
An Implementation of CLIM Presentation Types

Timothy Moore
(Red Hat SARL, Paris la Défense, France

timoore@redhat.com)

Abstract: Presentation types are used in the CLIM interface library to tag graphical
output with a type and establish an input type context in which the user may use the
keyboard to type input, accepted by a parser associated with that presentation type, or
click on the graphical representation of an object that has an appropriate presentation
type. Presentation types are defined using a syntax reminiscent of the deftype syntax
of Common Lisp; the input and output actions of the types, as well as aspects of
their inheritance, are implemented using a system of generic functions and methods
directly based on CLOS. The presentation type system is different enough from the
Common Lisp type system that its types, generic functions and methods do not map
directly to those of Common Lisp. We describe the presentation type implemention in
McCLIM which uses the CLOS Metaobject Protocol to implement presentation type
inheritance, method dispatch and method combination without implementing an entire
parallel object system next to CLOS. Our implementation supports all types of method
combination in the presentation methods, including user-defined method combination.

Key Words: Common Lisp, CLIM, presentation types, metaobject protocol

Category: D.3.3, D.1.5, D.2.2

1 Introduction

The specification of the Common Lisp Interface Manager (CLIM) [McKay, n.d.;
Rao et al., 1991] describes a graphical interface toolkit for Common Lisp [ANSI,
1996] in which program objects are explicitly associated with graphical repre-
sentations of those objects, called presentations. Based on the user’s interactive
input, and according to a context of desired input established by the program,
the previously presented objects are made available as input to commands. Com-
mands are launched either graphically, in the traditional style of GUI interaction,
or by typing on a command line, in which case a click on a presentation causes
a textual representation of it to be inserted in the command line.

Presentations store a presentation type as well as an object, and it is this type
that is used to test whether a presentation can satisfy the current input context.
In most programs that use CLIM a highlightling rectangle is drawn around
objects that match the current input context as the user moves the mouse over
them, and a message summarizing the input action that will occur if the mouse
buttons are pressed is displayed at the bottom of the screen. Presentation types
share similarities both with Common Lisp built-in types and with Common Lisp
Object System (CLOS) classes. A system of generic functions and methods, also
similar to that in Common Lisp, supports dispatch on types as if they were

Journal of Universal Computer Science, vol. 14, no. 20 (2008), 3358-3369
submitted: 29/4/08, accepted: 16/11/08, appeared: 28/11/08 © J.UCS

objects. Several of these presentation generic functions are defined by CLIM to
control input parsing and output of the objects associated with presentation
types, type membership tests, and subtype relations between the presentation
types.

The semantics of presentation types are different enough from those of Com-
mon Lisp types defined via the deftype macro and standard classes such that
a näıve implementation would duplicate a lot of the complex method combina-
tion and dispatch code that must exist in a Common Lisp implementation to
support CLOS. We describe here the the implementation of the presentation
type system in McCLIM [Strandh & Moore, 2002], an open source implemen-
tation of CLIM. We used the Metaobject Protocol [Kiczales & des Rivieres,
1991] present in most Common Lisp implementations to implement presentation
types and generic functions. McCLIM was written from scratch with reference
to the CLIM specification, a terse and, at times, incomplete and contradictory
document, and a few available example CLIM programs. For an introduction
to Common Lisp and CLOS refer to texts such as [Seibel, 2005; Graham, 1999;
Norvig, 1991; Keene & Gerson, 1989]. An introduction to CLIM can be found in
[Rao et al., 1991; Möller, n.d.].

2 Presentation Types

Before describing the definition of presentation types, it is useful to review the
ways that new types, called type specifiers, are defined in Common Lisp because
CLIM presentation types use concepts from these approaches. A type specifier
is a name or a list of a name and parameters that can be passed to typep to
test whether an object is of a certain type or to subtypep to determine subtype
relationships. Type specifiers are defined using either the deftype macro or the
defclass macro. Instances of the classes defined using defclass can be created
using make-instance and the arguments specifed in the defining defclass form.
The type specifier of a user-defined class is either the name of the class (as a
symbol) or a metaclass object created by the system to represent the type.

We ignore types created with the Common Lisp macros defstruct and
define-condition as they are very similar to classes defined with defclass.

2.1 Common Lisp type specifiers and deftype

The deftype macro defines a function that expands a type specifier into another
type specifier through a process very similar to macro expansion; indeed, the
function created by deftype behaves exactly like a macro expander function
created by defmacro, except that the default argument for optional and keyword
arguments in the type specifier form is *, the wildcard type specifier. The body of
the deftype form returns a new type specifier using the arguments, existing type

3359Moore T.: An Implementation of CLIM Presentation Types

(deftype even-positive-integer (&optional high)

‘(and (integer 0 ,high) (satisfies evenp)))

Figure 1: Example of deftype usage

(defclass person ()

((name :accessor name :initarg :name)

(age :accessor age :initarg :age)))

Figure 2: Class definition example

specifiers, compound type specifiers like and and or that create intersections and
unions of existing types, or the satisfies type specifier that uses a function
predicate to define a type. [Figure 1] shows a simple deftype definition that
creates a subset of the integer type with parameters to integer and a functional
predicate. It is important to note that the types created with deftype cannot
specify objects with new characteristics in Common Lisp; they can only restrict
existing types by giving them explicit parameters or perform set operations on
the membership of the types. They cannot be specified in defmethod argument
specializers.

2.2 Classes defined with defclass

Classes are user-defined types that have superclasses and that can store data in
slots. A class is defined using the defclass macro. A slot definition specifies the
name of the slot and optional parameters such as the type of the value of the
slot and the names of generic functions that get and set its value.

[Figure 2] shows the definition of a simple class. This class is named person

and has two slots, name and age. Classes can inherit from one or more user-
defined classes to create a subtype relationship. The new subclass is a subtype
of its superclasses. [Figure 3] shows the definition of an engineer class that
inherits from a specialty-mixin class as well as from the person class.

2.3 The form define-presentation-type

Presentation types combine aspects of type specifiers and classes considered as
types. The type is descriptive and parameterized, like a type specifier, but is
not instantiable. The concrete representation of a presentation type is either a
symbol or a list with arguments. Presentation types support multiple inheritance,

3360 Moore T.: An Implementation of CLIM Presentation Types

(defclass specialty-mixin ()

((specialty :accessor specialty :initarg :specialty)))

(defclass engineer (person specialty-mixin)

())

(defclass cook (person specialty-mixin)

())

Figure 3: Multiple inheritance with a mixin class

(define-presentation-type integer (&optional low high)

:options ((base 10) radix)

:inherit-from ‘((rational ,low ,high)

:base ,base :radix ,radix))

(define-presentation-method presentation-typep

(object (type integer))

(and (integerp object)

(or (eq low ’*)

(<= low object))

(or (eq high ’*)

(<= object high))))

(defmethod presentation-type-of ((object integer))

’integer)

(presentation-typep 42 ’(integer 6 43))

T

Figure 4: Example of presentation type, its definition, and a presentation
method

and can participate in a kind of method dispatch and combination in which
parameters of the type are available inside the methods.

[Figure 4] shows the definition of a presentation type, integer, that is a part
of CLIM. The parameters low and high specify the members of the type. This
type also specifies options that do not affect type tests and membership but
do affect how presentations with this type will be displayed and how input will
be parsed in this input context. The :inherit-from argument is a form that

3361Moore T.: An Implementation of CLIM Presentation Types

specifies the supertypes of the presentation type and can use the parameters and
options as arguments in a limited way: the form must be able to create its result
without referring to the actual value of the parameters and options. This allows
the :inherit-from form to be analysed using dummy arguments at the time of
the type definition.

To support dispatching on a single presentation type argument, CLIM pro-
vides presentation generic functions and presentation methods that are similar
to their CLOS equivalents – for example, method combination and effective
method computation work as expected – but that also make parameters and
options available as implicitly defined variables in the methods, properly trans-
formed for the presentation type. This style of magic slot access in methods is
not found elsewhere in Common Lisp today but is retained for compatibility with
an earlier presentation-based system found in Dynamic Windows in the Symbol-
ics Genera environment.1 In [Figure 4], presentation-typep is a presentation
generic function defined by CLIM. The type argument is a presentation type.
This method is properly ordered with respect to other applicable presentation
methods such as, for example, a method for the presentation type rational. The
parameters and options of the presentation type are available as bound variables
inside the method.

The call to presentation-typep in [Figure 4] shows a typical use of presen-
tation types. presentation-typep is a function that invokes the presentation
generic function presentation-typep. This computes and invokes the effec-
tive method for this call which then calls the presentation method for the type
integer. [Figure 5] shows two more basic presentation methods, present for
output and accept for input. Presentation methods make use of the options
available in presentation types.

CLOS class names and metaclass objects are valid as presentation types.
Many builtin Lisp types have a presentation type equivalent with the same name.

In order to make presentation types less abstract, [Figure 6] shows some ex-
periments with presentation types in the Listener application supplied with Mc-
CLIM. The present function writes output annotated with a presentation type,
called a presentation, to an output stream. The function accept reads input,
either typed by the user or entered by clicking on a presentation with a compat-
ible presentation type. In this case “42” is acceptable because the presentation
type (integer 0 50) is a subtype of (real 0 100). The pointer documenta-
tion pane at the bottom of the listener window shows the action if the user
clicks on the left mouse button: “42” will be accepted. The number 42 satisfies
the presentation-typep predicate of the presentation type integer with the
parameters 0 and 50; the behavior is undefined if an object is presented that is
1 The designer of this feature now says “I can now say that this was a mistake, and

that we should have simply implemented a with-slots-like macro that did the right
thing.” [McKay, 2008]

3362 Moore T.: An Implementation of CLIM Presentation Types

(define-presentation-method present

(object (type integer) stream (view textual-view)

&key acceptably for-context-type)

(declare (ignore acceptably for-context-type))

(let ((*print-base* base)

(*print-radix* radix))

(princ object stream)))

(define-presentation-method accept ((type integer)

stream (view textual-view)

&key (default nil defaultp)

default-type)

(let ((*read-base* base))

(let* ((token (read-token stream)))

(when (and (zerop (length token))

defaultp)

(return-from accept (values default default-type)))

(parse-integer token))))

Figure 5: Example present and accept methods. The presentation options
base and radix are used in these methods.

not actually a member of the presented presentation type.

3 Implementation of Presentation Types

3.1 Presentation Types and Presentation Methods

Although they are represented as lists, presentation types have many charac-
teristics of CLOS objects. Their parameters and options are similar to class
slots, and they have an inheritance relation with their supertypes. However,
parameters and options are not inherited from supertypes – they parameter-
ize the supertypes and they may be arbitrarily transformed within the limits
imposed on the :inherit-from specification. A parameter may have a differ-
ent value in a presentation method written on a supertype than it does in a
subtype method; this is the opposite of the behavior of slots, which have a
single value in an object. Nevertheless, if a presentation type could be repre-
sented as a CLOS object, then presentation method dispatch could be imple-
mented easily using normal CLOS method dispatch. The CLIM specification
seems to point in this direction, saying “Every presentation type is associated

3363Moore T.: An Implementation of CLIM Presentation Types

Figure 6: Presentation types in action. “42” has been presented to the screen
with a presentation type that is a subtype of integer; that value can be accepted
if a subtype of real is requested.

with a CLOS class... define-presentation-type defines a class with meta-
class presentation-type-class and superclasses determined by the presenta-
tion type definition.” Also, the lambda list of a presentation generic function
must contain a mysterious “type-key or type-class [argument]; this argument
is used by CLIM to implement method dispatching.” There only needs to be
a single type key object for a presentation type because presentation method
dispatch is not influenced by a presentation type’s parameters.

There are some awkward complications with this approach. It is easy to
construct a type key for presentation types defined via define-presentation-

type; it can be created as part of the evaluation of the defining form. But CLOS
classes are implicitly presentation types too, and it is not obvious how to create
an instance of an arbitrary class without any knowledge of its required initializa-
tion arguments. It is reasonable to define presentation methods on standard-

object, the superclass of all CLOS classes, but many presentation types do
not have standard-object as a supertype and so those methods should not be
applicable when a presentation generic function is called on such a type.

3364 Moore T.: An Implementation of CLIM Presentation Types

3.2 The Metaobject Protocol

Fortunately most implementations of Common Lisp implement the Metaobject
Protocol, or MOP, as described in [Kiczales & des Rivieres, 1991]. This exposes
many of the internal details of class definition, generic function definition and
method dispatch and allows them to be customized. The implementation of pre-
sentation types makes use of two major features of the MOP. The MOP specifies
that a class prototype object, which is an instance of a class with undefined slot
values, exists for all classes. This is obviously ideal to use as the type key object.
Also, the MOP supports broad customization of the selection of applicable meth-
ods in a generic function call via the generic functions compute-applicable-

methods and compute-applicable-methods-using-classes. Even Common
Lisp implementations that do not support the full MOP usually have some in-
ternal functionality that is equivalent to these features and that can be used in
the presentation types implementation.2

3.3 Implementation using the MOP

A class metaobject of type presentation-type-class, a subclass of standard-
class, is created for each defined presentation type. The class is given a fake
name so that there is no conflict between presentation types and built-in types
of the same name. This class stores details about the presentation type including
a function that produces the :inherit-from form from parameter and option
arguments. The supertypes of the presentation type, retrieved by running the
:inherit-from function with dummy arguments, become the direct superclasses
of the metaobject. A hash table maps presentation type names to these metaob-
jects. CLOS classes that are mentioned in define-presentation-type forms
are represented by a presentation type class that is not a metaclass but that
does contain a reference to the metaclass of that class.

According to the CLIM specification [McKay, n.d.], presentation generic func-
tions are called using the macros funcall-presentation-generic-function

and apply-presentation-generic-function. This extra syntax is rather awk-
ward but, in actual CLIM programming, presentation generic functions are
not called directly by the programmer; they are invoked indirectly by calling
functions defined in the CLIM specification. For example, a program calls the
present function, and that function calls the presentation generic function of the
same name, perhaps after establishing dynamic state and defaulting arguments.
One of the arguments in the presentation generic function call will be a presen-
tation type specifier which is examined to find the presentation type metaobject
and thence the associated class prototype. This is passed as an argument to the
2 This work was originally done using OpenMCL, which at the time did not have a

full MOP implementation.

3365Moore T.: An Implementation of CLIM Presentation Types

(defmethod compute-applicable-methods :around

((gf presentation-generic-function) arguments)

(let ((methods (call-next-method)))

(if (typep (class-of (car arguments))

’presentation-type-class)

(remove-if

#’(lambda (method)

(eq (car (clim-mop:method-specializers method))

standard-object-class))

methods)

methods)))

Figure 7: compute-applicable-methods implementation which removes any
presentation methods defined for CLOS types from methods for a non-CLOS
presentation type. The code for compute-applicable-methods-using-classes

is similar.

presentation generic function as the type key object. If the presentation type
argument is a CLOS class, the prototype of that class is passed.

The type key object, and all the other arguments of the presentation generic
function, are used to compute the applicable methods for the function invocation.

The Metaobject Protocol specifies that one of two generic functions, compute-
applicable-methodsor compute-applicable-methods-using-classes, can be
called when computing the applicable methods for a particular function invoca-
tion. The latter is called in situations where only the classes of arguments are
relevant for object dispatch i.e., there are no eql specializers in the argument
lists of the generic function’s methods, and allows a CLOS implementation to op-
timize this step and memoize the results. Any programmer customization of this
process must define methods for both of these functions. The presentation-

generic-function metaclass, a subclass of standard-generic-function, has
specialized versions of these two methods which eliminate any potentially appli-
cable method that is specialized on standard-object if the presentation type
argument is not a CLOS class, as shown in [Figure 7]. The presentation methods
themselves are just regular methods with an additional argument for the type
key. [Newton & Rhodes, 2008; Verna, 2008] have also found these MOP generic
functions useful starting points for their own object system experiments and
customization.

The body of a presentation method is wrapped by code that expands the
presentation type argument from its actual type to the supertype expected by the
method. Each presentation type’s :inherit-from function can translate a type

3366 Moore T.: An Implementation of CLIM Presentation Types

(defmethod %presentation-typep

((type-key |(presentation-type common-lisp::integer)|)

object type)

(block presentation-typep

(let ((#:massaged-type2397

(translate-specifier-for-type

(type-name-from-type-key type-key) ’integer type)))

(let ((parameters (decode-parameters #:massaged-type2397)))

(declare (ignorable parameters))

(with-presentation-type-parameters

(integer #:massaged-type2397)

(and (integerp object) (or (eq low ’*) (<= low object))

(or (eq high ’*) (<= object high))))))))

Figure 8: The expansion of the define-presentation-method form for the
presentation-typep method of the integer presentation type.

specifier to that of its supertypes i.e., produce a new list with type parameters
appropriate for the supertype. This can be done repeatedly on a subtype and
its supers until the type specifier of an arbitrary supertype is produced. Once
this is in hand, the parameter and options are decoded and bound to variables
in the method body. [Figure 8] shows the expansion of the method definition in
[Figure 4].

In effective methods that contain many constituent methods, this strategy
could lead to poor performance because the expansion functions for the most
specific classes need to be be run repeatedly as less specific methods are called.
It was thought that it would be useful to introduce a caching mechanism to
mitigate this effect, but profiling has not shown this process to be a bottleneck
in real applications that use McCLIM. An alternate strategy would be to perform
the expansion outside of the method body, in the method combination code. This
approach avoids unnecessary expansion, but it breaks all non-standard method
combinations. The simpler approach used in McCLIM, which keeps the type
argument expansion inside the method body, allows all standard and user-defined
method combination to “just work.”

4 Conclusion

We have described the implementation of a complex part of the CLIM spec-
ification, presentation types, using features of the Common Lisp Metaobject
Protocol. We were able to use a small slice of the MOP to our advantage.

3367Moore T.: An Implementation of CLIM Presentation Types

The implementation of presentation method dispatch, using class prototypes,
is straightforward and would require no new metaclasses if we did not have a
requirement to eliminate some presentation methods from the list of applicable
methods in a presentation generic function call. The major remaining complex-
ity is in the translation of presentation subtype parameters to parameters for
the supertypes, and that is handled by runtime support added by somewhat
complicated macro programming.

At the time that CLIM was first specified and implemented (1992), the MOP
was quite new and not well supported in CLOS implementations. CLOS itself was
new, and CLIM was a major driver of the evolution of CLOS implementations.
If the MOP had been well supported, some syntactic choices in CLIM (such as
the funcall-presentation-generic-function macro) would have undoubt-
edly been different, and the specification could have referenced MOP concepts
such as the class prototype directly [McKay, 2008]. Nevertheless the concept of
presentation types and the implementation details presented here are useful even
considered separately from the specific syntax of CLIM.

Without MOP support the implementation of presentation types and presen-
tation method dispatch requires an enormous amount of coding; this daunting
task had blocked progress in the McCLIM project for some time. The realization
that use of a small part of the Metaobject Protocol coupled with layers of macro
support could be used to implement this part of CLIM resulted in a robust pre-
sentation type system for McCLIM in a fairly short time. This in turn supports a
large amount of functionality, including presentation methods for standard types
and the full machinery for accept and present, that make McCLIM a real im-
plementation of CLIM. The successful applications built using McCLIM help to
confirm that the MOP is a powerful tool for implementing object systems and
programmers should not be intimidated by it.

Acknowledgements

I would like to thank Robert Strandh, who invited me to be a“professeur associé”
at the Université de Bordeaux. As a result of this life-changing event much
work was done on McCLIM. Also, I would like to thank the entire McCLIM
team, in particular Christophe Rhodes and Troels Henriksen, for their bug fixes
to the presentation type code in McCLIM. McCLIM can be found at http:

//common-lisp.net/project/mcclim/.

References

[ANSI, 1996] ANSI. 1996. American National Standard for Information Technology:
programming language — Common LISP. American National Standards Institute,
1430 Broadway, New York, NY 10018, USA. Approved December 8, 1994.

3368 Moore T.: An Implementation of CLIM Presentation Types

[Graham, 1999] Graham, Paul. 1999. ANSI Common LISP. Second edn. Englewood
Cliffs, NJ 07632, USA: Prentice-Hall.

[Keene & Gerson, 1989] Keene, Sonya E., & Gerson, Dan. 1989. Object-oriented pro-
gramming in Common LISP: a programmer’s guide to CLOS. Reading, MA, USA:
Addison-Wesley.

[Kiczales & des Rivieres, 1991] Kiczales, Gregor, & des Rivieres, Jim. 1991. The art
of the metaobject protocol. Cambridge, MA, USA: MIT Press.

[McKay, n.d.] McKay, Scott. Common Lisp Interface Manager CLIM II Specification.
Available at http://www.stud.uni-karlsruhe.de/~unk6/clim-spec/.

[McKay, 2008] McKay, Scott. 2008 (April). personal communication.
[Möller, n.d.] Möller, Ralf. User Interface Management Systems: the CLIM per-

spective. Available at http://www.sts.tu-harburg.de/~r.f.moeller/uims-clim/
clim-intro.html.

[Newton & Rhodes, 2008] Newton, Jim, & Rhodes, Christophe. 2008. Custom special-
izers in object-oriented Lisp. Pages 75–87 of: European Lisp Symposium.

[Norvig, 1991] Norvig, Peter. 1991. Paradigms of artificial intelligence programming:
case studies in Common LISP. Los Altos, CA 94022, USA: Morgan Kaufmann Pub-
lishers.

[Rao et al., 1991] Rao, Ramana, York, William M., & Doughty, Dennis. 1991. A
guided tour of the Common Lisp interface manager. SIGPLAN Lisp Pointers, IV(1).
Updated 2006 by Clemens Frühwirth.

[Seibel, 2005] Seibel, Peter. 2005. Practical Common Lisp. Apress.
[Strandh & Moore, 2002] Strandh, Robert, & Moore, Timothy. 2002. A Free Imple-

mentation of CLIM. In: Proceedings of the 2002 International Lisp Conference.
[Verna, 2008] Verna, Didier. 2008. Binary methods programming: the CLOS perspec-

tive. Pages 91–105 of: European Lisp Symposium.

3369Moore T.: An Implementation of CLIM Presentation Types

