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Abstract: Software Product Lines (SPL) may be adopted by either bootstrapping
existing software products into a SPL, or extending an existing SPL to encompass an
additional software product. Program refactorings are usually applied for carrying out
those tasks. The notion of SPL refactoring is an extension of the traditional definition
of refactoring; it involves not only program refactorings, but also Feature Model (FM)
refactorings, in order to improve configurability. However, FM refactorings are hard to
define, due to the incompleteness of the refactoring catalogs developed as of today. In
this paper, we propose a complete, sound catalog of algebraic laws, making up special
FM refactorings that preserve configurability. This catalog is also defined as minimal,
as one law cannot be derived from another one in the same catalog. In addition, a
theory for FMs is presented, in the context of a theorem prover.
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1 Introduction

Software Product Lines (SPL) [Clements and Northrop 2001] may be adopted
by either bootstrapping existing software products into a SPL (extractive
approach), or extending an existing SPL to encompass an additional soft-
ware product (reactive approach). Also, there can be a combination of
both [Clements and Northrop 2001]. Extractive and reactive approaches can be
enacted by the application of program refactorings. However, the definition of
program refactoring [Fowler 1999] does not take into account intrinsic character-
istics of SPL, such as feature models (FM) [Czarnecki and Eisenecker 2000], dis-
cussed in Section 3. For instance, using program refactorings in a SPL may cause
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a reduction its configurability (decreasing the number of possibly-generated soft-
ware products in a SPL), which should not happen in practice.

The term refactoring was coined by Opdyke in his thesis [Opdyke 1992]. He
proposes refactorings as behavior-preserving program transformations in order
to support the design of object-oriented application frameworks in an itera-
tive manner [Opdyke 1992]. The cornerstone of his definition is that refactorings
must imply in correct compilation of the refactored program and maintenance
of its observable behavior. Opdyke’s work and many of the later progresses in
refactoring can be applied to frameworks (a technology heavily used today in
SPL development), often introducing variation points. Nevertheless, as program
transformations, refactorings do not handle configurability-level issues, which are
only addressable at the FM level, nor do they define extractive transformations
from two or more existing applications into a SPL. For instance, using program
refactorings in a SPL may have the undesirable effect of reducing its config-
urability (instances of a SPL), which is not useful in practice. In this context,
The notion of SPL refactoring [Alves et al. 2006] is an extension of the tradi-
tional definition of refactoring; it involves not only program refactorings, but
also Feature Model (FM) refactorings, in order to improve configurability.

A FM refactoring is sound when it transforms a FM by improving (maintain-
ing or increasing) its configurability. New refactorings are usually proposed by
refactoring designers, by defining general transformations or templates. Develop-
ers can use them in a refactoring process, in this case a specific transformations.
A catalog containing a number of general FM refactorings, which maintain and
increase configurability, has been proposed [Alves et al. 2006]; however, the cat-
alog presented is not proved to be complete and minimal. Here we present all
refactorings. First, it is likely that refactoring designers will have to increase the
catalog. Otherwise, ad hoc refactoring may be necessary, an error-prone and time
consuming activity. Nevertheless, it is hard for refactoring designers to propose
new sound FM refactorings. Checking soundness either with or without the help
of a theorem prover [Gheyi et al. 2006a] requires extra expertise.

We propose, in this article, a complete set of sound algebraic laws for FMs
(Section 5). An algebraic law is a FM refactoring that is guaranteed to preserve
configurability. Moreover, we prove that this catalog is minimal, since there is
no algebraic law that can be derived from another law. The laws define primitive
transformations; we can derive interesting and useful coarse-grained refactorings
by their composition. This benefit is illustrated through an example. If two FMs
present the same configurability, the developer can always relate them by using
our catalog, whose laws are based entirely on syntactic conditions. Therefore,
there is no need for developers to do semantic reasoning, making their task more
productive.

We also present a theory for FMs using the Prototype Verification System
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(PVS) [Owre et al. 1998] (Section 2). PVS encompasses both a formal specifica-
tion language and a theorem prover. The transformations and the completeness
result are proven sound with respect to this theory within the prover (Section 4).

2 PVS Overview

The Prototype Verification System (PVS) provides mechanized support for for-
mal specification and verification [Owre et al. 1998]. The PVS system contains
a specification language and a theorem prover. Each specification consists of a
collection of theories. Each theory may introduce types, variables, constants,
and may introduce axioms, definitions and theorems associated with the theory.
Specifications are strongly typed, meaning that every expression has an associ-
ated type.

Suppose that we want to model part of a banking system in PVS, on which
each bank contains a set of accounts, and each account has an owner and a bal-
ance. Next, we declare two uninterpreted types (Bank and Person), representing
sets of banks and persons, and a record type denoting an account. An unin-
terpreted type imposes no assumptions on implementations of the specification,
contrasting with interpreted types such as int, which imposes all axioms of the
integer numbers. Record types, such as Account, impose an assumption that
it is empty if any of its components types is empty, since the resulting type is
given by the cartesian products of their constituents. The owner and balance

are fields of Account, denoting the account’s owner and its balance, respectively.

Bank: TYPE
Person: TYPE
Account: TYPE = [# owner: Person, balance: int #]

In PVS, we can also declare function types. Next, we declare two functions
types (mathematical relation and function, respectively). The first one just de-
clares its name, parameters and result types, establishing that each bank relates
to a set of accounts. The second function not only declares the withdraw oper-
ation, but also defines the associated mapping.

accounts: [Bank -> P[Account]]
withdraw(acc: Account, amount: int): Account =

acc WITH [balance := (balance(acc)-amount)]

The balance(acc) expression denotes the balance of the acc account. The WITH
keyword denotes the override operator, which replaces the mapping for acc by a
new tuple, if acc is originally in the function domain. In the withdraw function,
the expression containing the WITH operator denotes an account with the same
owner of acc, but with a balance subtracted of amount. Similarly, we can declare
a function representing the credit operation.
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Besides declaring types and functions, a PVS specification can also declare
axioms, lemmas and theorems. For instance, next we declare a theorem stating
that the balance of an account is not changed when performing the withdraw
operation after the credit operation with the same amount.

withdrawCreditTheorem: THEOREM
∀ (acc: Account, amount: int) :
balance(withdraw(credit(acc,amount),amount)) = balance(acc)

3 Feature Models

In this section, we provide an overview of FMs. A FM represents the
common and variable features of a SPL and the dependencies between
them [Czarnecki and Eisenecker 2000]. A feature diagram is a tree-like graph-
ical representation of a feature model.

Relationships between a parent feature and its child features (or subfeatures)
are categorized as Optional (features that are optional – represented by an un-
filled circle), Mandatory (features that are required – represented by an filled
circle), Or (one or more must be selected – represented by a filled triangle), and
Alternative (exaclty one subfeature must be selected – represented by a unfilled
triangle). Figure 1 depicts these relationships graphically.

Figure 1: Feature Diagram Notations

Besides these relationships, FMs may include propositional logic formulae
about features. For instance, the formula earphone ⇔ mp3 states that the fea-
ture earphone is selected if and only if the feature mp3 is selected.

Figure 2 depicts a simplified FM for a mobile phone. A mobile phone may
have an earphone. Moreover, it may have at least an mp3 player or a digital
camera. Finally, a mobile phone has an earphone if and only if it has a mp3
player. So, the FM has four features (mobilephone, earphone, mp3 and camera),
one formula (earphone ⇔ mp3) and two relations: an optional relation between
mobilephone and earphone, and an or feature relation between mobilephone,
mp3 and camera.

The semantics of a FM is the set of its possible (valid) configurations
(software product). A configuration contains a set of feature names; if valid,
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Figure 2: Feature Model Example

it satisfies all constraints (relations and formulae) of the model. For exam-
ple, the configuration ({mobilephone, camera }) is valid for the model in Fig-
ure 2 representing a mobile phone only with camera. However, the configuration
({mobilephone, earphone }) is invalid because the or feature relation between
mobilephone, mp3 and camera states that whenever mobilephone is selected, at
least mp3 or camera must be selected.

4 Theory for Reasoning about Feature Models

In this section, a theory for formally reasoning about FMs is presented. We
propose an abstract syntax in Section 4.1. Section 4.2 presents semantics for
this language. In this paper, we use this theory to formally prove algebraic laws
for FMs.

4.1 Abstract Syntax

Next we show the abstract syntax of our FM language in PVS. Hereafter, we use
well-known mathematical symbols instead of PVS keywords, such as SET, AND
and FORALL, for improving readability. A feature model (FM) contains a root and
a set of feature names, relations and formulae. A Name is represented by a PVS
type.

Name: TYPE
FM: TYPE = [# root: Name,

features: P[Name],
relations: P[Relation],
formulae: P[Formula] #]

Our FM language contains six kinds of propositional formulae: true, false,
feature name, negation, conjunction and implication.
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form ::= true | false | feature | ¬ form |
form ∧ form | form ⇒ form

feature ::= id

Note that we can derive other propositional formulae using the previous basic
formulae (f∨g = ¬((¬f)∧(¬g))).

We represent formulae and the four relations with abstract
datatypes [Owre et al. 1998]. In the following fragment, we specify all FM
formulae considered.

Formula: DATATYPE
BEGIN

TRUE_FORMULA: TRUE?: Formula
FALSE_FORMULA: FALSE?: Formula
NAME_FORMULA(n: Name): NAME?: Formula
NOT_FORMULA(f: Formula): NOT?: Formula
AND_FORMULA(f0, f1: Formula): AND?: Formula
IMPLIES_FORMULA(f0, f1: Formula): IMPLIES?: Formula

END Formula

A PVS datatype is specified by providing a set of constructors (NAME and AND)
along with associated accessors (n and f) and recognizers (AND?). For instance,
AND?(form) is true when form is a conjunction formula. When a datatype is
type checked, a new theory is created with the axioms and induction princi-
ples needed to ensure that the datatype is the initial algebra defined by the
constructors [Owre et al. 1998].

The subsequent fragment represents the four FM relations using a PVS ab-
stract datatype. The p, c, l and r denote the parent and child features, and the
left and right subfeatures of a parent feature, respectively.

Relation: DATATYPE
BEGIN

OPT_REL(p,c: Name): OPT?: Relation
MAND_REL(p,c: Name): MAND?: Relation
ALT_REL(p,l,r: Name): ALT?: Relation
OR_REL(p,l,r: Name): OR?: Relation

END Relation

It is important to mention that an alternative and or relations can be between
more than two subfeatures. We can specify them similarly. However, for simplic-
ity, we only consider two subfeatures.

4.2 Semantics

In this section, we present the semantic notion for FMs. Our aim is to encode
semantics for feature models in PVS in order to use its prover to prove properties
about feature models, as we show in Section 5.
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Each feature model defines a set of valid configurations, each of which con-
taining a set of selected features, represented by Configuration. A valid config-
uration is a selection of features from the model satisfying its relations (implicit
constraints) and formulae (explicit constraints), as declared next.

Configuration: TYPE = [# value: P[Name] #]
semantics(fm: FM): P[Configuration] =

{ c:Configuration | satImpConsts(fm,c) ∧
∀ f:forms(fm) | satFormula(f,c) }

So, the semantics of a feature model is the set of all valid configurations.
The expression value(c) yields all selected features in the configuration c. The
predicate satImpConsts(fm,c) checks not only whether c contains a subset of
fm features, but also it verifies whether the FM root is selected in c. It also
checks whether c satisfies all relations of fm.

satImpConsts(fm: FM, c:Configuration): boolean =
value(c) ⊆ features(fm) ∧
root(fm) ∈ value(c) ∧
∀ r: relations(fm)| satRelation(r, conf)

The predicate satRelations(fm,c) checks whether the configuration c sat-
isfies all relations of fm. For example, c satisfies a mandatory relation between
features A and B when both features are selected in c. Next specify it in PVS.

satRelation(r:Relation, conf:Configuration): boolean =
CASES r OF
OPT_REL(p,c):

c ∈ value(conf) ⇒ p ∈ value(conf),
MAND_REL(p,c):

p ∈ value(conf) ⇔ c ∈ value(conf),
ALT_REL(p,l,r):

l ∈ value(conf) ⇒ ¬ r ∈ value(conf) ∧
r ∈ value(conf) ⇒ ¬ l ∈ value(conf) ∧
p ∈ value(conf) ⇒ (l ∈ value(conf) ∨ r ∈ value(conf)) ∧
l ∈ value(conf) ⇒ p ∈ value(conf) ∧
r ∈ value(conf) ⇒ p ∈ value(conf),

OR_REL(p,l,r):
p ∈ value(conf) ⇒ (l ∈ value(conf) ∨ r ∈ value(conf)) ∧
l ∈ value(conf) ⇒ p ∈ value(conf) ∧
r ∈ value(conf) ⇒ p ∈ value(conf)

ENDCASES

Next we present when a configuration satisfies a formula (satFormula). It has
the standard semantics. For instance, a configuration satisfies the conjunction
formula p∧q if it satisfies p and q. As another example, a configuration c satisfies
the feature name formula n if n is a value selected in c.

satFormula(f:Formula, c:Configuration): RECURSIVE boolean =
CASES f OF
TRUE_FORMULA: TRUE,
FALSE_FORMULA: FALSE,
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NAME_FORMULA(n): n ∈ value(c),
NOT_FORMULA(f1): ¬ satFormula(f1,c),
AND_FORMULA(f1, f2): satFormula(f1,c) ∧ satFormula(f2,c),
IMPLIES_FORMULA(f1, f2): satFormula(f1,c) ⇒ satFormula(f2,c)

ENDCASES
MEASURE complexity(f)

Notice that satFormula is a recursive function. The PVS recursive functions
must be declared using the RECURSIVE keyword. Moreover, a measure func-
tion [Owre et al. 1998] (in our case complexity), which is a well-founded order
relation, must be specified in order to show the recursive function is total.

From the semantics definition, we proved in PVS a theorem stating that if
two feature models have the same semantics, they contain the same selectable
feature names. Dead features are excluded. For instance, if we deduce a formula
¬ n from the model, a feature n is not a selectable feature in a feature model. Al-
though this situation is rare, it must be considered when doing formal reasoning.
So, we only consider all selectable features in the following theorem.

Theorem Same Names If arbitrary feature models m1 and m2 have the same
semantics (semantics(m1)=semantics(m2)), they must have the same selectable
features: selectable(m1) = selectable(m2).

The selectable relation yields all selectable features from a FM. The previous
theorem is important in the completeness result of our catalog. The proof of this
theorem can be found in our technical report [Gheyi et al. 2006a].

5 Algebraic Laws

In this section, we propose a complete catalog of algebraic laws, which are a
special kind of FM refactoring that preserves configurability. Each law is a bidi-
rectional sound refactoring. In Section 5.1, we apply our algebraic laws to refac-
tor the feature model depicted in Figure 2. We use our theory (Section 4) to
prove them sound in PVS in Section 5.2. In order to prove the completeness
result (Section 5.3), we present a reduction strategy stating how to convert any
feature model to propositional logic formulae.

First we explain the notation used to depict the transformations. Each alge-
braic law consists of two templates (patterns) of FMs, on the left-hand (LHS)
and right-hand (RHS) sides. We can apply a law whenever the left template is
matched by a FM. A matching is an assignment of all meta-variables occurring
in LHS/RHS models to concrete values. Any element not mentioned in both
FMs remains unchanged, so the refactoring templates only show the differences
between the FMs. Moreover, a dashed line on the top of a feature indicates that
this feature may have a parent feature. A dashed line below a feature indicates
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that this feature may have additional subfeatures. An arrow on the top of a fea-
ture indicates that this feature is the root of the feature model. fs and forms

denote a set of features and formulae, respectively.
The first law relates the alternative and or relations. Applying Law 1 from

left to right allows us to convert an alternative relation into an or relation along
with two formulae establishing equivalent constraints. Similarly, by applying the
law from right to left, we can convert an the or to an alternative relation.

Law 1 〈replace alternative〉

Law 2 replaces an or relation and optional nodes. Laws 1 and 2 can be applied
when there is more than two child features, as well.

Law 3 relates a mandatory feature with an optional feature with a formula
stating the same fact. Law 4 removes an optional feature and states the same
fact in a formula. The root of a feature model always appears in all valid con-
figurations. We have another law (Law 5) that removes a root and includes a
formula stating that the root is always present.

Law 6 removes a feature that can never be selected. The B→false notation
within brackets indicates that all occurrences of B in forms are replaced by
false. Since B cannot be selected, it is represented by false. We have to remove
all occurrences of B in order to preserve well formedness. Similarly, this law
allows us to add a set of nodes if we add a formula stating that the nodes cannot
be selected.

Finally, Law 7 allows us to add or remove formulae deducible from the model.
Since it is a deducible formula, the semantics is preserved.

Some of the previous transformations may not be useful in practice since
they convert a well-formed feature model to another that is not a tree, such as
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Law 2 〈replace or〉

Law 3 〈replace mandatory〉

Law 4. However, they are very important in the theoretical reasoning, and in
some intermediate refactoring steps, such as the one presented in Section 5.1.

5.1 Refactoring Example

In this section, we apply our algebraic laws to the feature model depicted in
Figure 2 in order to change its structure. Notice that we have a propositional
formula stating that the mp3 feature is selected if and only if the earphone

feature is selected. This constraint means that if the mp3 feature is selected,
then the earphone feature is mandatory. Suppose that we would like to change
the structure of the FM in Figure 2 to express this intuition.

Our aim is to change the parent of earphone to be mp3 using the mandatory
relationship. First we apply Law 4 from left to right in order to remove the

3582 Gheyi R., Massoni T., Borba P.: Algebraic Laws for Feature Models



Law 4 〈remove optional〉

Law 5 〈remove root〉

optional feature earphone. We state the same fact in a formula. Notice that this
intermediate step yields a ill-formed FM since earphone is not connected to the
tree. By applying Law 7, we can introduce some deducible formulae, which are
important to reintroduce the earphone optional feature using Law 4 from right
to left. The intermediate FM becomes well-formed again. Now the parent of
earphone is mp3. Finally, we can introduce a mandatory between the earphone

and mp3 features using Law 3 from right to left. The resulting model contains
a deducible formula that can be removed by applying by applying Law 7. The
entire refactoring process is summarized in Figure 3.

Notice that we apply small-grained transformations and this activity may
be time consuming. We propose primitive transformations in order to have a
complete and minimal set of algebraic laws. However, the main goal of our set of
laws is to compose them to derive interesting coarse-grained refactorings. Since
each primitive law is sound, we derive sound refactorings by composing them.
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Law 6 〈remove node〉

Law 7 〈add formula〉

5.2 Soundness

We used the theory presented in Section 4 to prove that each law presented before
preserves configurability. Next we present our approach to prove algebraic laws
in PVS. The following theorem ensures that a given law preserves configurability
(semantics).

law: THEOREM
∀ m1,m2:FM ... |
syntax(...) ∧ conditions(...) ⇒ semantics(m1) = semantics(m2)

The predicates syntax and conditions describe the syntactic similarities
and differences between the LHS and RHS models in the law, and conditions
of the transformation. In general, we map each construction in the law to each
corresponding element in FM semantics. Since all laws are primitive and have
syntactic conditions, both predicates are easily defined. Proving a transformation
increased our confidence in situations that a transformation did not preserve
semantics. The theorem prover gave us insights on details of this formalization.

For example, next we specify the PVS theorem used to prove Law 4. The
LHS and RHS FMs are represented by the abs and con variables. In general,
for each element in the law, we declare a variable for it in our PVS theory. For
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Figure 3: Feature Model Refactoring

instance, the meta-features A and B are represented by the PVS variables A and
B, respectively. The optional relation on the LHS model is represented by r.
Finally, the formula on the RHS model is represented by f. Notice that this law
does not have conditions. Therefore, the conditions predicate is omitted.

removeOptional: THEOREM
∀ abs,con:FM, A,B:Name, r:Relation, f:Formula |
syntaxRemOpt(abs,con,A,B,r,f) ⇒

semantics(abs) = semantics(con)

Now we specify the syntaxRemOpt predicate relating both FMs. First of all,
both FMs have the same root and features. The LHS model contains an optional
relation r that is not declared in con. Finally, the RHS model contains a formula
f that is not declared in abs.

syntaxRemOpt(abs,con:FM, A,B:Name, r:Relation, f:Formula): boolean =
root(abs) = root(con) ∧
features(abs) = features(con) ∧
relations(abs) = { r1:Relation | r1 ∈ relations(con) ∨ r=r1 } ∧
r /∈ relations(con) ∧
r = OPT_REL(A,B) ∧
formulae(con) = { f1:Formula | f1 ∈ formulae(abs) ∨ f1=f } ∧
f /∈ formulae(abs) ∧
f = IMPLIES_FORMULA(NAME_FORMULA(B),NAME_FORMULA(A))

The removeOptional theorem was then proved using the PVS prover.

5.3 Completeness and Minimality

In this kind of work, it is important to evaluate whether the catalog is expressive
enough to derive a representative set of transformations. Moreover, it is impor-
tant to have a minimal set of transformations since increasing the catalog may
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be difficult for developers to know all transformations and in which situations
to apply them. In this section, we prove that our catalog of algebraic laws is
complete and minimal.

As mentioned before, each law defines two transformations. The catalog is
minimal since each law deals with one different (orthogonal) construct each
time, and defines primitive and small-grained transformations. Therefore, one
transformation cannot be derived from another.

Theorem Minimality No feature model transformation stated by Laws 1-7 can
be derived from any set of the others.

We have defined one law for each construct of the feature model language. If
two feature models m1 and m2 are equivalent (both have the same semantics),
we can always reduce one model to another by applying Laws 1-7, as stated by
the following theorem.

Theorem Completeness If two feature models have the same semantics, we
can always relate them applying Laws 1-7.

In order to prove the completeness theorem, first we apply our laws in order
to reduce any FM model to its equivalent one expressed in the propositional
logic (reduction strategy). Figure 4 illustrates our reduction strategy.

Figure 4: Reduction Strategy

We can reduce any FM to propositional logic by applying Laws 1-6 from left
to right in this order. First we apply Law 6 from left to right in order to remove
all features of m1 that cannot be selected. The resulting model is m1’. Then we
apply Laws 1-5 from left to right in order to remove all syntactic sugar con-
structs of m1’. This step reduces m1’ to an equivalent model in the propositional
logic. Notice that we can always apply them since there is no precondition. The
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resulting model is represented by its components (names1, forms1). We only
have feature names and formulae at this stage. This reduction always terminates
and converges since each law does not introduce another construct that was pre-
viously removed. Notice that the number of FM relations is decreased in each
step.

After applying the reduction strategy, now our aim is to show that the two
FMs in the propositional logic are equivalent. If two feature models have the same
semantics, they have the same selectable feature names, hence names1=names2

(Theorem Same Names). Both models may have different formulae. Since m1

and m2 have the same meaning, forms1 and forms2 are equivalent. Addition-
ally, propositional logic calculus is a complete calculus. Therefore, we can al-
ways prove that forms1=forms2 by applying Law 7. Now the resulting model
is (names2, forms2). Finally, we reconstruct m2 by adding all syntactic sugar
constructs (by applying Laws 1-5 from right to left) and all feature nodes that
can never be selected by applying Law 6 from right to left.

The detailed proof of the completeness result is presented next. For simplicity,
we consider alternative and mandatory relations containing two child features;
the proof is similar for FMs containing more than two child features. Notice
that all proposed algebraic laws are used in the proof. This is another evidence
of the minimality result. Every step in the following derivation is justified within
brackets.

m1
[applying Law 6 (→) to all
features that cannot be selected]

= m1’
[applying Laws 1-5 (→) until
there is no syntactic sugar construct]

= (names1, forms1)
[semantics(m1) = semantics(m2),
Theorem Same Names]

= (names2, forms1)
[semantics(m1) = semantics(m2),
propositional logic calculus is complete,
applying Law 7]

= (names2, forms2)
[applying Laws 1-5 (←)
including all syntactic sugar constructs]

= m2’
[applying Law 6 (←)]

= m2

6 Related Work

Deursen [van Deursen and Klint 2002] proposes a textual language for describ-
ing features. Their language is similar to ours, but it does not consider formulae.
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Their semantics is equivalent to ours. Also, a set of fifteen rules relating equiv-
alent FMs are proposed, which are very similar to our algebraic laws. They
informally argue soundness, in contrast to our approach, which uses PVS to in-
crease confidence. However, Deursen does not propose a minimal and complete
set of FM algebraic laws.

Benavides et al. [Benavides et al. 2005] propose an automatic way to analyze
five properties of FMs, such as yield the number of instances and all instances of
a FM, and check whether a FM is valid. They present a mapping to transform
an extended feature model into a Constraint Satisfaction Problem in order to
formalize extended feature models using constraint programming. In our work,
we can check these properties using our theory in PVS. Their idea of filters is
equivalent to formulae in our FMs.

Batory [Batory 2005] integrates prior results to connect feature diagrams,
grammars, and propositional formulae. This connection also allows the use of
SAT solvers to help debug feature models by confirming compatible and incom-
plete feature sets. In our work we propose semantics for FMs, and propose a
complete and minimal set of algebraic laws for feature models.

Liu et al. [Liu et al. 2006] proposes Feature Oriented Refactoring (FOR),
which is the process of decomposing a program, usually legacy, into features.
Such work focuses on configuration knowledge, specifying the relationships be-
tween features and their implementing modules, backed by a solid theory. Also,
the authors present a semi-automatic refactoring methodology to enable the de-
composition of a program into features. In our work, we focus on refactorings at
a different level (models instead of programs).

Czarnecki et al. [Czarnecki et al. 2005] introduce cardinality-based fea-
ture modeling as an integration and extension of existing approaches.
They specify a formal semantics for FMs with these features and trans-
late cardinality-based FMs into context-free grammars. Antkiewicz and
Czarnecki [Antkiewicz and Czarnecki 2004] present a FeaturePlugin, which is
a feature modeling plug-in for Eclipse. The tool supports cardinality-
based [Czarnecki et al. 2005] feature modeling, specialization of feature dia-
grams, and configuration based on feature diagrams. In our work, we can check
whether a configuration belongs to a FM by proving a theorem in PVS. How-
ever, our theory does not handle cardinality-based FMs. We can check them if
we extend our theory.

Trujillo et al. [Trujillo et al. 2006] present a case study in feature refac-
toring. They refactor the AHEAD Tool Suite. Feature refactoring is defined
as the process of decomposing a program into a set of features. Hofner et
al. [Hofner et al. 2006] propose an algebra that is used to describe and analyze
the commonalities and variabilities of a system family. Sun et al. [Sun et al. 2005]
propose an encoding of FMs in Alloy. It is similar to ours, but they do not con-
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sider formulae different from our approach. Moreover, the previous approaches do
not prove meta-properties as in our work. Our laws define meta-transformations.
The previous approaches focus on proving properties of a specific FM.

Our prior work [Gheyi et al. 2006b] proposes another theory of FMs in Al-
loy [Jackson 2006]. We can perform analysis on Alloy models using the Alloy
Analyzer tool. In both encodings we can check whether a transformation is
a refactoring. However, Alloy is not a theorem prover, differently from PVS.
It would be nice to combine model checking and theorem proving. We pro-
posed [Alves et al. 2006] a catalog containing a number of general FM refactor-
ings (which preserve or increase configurability). However, this catalog is not
proved to be complete. In this work, we propose a sound, complete and minimal
catalog of algebraic laws for FMs. Moreover, we mechanize a FM theory in PVS.

7 Conclusions

In this article, we propose a sound, complete and minimal catalog of algebraic
laws for Feature Models (FMs). The laws are proven sound with respect to a
formal semantics as specified in PVS. Our PVS theory can be used by others
who wish to prove properties about FMs. Our catalog can be used when refactor-
ing Software Product Lines (SPLs). As previously explained, besides traditional
program refactoring, FMs must also be refactored. This task brings additional
benefit, since it improves the quality of FMs by preserving or increasing its con-
figurability. Therefore, developers do not need to reason based on semantics in
order to refactor a FM, as the catalog can be directly applied.

Our reduction strategy reduces every possible FM to propositional formulae.
As an alternative, only one law to introduce deducible formula could be proposed
in order to restructure FMs, presenting a single semantic condition. However, it
is much easier to deal with graphical (syntactic) notations in SPL refactorings
instead of propositional formulae. Most refactorings can be performed by only
checking syntactic conditions, which a supporting tool could easily incorporate.
As a result, we propose laws for the graphical notation.

As future work, theory can be extended to include additional constraints,
such as cardinality FMs. Based on this extended theory, we can propose and
proving new algebraic laws. Furthermore, we focus on configurability-preserving
transformations. We intend to propose a complete catalog of FM refactorings
increasing configurability. Finally, we can specify well-formedness rules for FMs
in PVS, and prove that our laws preserve them.
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