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Abstract In this paper we present AmOS, the Ambient Object System that underlies
the Ambience programming language. AmOS implements a computation model that
supports highly dynamic behaviour adaptation to changing contexts. Apart from being
purely object-based, AmOS features first-class closures, multimethods and contexts.
Dynamic method scoping through a subjective dispatch mechanism is at the heart of
our approach. These features make of AmOS a very simple and elegant paradigm for
context-oriented programming.
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1 Introduction

In the vision of Ambient Intelligence [Sha03], people are assisted in their every-
day activities through the proactive, opportunistic support of non-intrusive com-
puting devices offering intuitive interaction modalities. The usefulness and qual-
ity of delivered services could be improved considerably if devices were able to
adapt their behaviour according to sensed changes in their surrounding envir-
onment, both at the physical and logical levels. This interplay between context-
awareness and dynamic software adaptability is key to the construction of ap-
plications that are smart with respect to user needs. Unfortunately, current
applications are hardly adaptable. Most applications exhibit fixed functional-
ity and seldom do they sense their environment and adapt their services in a
context-aware fashion. Many chances of delivering improved services to users
and network peers are thus missed.

The need for adequate programming abstractions that enable application
context-awareness has given rise to the emerging field of Context-Oriented Pro-
gramming [HCN08]. Our approach follows the same direction. This paper pres-
ents a programming model to ease the construction of applications that can react
to changes in their execution context by adapting their behaviour dynamically.
The starting point of our research is the development of novel language abstrac-
tions and the adaptation of existing abstractions that can render context-aware,
self-adaptable applications easier to develop. We demonstrate that a simple yet
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powerful computation model based on classless objects and multimethods read-
ily provides the needed support, leading to (a) straightforward application code
that is not concerned with context adaptation, (b) behaviour that can be adapted
dynamically to different contexts in a non-intrusive fashion (without modifying
existing application code), and (c) context-aware applications with software ar-
chitectures that are not biased towards context adaptation —rather, they can
be designed freely according to their domain.

Whereas our model has been presented in the past using a Smalltalk-like sur-
face syntax [GMH07], its core has been written, and is therefore readily available,
in Common Lisp. We call this core the Ambient Object System (AmOS). AmOS

does not rely on CLOS,1 in particular because AmOS is not based on the notion
of class. In essence, AmOS is a prototype-based computation model [NTM99]
featuring multimethods and subjective dispatch [SA05]. In complement to a pre-
vious paper where we illustrated the main features of our Ambience language
and how they support run-time adaptation of mobile applications to changing
contexts [GMH07], in this paper we open up the inner workings of the under-
lying object system (AmOS) and discuss its advantages for context-oriented
programming.

To give the reader a first feel of the language before diving into the core ab-
stractions of our model, the following section introduces a simple AmOS program
that will serve as running example throughout the paper.

2 Motivating example

The example illustrates how to program the behaviour of a mobile phone and
the way such behaviour can be adapted to context. We deliberately avoid a
detailed explanation of the semantics behind the language constructs used in this
example, relying on the reader’s intuition instead. In the forthcoming sections
we revisit this example as we gradually introduce the different language features
in more detail. The example concentrates on functionality related to receiving
and advertising calls on mobile phones, with the following basic requirements:

1. New incoming calls are advertised by playing a predefined ringtone.
2. Urgent calls are treated with priority over normal calls.
3. If the phone is off-hook (in use), a call waiting signal is played instead.

We divide the example in two parts. From a programmer’s perspective, we show
the code that needs to be developed and deployed on the mobile phone. From a
user’s perspective, we show the code that is executed and the resulting behaviour
at run time, according to the context of use.
1 CLOS is the standard object-oriented extension of Common Lisp.
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2.1 Development Time

One of the key features of AmOS is the support of first-class contexts. Con-
texts are objects representing physical or logical properties of the environment
in which the system is running. These properties may be about the user, the
machine, the surroundings or in general any information which is computation-
ally accessible [HCN08], be it acquired through sensor input, network commu-
nication, generated internally, or otherwise. In our example, we first create a
@telephony context, representing a prototypical situation in which a telephony
service is available. Inside a mobile phone such service always is:2

(defcontext @telephony )

By convention, prototype names are prefixed with the @ symbol. The @telephony
context thus created is a plain object, without any special status in comparison
to other objects in the system. Next we proceed to define objects and behaviour
that are specific of telephony context. We thus request @telephony to be the
currently active context:
(in -context @telephony )

All forthcoming definitions will belong to this context. Other existing contexts
will remain unchanged.

For the sake of the example, a phone object contains a call manager and a
speaker on which to advertise incoming calls:3

(defproto @phone (clone @object ))
(add -slot @phone ’calls (clone @call -manager ))
(add -slot @phone ’speaker (clone @phone -speaker ))
(defproto @mobile -phone (extend @phone )))

As a result of extend, @mobile-phone will delegate to @phone.4 All behaviour
not understood directly by the former will be handed over to the latter. The call
manager features four queues for call management:
(defproto @call -manager (clone @object ))
(defproto @call -queue (extend @queue ))
(add -slot @call -manager ’incoming (clone @call -queue))
(add -slot @call -manager ’ongoing (clone @call -queue))
(add -slot @call -manager ’terminated (clone @call -queue))
(add -slot @call -manager ’missed (clone @call -queue))

2 Aimed at improving understandability, the defcontext construct is syntactic sugar
for (defslot @telephony (clone @context)). This adds a slot named @telephony
to the current context object whose value is a clone of the prototypical context
object.

3 The defproto construct is a synonym of defslot for addition of a slot with given
name and value to the current context. We prefer the use of defproto over defslot
because it encodes explicitly the programmer’s intention.

4 For a discussion of delegation in prototype-based languages and how it differs from
class-based inheritance, see the seminal paper by Lieberman [Lie86] and the book
edited by Noble et al. [NTM99].
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The @call-queue prototype is a specialised form of queue for managing calls.
The head of the ongoing queue (if present) is the currently active call; all other
calls in the queue are on hold.

Still in telephony context, we define a phone call as an object that can be
received on any phone:
(defproto @call (clone @object ))
(defmethod receive ((call @call) (phone @phone ))

(advertise call phone)
(enqueue call (incoming (calls phone))))

The receive multimethod is specialised on both @call and @phone. It encodes
the prototypical behaviour for receiving calls on a phone: the call is advertised
and added to the queue of incoming calls. The advertise method encodes the
prototypical way of announcing a call to the user:
(defmethod advertise ((call @call) (phone @phone ))

(format t "Playing ringtone through ~a" (speaker phone )))

This tackles requirement 1 set forth previously.
AmOS methods, even when belonging to the same context, can be overloaded

by using the same name but different specialisers. For example, behaviour that is
better suited for urgent calls can be defined by overloading enqueue as follows:
(defproto @urgent -call (extend @call))
(defmethod enqueue ((call @urgent -call ) (queue @call -queue ))

(push call queue))

This version of enqueue, specially conceived for urgent calls, puts the call in the
front of the call queue instead of at the end. This tackles requirement 2.

As illustrated by the previous example, overloaded multimethods permit de-
fining behaviour that is better suited to specific kinds of arguments. In addition
to having this explicit dependency on their arguments kinds, AmOS methods
have an implicit dependency on the context in which they are defined, and thus
can be overloaded on that context as well, as shown next. Advertising behaviour
that is specific to situations in which the phone is off-hook can be defined as
follows:5

(defcontext @off -hook )
(with -context @off -hook

(defmethod advertise ((call @call) (phone @phone ))
(format t "Playing call waiting signal through ~a~%"

(speaker phone))))

5 In essence, the (with-context context body ) construct is syntactic sugar for
(activate context ) body (deactivate context ); context activation is explained
in Section 5.3. However, the expansion is slightly more complicated than this, since
it also uses Common Lisp’s unwind-protect construct to make sure that context
is deactivated even if control flow exists prematurely from body because of (e.g.) an
exception.
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This tackles requirement 3. The adapted behaviour for @off-hook context is spe-
cified in a non-intrusive way, leaving the original advertise method untouched.
Encoding behaviour in this context-oriented way is therefore fundamentally dif-
ferent from using conditional statements.

To complete the example, we still have to show the way @off-hook is man-
aged. The context is activated when a call is answered:
(defmethod answer (( phone @phone ))

(let (( call (dequeue (incoming (calls phone )))))
(push call (ongoing (calls phone))))

(activate @off -hook ))

Correspondingly, @off-hook is deactivated upon hang up:
(defmethod hang -up (( phone @phone ))

(deactivate @off -hook )
(let (( call (pop (ongoing (calls phone )))))

(enqueue call ( terminated (calls phone )))))

All code shown so far is written at development time and deployed into the
phone.

2.2 Run Time

During normal use, actual mobile phones and phone calls are created by cloning
respective prototypes:
(defslot bobs -phone (clone @mobile -phone))
(defslot alices -call (clone @urgent -call ))

Behaviour is triggered by invoking multimethods like receive. The default out-
put is:
(receive alices -call bobs -phone) →

Playing ringtone through phone speaker

The output of the same expression is different when the phone is in use:
(receive alices -call bobs -phone) →

Playing call waiting signal through phone speaker

More advanced examples of context adaptation will be shown after having ex-
plained the basic mechanisms that underly our approach.

3 AmOS Core Concepts

AmOS aims at being a multiparadigm model that does not sacrifice simplicity
and homogeneity for expressiveness and flexibility. Section 2 gave a first glimpse
of that from an end-user perspective. In the remainder of the paper we show
that simplicity and homogeneity are at the core semantics of the object model.
We start by highlighting the underlying concepts that have been introduced in
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an intuitive fashion so far. These concepts form the cornerstones of the object
model, on which all the rest is based.

Objects Every first-class entity in AmOS is an object — that is, the model is
purely object-based. The observable properties of objects are their identity,
acquaintances and behaviour. Whereas identity is an immutable (defining)
characteristic, acquaintances and behaviour can vary over time. The latter
two thus constitute the state of an object.

AmOS objects are said to be open, since new methods and attributes can
be added or removed at run time, without editing previously existing code.
Open objects are analogous to open classes [CMLC06] in class-based lan-
guages.

Some objects in the system act as representative examples of domain entit-
ies, and are therefore called prototypes. However, prototypes do not have a
special status in the language other than being meaningful exemplars [Lie86,
NTM99].

Cloning New objects can be created by cloning existing ones. Cloned objects
have a distinct, unique identity, but are identical to the cloned object in all
other regards.

Messages Interaction among objects happens through message passing. A mes-
sage is a request for interaction among the participants involved in the mes-
sage. To this effect, each message has a selector object that identifies the
desired interaction, and an argument list of objects that will take part in
it. Messages are symmetric: there is no distinguished receiver for any given
message.

Delegation Behaviour can be delegated from one object to another by placing
a delegation link between them. When we refer to inheritance in this paper
we mean such delegation-based inheritance. Since objects can have multiple
delegations, a directed graph of delegation links can be formed. Messages
that are not understood by an object can be handled by one of the delegates
in the delegation graph. Cyclic delegations are supported, as explained in
Section 4.2. Sample delegations are shown in Figure 1.

Methods Methods describe prototypical interactions among objects. Every me-
thod has a selector that identifies the particular interaction it implements,
and a list of prototypical objects that take part in the interaction. The
method is said to be specialised on those particular objects.

Rather than belonging to a single class as in Java or to a single generic
function as in CLOS, AmOS methods belong simultaneously to all their
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@mobile-phone

(defmethod receive ((call  @call ) (phone @phone  ))
    (advertise call phone)
    (enqueue call (incoming (calls phone))))

( receive  alices-call    bobs-phone  )

@urgent-call

Figure 1: Method applicability for a given message. The hollow-headed arrows
denote delegation relationships.

specialisers. In other words, method ownership is shared, both at a concep-
tual and technical levels. Methods are thus symmetric, just like messages
are.

Because of shared ownership, a method can be accessed only if the client
holds references to suitable arguments and suitable contexts to which the
method is applicable. This brings in the advantages of capability-based se-
curity to the model [MS03]. In contrast, generic functions in CLOS are glob-
ally visible objects conferring centralised access to all homonym methods.

Method applicability For any given message, a method is applicable if the
selector and arguments of the message match those of the method. The
selectors match if they have the same object identity.6 The arguments match
if each message argument delegates in zero or more steps to the method
specialiser in the same position, as illustrated in Figure 1.

Method specificity Due to multiple inheritance, more than one method might
be applicable for any given message. A notion of specificity is introduced to
solve ambiguities, which is a strict, total order relationship among methods.
A second source of ambiguity is multiple dispatch. To solve this kind of
ambiguity, asymmetric dispatch [CMLC06] is used, giving earlier message
arguments more importance during dispatch than later arguments. With
these rules there will always be a method that is more specific than the
others and can therefore be chosen for execution.

These concepts are all there is to the basic computation model of AmOS.
Perhaps the least trivial part is message disambiguation. This topic is discussed
6 Given that the only relevant property of a selector is its identity, any object can be

used as selector, although most often symbols are used.
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in Section 4.2. The next sections progressively show how the core concepts just
explained are sufficient to support the fundamental constructs of our model,
which in the end enable dynamic behaviour adaptation to context.

4 Opening Up AmOS

The core concepts explained in Section 3 are not only meant for end program-
mers. The mechanisms used in the lowest levels are the same, namely objects,
cloning, messages, delegation, and multimethods. In this section we describe
the fundamentals of AmOS from a language engineer’s perspective. This section
shows that AmOS is an open system [Kic92] and that such openness does not
entail additional complexity at the conceptual and technical levels.

4.1 Closures and Activations

The most basic executable entity in AmOS is the closure. It has lambda-like
syntax and semantics, as the following example illustrates:
(& (x y) (+ x y)) → closure

Every closure has an associated activation record —hereafter simply called
activation— which holds the dynamic information that is associated with its
invocation. Activations are the environments in which closure code is executed.7

Like in Self [CUL89], activations are first-class objects.
It is possible to specify prototypical argument values to be held in the activ-

ation of a closure. They are placed next to each argument name:
(& ((x 1) (y 2)) (+ x y)) → closure

This closure is illustrated in Figure 2. As can be seen, the prototypical activation
delegates to an arguments object, which holds one slot per closure argument.
Upon invocation, the closure activation is cloned and the prototypical arguments
are substituted by the actual arguments. The closure’s code is then executed in
this freshly created environment and is thus fully reentrant. Figure 2 shows the
fresh activation resulting from the following invocation:
(invoke (& ((x 1) (y 2)) (+ x y)) (list 3 4)) → 7

Each activation delegates to a parent object, also illustrated in Figure 2.
Messages not understood by the current activation or by its arguments object
are delegated to the parent.8 The parent corresponds to the enclosing lexical
scope of the closure, so that outer definitions can be seen inside the closure’s
7 Activations are the object-based version of what is usually known as stack frames in

other models.
8 The order of delegations is important here. The arguments have more precedence

than the parent by having an earlier position in the delegation list of the activation.
Figure 2 does not depict this order.

3314 Gonzalez S., Mens K., Cadiz A.: Context-Oriented Programming ...



2

1

prototypical arguments

prototypical activation

parentx

y

current activation

4

3

invocation arguments

x

y

closure

(+ x y)

code

Figure 2: Prototypical activation and cloned activation with actual arguments.
Solid arrows represent object references, the hollow arrows represent delegations.

environment. For the particular case of the top-level activation, which has no
enclosing lexical environment, the parent is the so-called current context. This
context link is crucial to our approach and is explained further in Section 5.

As shown in this section, the semantics of closures involves nothing more
than objects, cloning and delegation. The next section explains methods and
their dispatch infrastructure.

4.2 Methods and Specialisation

Methods are obtained by enriching closures with a dispatch mechanism. Since
methods are extended forms of closures, the execution semantics described in
Section 4.1 applies unmodified to methods. In the case of methods, the proto-
typical arguments are considered to be argument specialisers. The code of the
method is designed to work for those specialisers in particular, and for any exten-
sion (through delegation) thereof. Reconsider for instance the receive method:
(defmethod receive ((call @call) (phone @phone ))

(advertise call phone)
(enqueue call (incoming (calls phone))))

The receive method is basically a named closure with prototypical arguments
@call and @phone, which are used as specialisers.

Roles

The link between a method and its specialisers is established through roles,
originally proposed in the Prototypes with Multiple Dispatch model [SA05]. Any
object that is used as method specialiser plays a role in the interaction described
by the method. As illustrated in Figure 3, the argument specialisers @call and
@phone play a role in the receive interaction, at the first and second positions
respectively. The illustrated roles are triplets (s, i, m) of the selector s identifying
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@call @phone

method

1

receive

role

2

receive

role

alices-call bobs-phone

@urgent-call @mobile-phone

pr
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m
et
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Figure 3: Roles corresponding to the receive method specialised on the @call

and @phone prototypes, and arguments alices-call and bobs-phone for which
the method is applicable.

the interaction, the position i at which the object plays the role, and the method
m implementing the behaviour.

Figure 3 also shows the conceptual difference among the different kinds of
objects. Objects in the plain layer correspond to concrete domain entities that
are being manipulated at the moment; objects in the prototypes layer are proto-
typical (usually meant for cloning, rather than direct manipulation); finally, the
core computation model is available through a series of meta objects describing
base objects, their roles, methods, and so on.

Method selection

Method overloading brings about the problem of choosing the method version
that is best suited to the given arguments. Specificity among applicable methods
is defined by rank vectors [SA05]. Each rank vector entry contains the delegation
distance between the message argument and corresponding method specialiser.
For instance, the rank vector of the method illustrated in Figure 3 for the mes-
sage with arguments alices-call and bobs-phone is (2, 2), since the path in
the delegation graph that goes from message argument to method specialiser is
of length 2 for both arguments. A rank vector with only zeroes is a “perfect
match”, corresponding to the case where the message arguments are the very
method specialisers.

3316 Gonzalez S., Mens K., Cadiz A.: Context-Oriented Programming ...



We use an adapted version of the C3 linearisation algorithm [BCH+96] to
topologically sort the delegation graph of each message argument and have a
well-defined notion of distance. Our adaptation of C3 supports delegation cycles
trivially, by taking into account only the first occurrence of a delegate in the lin-
earisation and ignoring any further occurrences arising from cycles. Next to our
handling of cycles, we also need an automatic resolution strategy for inconsistent
delegation graphs (that cannot be linearised by C3). Such automatic strategy
is necessary in AmOS, as ambiguities cannot always be detected at develop-
ment time due to dynamic inheritance. Delegation graphs can change arbitrarily
at run time, opening the door for ambiguous cases that could be precluded in
systems with static inheritance such as Cecil [Cha92].

Ambiguities arising from multiple dispatch —for example, considering wheth-
er the rank vector (1, 2) is more specific than (2, 1)— are resolved by imposing
left to right argument precedence as in CLOS (i.e. a lexicographic ordering):
(1, 2) is thus considered more specific than (2, 1). As a consequence, methods
with a better match in earlier argument positions will be considered more spe-
cific than other applicable methods. This choice is justified by observing that, in
practice, important arguments tend to have earlier argument positions, whilst
more auxiliary arguments are usually placed rightwards; the extreme case is ob-
served in languages with single dispatch, in which only the leftmost argument is
dispatched dynamically and therefore completely determines selected behaviour.

Method specialisation is useful in defining behaviour for special kinds of
objects and dealing with particular cases without hard-coding conditional state-
ments [FJN05]. Section 5 explains the way we further exploit specialisation and
multiple dispatch to define context-specific behaviour, and the way such beha-
viour can be adapted dynamically as needed. Before proceeding, we explain one
last important element of the computation model, accessor methods.

4.3 Accessor Methods

Sticking to a pure object-based semantics, in AmOS there is no such thing
as a variable access. Everything in AmOS is done through message passing. In
particular, argument accesses are actually method invocations (as in Self [US87]),
even though on the surface they look like plain variable accesses. In spite of the
fact that variable accesses do not take any explicit arguments, it should be taken
into account that there is always an implicit argument (the current activation)
which is passed with every method invocation, as explained in Section 5.

To illustrate accessor methods, we revisit the receive method once more:
(defmethod receive ((call @call) (phone @phone ))

(advertise call phone)
(enqueue call (incoming (calls phone))))
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In the body of the method, the occurrences of the symbols call and phone,
which are the parameter names, are replaced by message sends.9 The symbols
@call and @phone are also messages under the surface.10 The code just shown
is equivalent to the following:
(defmethod receive ((call (@call)) (phone (@phone )))

(advertise (call ) (phone))
(enqueue (call ) (incoming (calls (phone )))))

In this code it is apparent that everything is done through message passing.
The choice between the first (implicit) syntax and second (explicit) syntax for
accessing arguments is left to users.

We call the accessors discussed so far inner accessors, because they are used
to access the slots of an object “from the inside” —that is, when the object is
being used as an evaluation environment, as activations for example are nor-
mally used. Accesses to arguments in activations are not the only uses of inner
accessors. Prototypes, usually stored in context objects, are also accessed by
means of inner accessors. For example, the (@call) and (@phone) messages
invoke inner accessors that read slots from @telephony context.

Besides inner accessors, AmOS features other kinds of accessors. In particu-
lar, outer accessors read slots form the “outside” of an object, as the accessor
age in the following expression does: (age person). In this example, the outer
accessor receives an explicit argument person from which it is supposed to read
a slot —or write it, as in the expression (setf (age person) 31).

Accessor methods have no special status and use no special semantics to
access the slots of objects for which they have been defined. Given that accessors
are normal methods, it is possible to define context-specific accessors, and hence
to have slots whose apparent value depends on the context from which they are
observed.

5 Context-Oriented Programming in AmOS

Context-Oriented Programming enables the expression of behavioural variation
according to context [HCN08]. Dynamically adaptable context-aware applica-
tions can be written elegantly11 thanks to specific linguistic support to deal with
behavioural context dependencies. As illustrated in Section 2, AmOS provides
dedicated language abstractions such as defcontext and with-context to en-
code context-dependent behaviour. This section explains the foundations of those
abstractions.
9 Thanks to Common Lisp’s symbol-macrolet facility.

10 They are defined with Common Lisp’s define-symbol-macro facility.
11 Read: concisely, legibly, with simplified control flow and with little or no tangling

and scattering of source code.
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5.1 Main Cornerstone: Dynamic Scoping of Behaviour

Run-time behaviour adaptation is supported in AmOS by introducing a kind of
dynamic scoping mechanism for methods. Generally speaking, the main reason
why dynamic scoping is useful is that it allows the caller’s state to influence the
behaviour exhibited by the callee in a deep fashion (i.e. across nested method
calls). Such influence is not intertwined in the form of arguments that must be
passed from one method to the next. Clearly, having such pass-through argu-
ments is quite inconvenient, as the arguments crosscut all methods and messages
that need to be influenced [Cos03], and all possible influences that might prove
useful must be foreseen and hard-coded in method signatures. Dynamic scoping
can help alleviating these problems.

Many languages that support dynamic scoping, such as Common Lisp and
some dialects of Scheme, have an intrinsic concept of variable. These languages
must draw a distinction between dynamic scoping of variables and functions.
Given that the concept of variable is not intrinsic to AmOS (as explained in
Section 4.3), we need be concerned only with dynamic scoping of methods in
our discussion.

5.2 Dynamic Scoping in an Object-Based World

AmOS identifies dynamic scoping —a concept coming mainly from the func-
tional programming world— with subjective behaviour —a concept coming from
the object-oriented world [SU96]. Subjective behaviour is roughly equivalent to
dynamic scoping: it is behaviour that depends on the caller’s point of view or
state.

The power of dynamic scoping, or similarly, of subjective behaviour, can
be brought to the object-oriented world fairly easily under certain conditions.
Any language with multiple dispatch can support subjective behaviour [SU96],
merely by passing with every message an implicit argument that represents the
current point of view or state of the caller. This implicit argument participates in
the dispatch process as any other argument does. As a result, chosen behaviour
will depend on this implicit subjective element [SA05].

In AmOS, the current activation of the executing closure or method is passed
implicitly as first argument of every message. This way, behaviour selection will
depend on the current execution environment of the sender. This simple exploit-
ation of multiple dispatch results in a kind of dynamic scoping mechanism that
is surprisingly convenient, as the remainder of the paper illustrates.

5.3 Context as a Graph of Delegating Objects

For any given message, applicable methods are first looked up in the current
activation, and by following the lexical parent link, they are looked up further
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( receive  alices-call  bobs-phone  )

@telephony

receive method
activation

invocation
arguments

top-level
activation

(REPL)

parent

parent

current
context

context graph

@acoustics

@power

Figure 4: Invocation of the receive method. The lexical scope delegation chain
is static, whereas the context graph topology is managed dynamically.

in enclosing lexical scopes, until the top-level activation is reached. Rather than
stopping at this point by having an empty object be the parent of the top-
level activation, we assign an object which we consider the current context. The
current context can delegate further to other context objects as needed.

Figure 4 shows a sample configuration of activations and context objects
corresponding to the invocation of the receive method. Activation parent links
delegate to enclosing lexical scopes and are kept constant, in correspondence to
the program text structure. Delegation links starting from the current context
object and beyond are dynamically managed and may change at run time. Fol-
lowing normal delegation semantics, messages that are not understood by the
static activation chain will be delegated to the current context.

The objects that are reachable by delegation starting from the current context
constitute the current context graph (shown in the dashed box of Figure 4). A
context that makes part of the current context graph is said to be active. The
current context thus serves as an entry point to all currently active subcontexts.
The reciprocal of the active status is of course inactive; any context that is not
linked through delegation to the current context graph is inactive.

The context graph can be seen as a reification of the physical and logical
environment in which the system is currently running. Each individual context
object represents one part of such environment, and contains domain-specific
information. For instance, the @telephony context has telephony-specific pro-
totypes such as @phone and @call, method definitions such as receive and
advertise, and contexts such as @off-hook.
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5.4 Dynamic Adaptation through Context Manipulation

As explained previously, most messages are delegated to the current context.
Hence, the current context graph plays a primary role in determining system
behaviour. By manipulating context objects and their delegation relationships
adequately, system behaviour can be adapted to the environment on the fly, as
changes are detected.

In our example, the answer and hang-up methods are in charge of activating
and deactivating the @off-hook context. When activated, this context is linked
through delegation to the current context graph, and it is unlinked when deac-
tivated; @off-hook is an example of a transient context. We think of contexts
that have a more permanent nature, like @telephony, as features.12 Having tele-
phony support is a feature of a phone —indeed a very inherent one. Another
example is an @acoustics feature which renders the phone aware of its acoustic
environment, by including contexts such as @silent:
(defcontext @acoustics )
(in -context @acoustics )
(defcontext @silent)

The @silent context is part of @acoustics, much like @off-hook is part of
@telephony. The @silent context can be activated when the system detects
that (e.g.) a library, museum or hospital has been entered.

5.5 Discussion

We have shown at this point the most important elements of a computation
model that is particularly well suited to context-oriented programming. The
proposed representation of context as a graph of delegating objects has a num-
ber of advantages. Firstly, such representation is simple and concrete. This helps
creating a sense of tangibility and malleability [SU95] of context. By exposing the
representation to the programmer, it becomes possible to have a direct mental
picture, and a clear programmatic understanding of what context is and how to
manipulate it. Secondly, the connection between context and behaviour is im-
mediate, making it easy to understand how context affects behaviour. Causality
between context and behaviour comes as a natural consequence of regarding the
context as an object (graph).13 Thirdly, idiosyncratic contexts are supported
naturally. Our approach naturally (paradigmatically) supports behaviour that
is adapted to very specific contexts, such as one particular room of a building.
12 Contrast @telephony with @off-hook: it is unintuitive to think of @off-hook as a

“feature”.
13 In a black-box view, the context is simply an object with behaviour, irrespective of

whether this behaviour comes from delegation or not; in an open view of context,
context structure is revealed and it becomes apparent that the context is actually a
graph of delegating objects.
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Thanks to delegation, idiosyncratic contexts can exhibit more general behaviour
as well.

6 Working with Contexts in AmOS

Having explained the foundations of context orientation in AmOS, we proceed to
show a number of techniques to manage the changing context graph coherently.
The more advanced context-oriented capabilities are illustrated by extending the
running example introduced in Section 2.

6.1 Bypassing contexts

Suppose we want to add a Discretion extension to the phone. This extension
includes call advertising behaviour that is better adapted to silent environments:
(with -context @silent

(defmethod advertise ((call @call) (phone @phone ))
(format t "Activating phone vibrator ~%")))

This new version of advertise activates the phone vibrator, without producing
sound. The Discretion extension thus makes the phone more adaptable to silent
environments:
(activate @silent) →

Switching @silent on

(receive alices -call bobs -phone) →
Activating phone vibrator

Now incoming calls activate the phone vibrator instead of playing the ringtone
when the phone is in a silent context. If the silent context is deactivated, beha-
viour reverts to the default playing of a ringtone.

When the phone is off-hook (i.e. the user is talking) and a new incoming call
is detected, the phone should not vibrate, even if running in @silent context. It
would feel bizarre to suddenly receive physical vibration on the ear while talking
with someone. To account for such situations, a specialised version of advertise
can be defined as follows:
(with -context (@silent @off -hook )

(defmethod advertise ((call @call) (phone @phone ))
(without -context @silent

(resend ))))

The without-context call executes the contained body in a context in which
@silent is inactive; the phone will therefore not vibrate, as intended. Although
this implementation appears to be sufficient, it has a problem that could become
apparent in some situations. The resend call is made with an inactive @silent

context. This means that whatever behaviour is eventually chosen by resend
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will not be adapted to silent environments, but rather be meant for default
acoustics. Conceptually, it is wrong to disable the silent context in this rather
drastic way, given that the surrounding environment has not actually changed —
there is a potential mismatch between the outside world and the logic encoded
in the method. The programmer’s intention is simply to pick the next most
specific behaviour that is not meant for silent environments, but such behaviour
should be executed in a context that faithfully reifies the current environment. To
remedy this situation, we introduce the resend-bypassing-contexts construct:
(with -context (@silent @off -hook )

(defmethod advertise ((call @call) (phone @phone ))
(resend -bypassing -contexts (list @silent ))))

The resend-bypassing-contexts construct is a sort of context-oriented super

call. When @silent and @off-hook are active simultaneously, the Discretion

extension will give priority to off-hook behaviour over silent behaviour, but this
will not entail the execution of the next most specific method in a wrong context.

6.2 Context combinations

A second feature of AmOS illustrated by the example above is context com-
binations. Note that the last version of advertise introduced in Section 6.1
is specialised on two context objects at the same time, namely @silent and
@off-hook. When a list of contexts is passed to with-context, AmOS will make
a context combination. Context combinations are context objects of their own,
representing the combination as a whole.14 Behaviour that is specific to the par-
ticular combination can be defined as exemplified by the version of advertise
shown previously. Other behaviour not specific to the combination is delegated
to the constituent subcontexts @silent and @off-hook, thanks to suitable del-
egation links illustrated in Figure 5. Contexts to the left-hand side of the figure
are system-managed combinations (denoted by a plus + sign), whereas contexts
on the right-hand side are user-defined contexts which can be seen as combina-
tions of only one constituent context —the context itself. The run-time system is
in charge of placing delegation links from more specific combinations to less spe-
cific ones. The current context15 is the most specific active combination at any
given time. User-defined contexts are the least specific combinations there can
possibly be. If needed, user-defined contexts can have delegation links to other
subcontexts. Such delegations are not under control of the run-time system, and
can be managed freely by the user.

At all times, there is at most one context object representing the combin-
ation of a given set of component subcontexts. For instance, the combination
14 In a class-based model, a new class would need to be artificially introduced, of which

the combination would be the sole instance. Our prototype-based model is free of
such artefacts, naturally supporting singleton objects.

15 Recall the dashed box of Figure 4.
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Figure 5: Context graph as combination of contexts.

of @silent and @off-hook always results in the same combined context object
that delegates to @silent and to @off-hook. If it were not the case, that is, if a
new context object delegating to @silent and to @off-hook were created each
time it were needed, then the methods that were specialised on the first version
of the context combination would not be visible (applicable) to the second or
any new subsequent versions that would be created, despite the fact that, con-
ceptually, they represent the same combination. Conceptually there is only one
( @silent @off-hook) combination, and computationally this must also be the
case. On a practical level, this uniqueness property implies that created combin-
ation objects need to be stored by the context management system of AmOS, so
that these same objects can be retrieved when required. For each combination
request, the order of the given subcontexts is irrelevant.

6.3 Feature Interaction

Rather than introducing a new language feature, this section shows an example
of behaviour interaction between base code and extension code. This makes part
of our experience in working with contexts.

When people participate in certain activities, like a meeting, they should not
be disturbed by their mobile phones. A Call Forwarding feature can understand
the current situation and forward incoming calls to another predefined number
during periods in which the user cannot be interrupted. We thus introduce a
context representing a meeting situation:
(defcontext @meeting )
(add - delegation @meeting @silent)

Since typical meeting situations are supposed to be silent, we explicitly a deleg-
ation link from @meeting context to @silent context. When the system detects
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a meeting situation, it will activate this prototypical context:
(activate -context @meeting ) →

Switching @silent on
Switching @meeting on

As can be observed, activating the @meeting context implies activating related
contexts as well, due to delegation relationships. Hence, behaviour that is adap-
ted to silent environments will be active during meetings as well.

The Call Forwarding extension adapts the default call reception behaviour
of the phone as follows:
(add -slot @phone ’forward -number nil)
(with -context @meeting

(defmethod receive ((call @call) (phone @phone ))
(if (forward -number phone)

(format t " Forwarding ~a to ~a~%"
call (forward -number phone))

(resend ))))

Call Forwarding specialises receive; if the forwarding number is set, the call will
be forwarded to that number, and the advertise method will not be invoked.
On the other hand, if a forwarding preference has not been set (i.e. if it is nil),
the resend call16 will invoke the original behaviour as if the extension did not
exist.

The Discretion feature (introduced in Section 6.1) and the Call Forwarding

feature are deployed as separate modules that can be installed at will by the
user. These extensions are independent, meaning that they do not need each
other to work correctly: none, one or the two of them can be installed at any
given time on the phone. Nonetheless, independence does not mean lack of inter-
action. The extensions do interact if both are installed on the same system, as
can be observed in Table 1. The table illustrates the interactions of @off-hook,
@silent, @meeting and the forward number setting. Not all 16 boolean combina-
tions are interesting or even possible, and have thus been omitted from the table.
In particular, the combinations where @meeting is active and @silent is inact-
ive are impossible, because the activation of @meeting implies the activation of
@silent by way of delegation. Further, the forwarding slot is unimportant when
the @meeting context is inactive. The interactions are thus reduced to eight pos-
sible and relevant cases, with four associated behaviours that can be exhibited
by the phone.

Even though in this example the behaviour arising from feature interaction is
appropriate or “wanted”, this might not necessarily be the case in more complex
situations. In a system with dozens or hundreds of features, “unwanted” inter-
actions among features can arise [Zav93]. We still need to devise a systematic
way of handling feature interactions, as is done for instance in Prehofer [Pre97].

16 The resend method is similar to call-next-method in CLOS.
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Off-hook Silent Meeting Forwarding Behaviour
× × × Ringtone
× � × Vibrator
× � � × Vibrator
× � � � Call forwarding
� × × Call waiting signal
� � × Call waiting signal
� � � × Call waiting signal
� � � � Call forwarding

Table 1: Call receiving behaviour acording to context combinations. The “For-
warding” column represents the forward-number setting of the phone, rather
than a context activation state.

7 Discussion

AmOS is a very dynamic computation model. It features dynamic dispatch,17

dynamic inheritance, dynamic typing, and dynamic method scoping. One might
very well wonder if such level of dynamism remains manageable. Although the
answer is affirmative for small-scale scenarios, we still need to gather experience
with larger case studies to assess the usefulness of the model in complex systems.

Open objects and multimethods allow clean separation of concerns [CMLC06].
Code corresponding to different concerns can be modularised in different meth-
ods, and new concerns can be added in the form of new methods, without modi-
fying existing code. In particular, this good modularisation property helps sep-
arating context-dependent behaviour from base application behaviour cleanly.

We make a distinction between the intrinsic and extrinsic properties of ob-
jects [HO93]. The coordinates detected by a GPS for instance are intrinsic to
the operation of the GPS —they are its raison d’être. The market price of the
device, on the contrary, is an extrinsic property that might be interesting only
from the point of view of a reseller. Similarly, the @off-hook context intro-
duced in Section 2.1 is intrinsic to telephony, whereas the @silent context is
extrinsic to telephony (it is intrinsic to acoustics). Hence, even though there is
context-management code in the implementation of hang-up (defined in Sec-
tion 2), we do not regard this as tangled code, because it is an integral part of
the application’s base logic. The exploitation of context-oriented programming
for adaptation to intrinsic modes or states renders such base application logic
adaptable to context, as illustrated by the running example.

Having many small behavioural pieces (i.e. multimethods) that might be
applicable for any requested interaction (i.e. messages), behaviour composition
17 This synonym of multiple dispatch emphasises the fact that behaviour selection

depends on the dynamic value of all arguments, rather than only one or none.
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becomes an issue. Flexible method combination techniques are necessary to deal
with all behaviour that is applicable for a given message. AmOS does not yet
incorporate advanced method combination techniques as those of CLOS for ex-
ample, or as suggested by Harrison and Ossher [HO93]. In AmOS, all applicable
methods are linearised, and more specific methods can decide at their discre-
tion to invoke less specific methods by means of constructs such as resend

and resend-bypassing-contexts.18 The downside is that automatic method
linearisation does not necessarily yield the “fittest” order in which to execute
applicable behaviour [Sny86]. More declarative and intentional approaches such
as predicate dispatch [EKC98] and filtered dispatch [CHVD08] could be used in-
stead of, or in complement to, automatic linearisation.

We have not made performance measurements yet. However, given that mes-
sage sends are fully reflective,19 and there is no caching mechanism in place yet,
chances are that our current implementation of AmOS does not match the speed
of mature CLOS implementations and of CLOS extensions such as ContextL.
Performance was, however, not our main concern in developing AmOS; our main
focus was on language design.

Table 2 summarises the language features described in this paper and their
associated advantages. In the table, software feature refers to bundles of attrib-
utes and methods belonging to (i.e. specialised on) a particular context, such as
@telephony. The advantages marked with an asterisk are made possible by our
approach, but proper support requires further refinement of our techniques. In
particular, dynamic composition of features is currently limited by the linearisa-
tion semantics of method specificity mentioned previously. Regarding dynamic
software feature activation and deactivation, we still need to provide adequate
support to prevent the concurrent deactivation of a context that is being used.
This problem is discussed further in González et al. [GMH07].

8 Related Work

AmOS was initially inspired on Self [US87] and Cecil [Cha92], but later on adop-
ted the similar, albeit more flexible, Prototypes with Multiple Dispatch (PMD)
model [SA05]. Although the authors of PMD are well aware of the potential
of subjective dispatch, they never fully exploited its possibilities. Subjectivity
was left aside as happened with the Self extension Us [SU96]. We know of only
one example showing the potential of subjective dispatch in the PMD model.20

18 Another similar construct, resend-as, is described in González [Gon08].
19 This means that the (send selector arguments) meta-method is executed for every

message, bringing in the advantages of meta-programming in our exploration of
language semantics, to the detriment of performance.

20 This example is shown in Salzman and Aldrich [SA05]. The distribution of the Slate
language —PMD’s reference implementation— contains no examples as of date, and
the subjective dispatch feature is currently disabled in the interpreter.
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• Idiosyncratic contexts
• • Separate software features
• • • Unanticipated new features

• • • • • Dynamic composition of features∗
• • • Dynamic behaviour adaptation

• • Dynamic software feature (de)activation∗

• • • • Context-oriented composition

Table 2: Summary of language features (vertical) and their related advantages
(horizontal).

AmOS can be seen as a version of PMD that boosts subjective dispatch, making
it as fundamental to the model as prototypes and multimethods.

Soon after adopting the PMD model we became aware of ContextL [CH05],
a class-based cousin of AmOS, which also exploits a dynamic scoping mechan-
ism to achieve behaviour adaptation. ContextL —an extension of CLOS— not
only shares the similar goal of having behaviour depend on context, but also
a similar approach, by using an implicit argument that influences method dis-
patch. The analogous of AmOS contexts are ContextL layers. The differences
between these two constructs are mostly idiomatic. Whereas AmOS considers
context objects as direct reifiers of situations (being in a quiet environment,
running with low battery power, etc.), ContextL does not propose such a dir-
ect semantic link between detected contexts and layers —in principle, layers are
not seen as reifiers of anything in particular. Some other differences are however
more fundamental. In ContextL there is one layer configuration (analogous to
the context graph of AmOS) per thread. Threads cannot modify each other’s
layer configurations. Whereas thread locality ensures non-interference with other
threads, such interference is sometimes useful. In AmOS, there is a unique con-
text graph that is shared by all threads. AmOS implements immediate reaction
to changes in context, whereas ContextL sticks to an initial context while finish-
ing an ongoing computation. In AmOS the concurrent modification of the shared
context graph can give rise to inconsistent behaviour [GMH07]. In ContextL,
the layer configuration follows a stack discipline. Once invoked, the behaviour
of a running method cannot be influenced, unless context-switching constructs
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like with-active-layers and ensure-active-layer are used explicitly.21 Both
approaches have their advantages and disadvantages. Desmet et al. [DVCH07]
call these promptness strategy and loyalty strategy respectively, giving examples
of the usefulness of both. The former refers to immediate reaction to context
changes; the latter refers to delayed reaction to context changes (or no reaction
at all), to avoid behavioural inconsistencies that could result from an immediate
reaction.

The context-specific accessors of AmOS resemble the layered accessors of
ContextL [CH05]. In both cases, observed object attributes can be different
when consulted from different perspectives (contexts). A similar effect can be ob-
tained through a fundamentally different mechanism, contextual values [ET08].
In object-oriented terms, a contextual value can be seen as a context-dependent
reference: the object to which such reference points can depend on the context
in which the reference is used.22 The difference in expressiveness between our
approach and contextual values is not clear to us yet —that of having a same
object that behaves differently according to context, and that of having different
objects according to context. At first sight, the approaches seem complementary.

9 Conclusions and Future Work

Applications for Ambient Intelligence and Context-Oriented Programming re-
quire dynamic adaptation of behaviour according to the current physical and
logical context in which the system is running. We have developed the Ambi-
ent Object System (AmOS), a simple yet flexible and expressive object model
that aims at meeting the requirements of context adaptability. A few core con-
cepts suffice to support fundamental abstractions such as activations, closures
and methods, and more innovative abstractions such as contexts and behaviour
dependency on contexts.

The system presented in this paper is fully operational and can be down-
loaded from http://ambience.info.ucl.ac.be. The same website offers re-
lated publications as well as some help on how to start programming in AmOS.
Further information on AmOS is given in González [Gon08].

In designing AmOS we have been mindful of future extensions to add con-
currency and distribution. In particular, we are planning to extend AmOS with
actor-based concurrency and dataflow synchronisation by means of asynchronous
messages and futures.23 To this end, we will probably borrow concepts from Am-
bientTalk [DVCM+05] and Oz [VRH04]. Regarding security, we need to assess
21 These constructs need not be scattered throughout application code if they are en-

coded as CLOS before, after, or around methods.
22 The analogy we draw goes for implicit, rather than explicit, contextual values [ET08].

The original presentation of contextual values in Lisp is in terms of variables and
values, instead of references and objects.

23 This requires first-class messages, which we have not incorporated in AmOS yet.
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the appropriateness of contexts (dynamic method scopes) as a simple visibility
mechanism [SU96]. On the methodological side, we will be exploring the rela-
tionship of our approach to Feature-Oriented Domain Analysis [KCH+90] and
the more recent and specific Context-Oriented Domain Analysis [DVC+07]. In
Section 6.3 we touched upon feature interaction. We still have to develop a sys-
tematic way of dealing with feature interaction in AmOS (methodologically, or
by means of dedicated language abstractions).
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