when the value of k increases.

In LALR(kv) parsers, the number of inspected lookaheads is minimized, but
the size of action parsing tables are still considerable. We performed tests with
nine LALR(1) compression schemes 7:

– the compression scheme proposed in [Aho et al. 1986] (ACS);

7 The authors of ACS and BCS didn’t name their methods. For reference purposes,
the adopted names reflect the corresponding bibliography entries in this work.
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NEXT-LOOKAHEADSA(stack, t)
1 la← ∅
2 ASSERT(stack = [p1...pn])
3 root← node← NODE(p1)
4 for 2 ≤ i ≤ n

5 do node2 ← NODE(pi)
6 ADD-CHILD(node,node2)
7 node← node2

8 NEXT-LOOKAHEADSB(la, (pn, t,GOTO0(pn, t)), root,node, ∅)
9 return la

Figure 7: Façade procedure NEXT-LOOKAHEADSA.

NEXT-LOOKAHEADSB(la, transition, root,node, visited)
1 ASSERT(transition = (ts, X, q))
2 bottom← VALUE(root)
3 if (ID(node), transition) ∈ visited

4 then return
5 la← la ∪READ1(ts, X)
6 stackSize← HEIGHT(node, root)
7 nStacks← ∅
8 for C → γ •Xδ ∈ ts | δ ∗⇒λ ∧C �= S

9 do if |γ|+ 1 < stackSize
10 then node2 ← UP(node, |γ|)
11 nStacks← nStacks ∪ {(node2, C)}
12
13 else ASSERT(γ = γ1γ2), where |γ2| = stackSize− 1
14 for p0 ∈ PRED(bottom, γ1)
15 do la← la ∪ FOLLOW1(p0, C)
16 for (n, C) ∈ nStacks

17 do ts← VALUE(n)
18 NEXT-LOOKAHEADSB(la, (ts, C,GOTO0(ts, C)), root, n, visited)

Figure 8: Procedure NEXT-LOOKAHEADSB.
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– the compression scheme proposed in [Bigonha et al. 1983] (BCS);

– row displacement scheme (RDS), reported in [Dencker et al. 1984];

– significance distance scheme (SDS), proposed in [Beach 1974];

– row column scheme (RCS), proposed in [Tewarson 1967];

– supression of zeros scheme (SZS), reported in [Dencker et al. 1984]);

– graph coloring scheme (GCS), proposed in [Schmitt 1979];

– line elimination scheme (LES), proposed in [Bell, 1974];

– row merging scheme (RMS), reported in [Passos 2007].

Each method was tested using the grammars of C, C#, HTML, Java and
VB programming languages. The result of this study is directly generalized to
LALR(kv) parsers, due to the same layout of LALR(1) and LALR(kv) parsing
tables.

From the experiment, BCS and the combination of GCS, LES and RMS pre-
sented the highest compression rates, respectively 95% and 87%, in average. For
BCS, there is the price of the overhead caused by the substitution of a direct
access by a linear access to an interval of an array containing syntactic actions.
In this scheme, the generated parser might execute unnecessary reductions, al-
though correctness is preserved. The combination of GCS, LES and RMS pre-
serves O(1) access time and guarantees execution of the same number of actions
as the non-compressed parser.

6 Experimental results

We performed tests in order to evaluate the automatic conflict mechanism and
how the propose infinite loop control impacts in execution time. Table 1 shows
the results obtained for the Algol-60, Scheme, Oberon-2 and Notus original gram-
mars.

From the experiment, the number of conflicts was reduced in 51% and 97%
in Scheme and Oberon-2 when using kmax = 2 in comparison with one token
ahead. In Algol-60 the number of conflicts is not affected at any time; in Notus,
there is a reduction in 6% when using at most two lookaheads. From kmax ≥ 3,
there’s practically no overall change in the number of conflicts. The discrepancy
between Scheme and Oberon-2 when compared to Notus and Algol-60 is that
these are more human readable than closer to LALR conformance. The opposite
situation occurs with Scheme and Oberon-2.
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Grammar kmax = 1 kmax = 2 kmax = 3 kmax = 4
Confs. T. Confs. T. Confs. T. Confs. T.

(ms) (ms) (ms) (ms)

Algol-60 61 670 61 2,480 61 4,837 61 18,017
Scheme 78 839 38 1,320 38 2,485 38 4,957
Oberon-2 32 898 1 1,464 1 1,567 1 1,493
Notus 575 1,068 541 34,828 539 38,921 539 67,467

Table 1: Evaluation of increasing k in automatic conflict removal.

Our tool was also used in building a parser for the Mach̆ına programming
language [Bigonha et al. 2007]. The writing of its syntax specification was in-
crementally performed. An increment is the result of adding new rules to the
previous increment when the set of conflicts of the latter becomes empty. In the
experiment, kmax = 2 was used. At each reported conflict, the four phases for
manual removal were applied. The application of the four phases defines a step.
Figure 9 shows the dot graph for the number of conflicts obtained in each step.
For reading purposes, the dots were connected to better identify the increasing
and decreasing of conflicts. In the presented graph, the frontier between incre-
ments is marked by a dotted line. With exception of increment four, all steps
inside other increments showed a decrease in the number of conflicts. The in-
crease of conflicts occurs in the border of two increments, which is expected due
to the adding of new rules. The produced parsing table was compressed with
BCS and the combination of GCS, LES and RMS, resulting in 98% and 94% of
compression rate.

7 Conclusion

This article presented an LALR parser generator supporting conflict resolution.
Among the contributions of our work, we highlight the following:

– the process of conflict removal is eased by automatic conflict removal. In
particular, the present algorithms remove some conflicts caused by lack of
right context;

– for the cases in which manual removal is required, the tool assists users
through a well defined methodology;

– modifications in Charles’ proposal in order to accept any context free gram-
mar. This makes the methodology independent of grammar characteristics;

– generalization of LALR(1) compression schemes to LALR(kv) approach,
turning it viable in the sense that memory requirements are minimized.
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Figure 9: Conflict removal graph for the Mach̆ınaprogramming language.

All obtained results are based on empirical data, determined by using estab-
lished and also new programming languages, such as Notus and Mach̆ına. The
presented results indicate that the application of the methodology contributes
to the constant decrease on the number of conflicts in a grammar and that, in
general, the time spent in calculating lookaheads in any context free grammar
does not incur in a major overhead given today CPUs clocks.
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