
Stacked Dependency Networks for Layout Document Structuring

Boris Chidlovskii
(Xerox Research Centre Europe, Meylan, France

chidlovskii@xrce.xerox.com)

Loı̈c Lecerf
(Xerox Research Centre Europe, Meylan, France

lecerf@xrce.xerox.com)

Abstract: We address the problems of structuring and annotation of layout-oriented documents.
We model the annotation problems as the collective classification on graph-like structures with
typed instances and links that capture the domain-specific knowledge. We use the relational de-
pendency networks (RDNs) for the collective inference on the multi-typed graphs. We then de-
scribe a variant of RDNs where a stacked approximation replaces the Gibbs sampling in order
to accelerate the inference. We report results of evaluation tests for both the Gibbs sampling and
stacking inference on two document structuring examples.
Key Words: Document structuring, dependency networks, stacking
Category: H.2, H.3.7, H.5.4

1 Introduction

Large collections of layout-oriented documents are collected and stored in digital li-
braries and content management systems. The documents, often available in electronic
formats (PS, PDFs, MS Word, etc.), originate from domain-specific collections or get
harvested over the Web. To organize an access to documents, the systems use the de-
scriptive metadata given by physical and bibliographic attributes (url, media, size, title,
author, keywords, etc.). Moreover, the systems proceed to a further annotation and fine-
grained document structuring in order to facilitate the internal navigation, information
extraction and visualization [Chanod et al.(2005)]. Giving the internal structure to the
layout documents is achieved by 1) segmenting them into logical fragments including
pages, paragraphs, sections, etc., and 2) adding semantic annotations, creating the table
of contents, linking elements to indexes and topic taxonomies.

Existing logical analysis algorithms [Mao et al.(2003)] do allow to accomplish some
of these tasks; however, their accuracy may suffer in the frequent cases of document
heterogeneity. To increase the robustness of document structuring methods, the current
systems attempt to complete the logical analysis with methods based on the learning
and classification.

Conventionally, the classification techniques start with a segmentation of documents
into lines, blocks and zones accomplished by the document logical analysis. The classi-
fiers build the prediction models for the document elements by associating an element

Journal of Universal Computer Science, vol. 14, no. 18 (2008), 2998-3010
submitted: 1/3/08, accepted: 29/9/08, appeared: 1/10/08 © J.UCS

label to some element’s characteristics, such as its x-y positions on the page, the font
size or the presence of certain keywords in the textual information. Beyond the proper
element characteristics, the layout-oriented documents may hide important meaningful
relationships between elements. For example, labeling a line as a bibliographic ref-
erence becomes more certain if the previous and next lines are already annotated as
references. Obviously, capturing such relationships and their integration in classifiers
can help train more accurate predictive models for the document annotation.

The previous classification methods have been primerily dedicated to the one-page
structuring tasks. Techniques based on statistical grammars have been used; in par-
ticular, Hidden Markov Machines (HMMs) [Kopec and Chou(1994)] and Probabilistic
Context-Free Grammars (PCFGs) [Liang et al.(2005)] have been extended for the 2-
dimensional case in order to model and decode the page structure. However, moving
to the multi-page documents can not be achieved by mechanically extending the pre-
vious methods. Indeed, the grammar-based techniques show certain limitations in the
modeling and scalability issues. On one side, HMMs work with the sequence-like data
representation only and can not model long-distance relationships. On the other size,
PCFGs do model long-distance relationships; however the O(N 3) inference complex-
ity, where N is the number of elements, is hardly scalable to documents with hundrends
of pages.

In this paper we address the large scale document structuring and annotation prob-
lems and investigate techniques alternative to the grammar-based ones. We model a
document annotation task as a collective annotation of groups of related instances rather
than the individual label annotation for each instance. The user is invoked to define a
set of link features to order to capture the domain- or task-specific knowledge present
in documents. The full set of elements and user-defined links infer a relational depen-
dency network (RDN) [Neville and Jensen(2007)] where both elements and links can
be typed. Moreover, both elements and links may be annotated. In general, we attempt
to reiterate the success the dependency networks have had in different domains, in-
cluding the social networking and the Web pages classification and extend them to the
layout document structuring.

Relational dependency networks (RDNs) is a graphical model that is capable to
express inter-element dependencies and to reason in the relational setting. The RDNs
decompose the globally trained model into a set of local learning models, where lo-
cal features get extended with the estimations of labels of relevant elements. First, the
conventional Gibbs sampling can be used for the collective inference. When the Gibbs
sampling shows a slow convergence, we follow [Kou and Cohen(2007)] in replacing
the Gibbs sampling with the stacked assembly principle that allows to accelerate the
inference.

The remainder of the paper is organized as follows. In Section 2 we explain the
problem of annotating the layout-oriented documents and introduce the mapping from
input data to the set of output variables. Section 3 describes the relational dependency

2999Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

networks and the inference with the Gibbs sampling. It then introduces the stacking
meta-learning principle and proposes the learning and inference algorithms. Finally,
Section 4 reports evaluation tests on two collections and Section 5 concludes the paper.

2 Document annotation modeling

This work is motivated by a number of large-scale document structuring and annotation
problems. One example is the metadata extraction from layout-oriented documents,
where documents expose different page and markup templates, like scientific papers,
technical manuals, etc. The extraction process concerns such metadata attributes as ti-
tles, authors, organizations, addresses and references. Another example is the classifi-
cation and semantic annotation of Web pages available in HTML format.

In the following the input data is given by a structure describing a set of elements
in document(s) and relationships among them. In the case of Web pages, this structure
is given by HTML tag nesting and hyperlinks. In the scanned documents, the OCR and
the logical analysis algorithms are deployed on the preliminary step in order to identify
characters, words, lines or zones. They produce an hierarchical structure as the spa-
tial nesting (”contains” relationship) of document fragments and include elements like
LINEs, PARAGRAPHs, TABLEs, etc. In certain document applications, like forms or
business cards recognition, the 2-dimensional page analysis can go further and estab-
lish spatial logical relationships between the elements, like ”touch”, ”intersect”, etc.

x,y,width,
height,font

x,y,width,
height,font

PARA PARA PARA

DOC

PCDATA PCDATA PCDATA PCDATA PCDATA PCDATA

width,height,
zones

width,height,
zones

x,y,width,
height

x,y,width,
height

x,y,width,
height

x,y,width,
height,font

x,y,width,
height,font

x,y,width,
height,font

x,y,width,
height,font

PAGE PAGE

LINELINE LINE LINE LINE LINE

Figure 1: XML structure of input documents.

Beyond the basic line and zone segmentation and the spatial containment, an ad-
vanced logical analysis can establish links (or link candidates) for a specific logical
composition of a physical document. For example, consider the Table of Content (ToC)

3000 Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

detection in multi-page documents [Dejean and Meunier(2005)]. Under some generic
constraints of the contiguity and textual similarity, the ToC detection algorithm can
produce the candidate pairs for being linked to the ToC. Similar examples are linking
to bibliographic references and citations.

Given the input data structure, the classification techniques try to build the predic-
tion models for the document elements. They proceed by extracting local features which
associate an element label to element’s characteristics, such as elements’ x-y positions
on the page, the font size or certain keywords in the textual data.

Beyond the local features, so called link features try to capture relationships be-
tween elements’ labels, for example, between neighbor elements in the document. Most
layout-oriented documents are full of meaningful relationships. For example, labeling
a line as a bibliographic reference in a scientific paper becomes more certain if the
previous and next lines are already recognized as the references. Capturing such rela-
tionships and their integration in the classifiers can help train more accurate predictive
models for the document annotation.

Any link feature is defined over a pair of elements or fragments in input docu-
ments. The link can either match the existing relationships or form a new one. The
full set of elements and links induce a graph-like structure. The collective assign-
ment of element labels are described by joint probability distributions in probabilis-
tic graphical models, in particular Markov random fields [Bishop(2006)]. If the graph
forms a chain or a tree, HMM or Conditional Random Fields (CRF) techniques can
be used to find an optimal joint assignment of labels by optimizing a log-likelihood
function [Lafferty et al.(2001)]. If the structure of the relationships between elements
form an undirected graph, finding exact solutions require special graph transforma-
tions [Bishop(2006)] and eventually the enumeration of all possible annotations on
the graph. This results in the exponential complexity of model training and inference.
To make it tractable, several approximation techniques have been proposed for undi-
rected graphs; these include Markov Chain Monte Carlo methods and dependency net-
works [Neville and Jensen(2007)].

In layout-oriented documents, the collective annotation targets the groups of docu-
ment elements and fragments. Figure 2 shows another document structuring example.
Given a sequence of pages (three sequential pages are shown in the figure, where the
textual data and the paragraphs are omitted for the sake of presentation), the task con-
sists of segmenting the document in sections. It should detect the starting page of each
section and its title. The corresponding annotations are marked by the bounding box for
the second page and two black lines that compose the section title.

2.1 Mapping

For the document segmentation in Figure 2, the basic classification approach would
treat line and pages separately, one by one. In the collective classification, dependen-
cies between elements can give more evidences for making some annotations and thus

3001Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

... ...

Figure 2: Example of the collective element annotation.

improve the accuracy of the prediction models.
The shift from the separate classification to collective one is enabled through the

mapping from input data to output variables and the dependencies. In the following, we
will slightly change the standard RDN notation [Neville and Jensen(2007)], in order to
explicitly express this mapping. We define a 2-layered graph G = {In, Out, Map},
where the lower layer In describes the input elements and relationships between them,
and the upper layer Out describes output variables and dependencies between them.
The mapping description Map first defines the variable sets and associates them to input
elements. Second, it defines templates for both local and link features on input data and
output variables. Finally, the modeling process makes a choice of basic classifiers and
methods for the structure and parameter learning for the collective classification.

2.2 Basic classifiers

The basic component in the document classification is a supervised probabilistic clas-
sifier of document elements. The classifier is trained with the local features and, for
each unlabeled element x, it estimates conditional probabilities P (y|x) for all possi-
ble labels y. In the following, we will primarily assume the maximum entropy clas-
sifier [Berger et al.(1996)]; other supervised classifiers, like the logistic regression or
the multi-class SVM, can be used in the similar manner. With the constraints based on
selected features fj(x, y), the maximum entropy classifier attempts to maximize the
conditional likelihood P (y|x) which is represented as a log-linear function P (y|x) =

1
Z(x)exp

∑
j λj ·fj(x, y), where the parameters λi are learned from the training corpus

and Z(x) is a normalizing factor which ensures that all the probabilities sum to 1.
In layout-oriented documents, the classifier disposes a set of local features com-

posed of different types of information. Content features express properties on text in
the element x, e.g. f1(x, y) = 1 if y=title and text in x has only uppercase characters,

3002 Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

0 otherwise. Structural features capture the tree context surrounding an element, e.g.
f2(x, y)= 1 if y=section and x’s father node has a left brother, 0 otherwise. Attributes
features capture the values of node’s attributes in the source tree, e.g. f 3(x, y)= 1 if
y=title and the value of the font attribute of x is times, 0 otherwise.

2.3 Link features

A link feature fP(x, y, y′) captures the relationship between an element x, its label y

and the label y′ of a P-node in the document structure, whereP is a path in the structure
from y to y′. For example, for a line x we may define fP(x, y, y′)= 1 if g(x) and
y=section and y′ is metadata, 0 otherwise, for some characteristics g(x) of the element
x and pathP from a LINE to the correspondingPAGE node (P=”ancestor::PAGE”
in the XPath language). The entire set of link features are generated by the template C

which is a triple (filter, path, g) where filter is (x.type=LINE) and path = P . In the
similar manner, link features may be defined over links between elements linked with
path P .

The link features capture relationships between element labels and often form arbi-
trary graph structures. The Markov Random Fields (MRF) [Lafferty et al.(2001)] can
address arbitrary undirected graphs, however finding exact solutions is computationally
intractable in MRF. So we use an approximation technique of dependency networks
and their relational extensions for typed data [Neville and Jensen(2007)]. Furthermore,
when the conventional Gibbs sampling converges slowly, we consider an alternative
method. We follow [Kou and Cohen(2007)] in considering the stacking principle for
integrating link features f(x, y, y ′) in the basic classifier. When a true value y ′ is un-
available, it is replaced by estimation ŷ′. In turn, the estimation model for ŷ′ is trained
on pairs (x, y′) in the available training corpus.

3 Dependency networks

In the input XML tree, local features are defined between input node charactertics g(x)
and node labels y. The link features are defined between each pair of neighbor LINEs
and PAGEs, as well as between every LINE and the corresponding PAGE node.

The 2-layered representation G induces the relational dependency network used
in the collective classification. Informally, the network includes the upper layer in G

extended with extra-layered links. Formally, nodes in the network are input nodes x

and all output nodes in Out-layer to be annotated with labels y (LINEs and PAGEs in
Figure 2). Two types of undirected arcs are induced by static and link features defined
over the input elements. An arc in the network links a node x to node y if one or multiple
local features are defined over the pair (x, y). Similarly, an arc in the network links a
node y to node y ′ if a link feature is defined over the pair (y, y ′). For any node y in the
dependency network, we denote ynb the vector or neighbor nodes of y.

3003Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

3.1 Gibbs sampling

The Gibbs sampling method [Bishop(2006)] is a Markov Chain Monte Carlo algorithm
used when the inference is intractable because of the graph complexity. The Gibbs
sampling proceeds by replacing the value of one of the variables y by a value drawn
from the distribution of y conditioned on the values of the remaining variables. In other
words, it replaces y by a value drawn from the distribution p(y|ynb,x). The sampling
procedure is repeated by cycling through the variables in y and choosing the variable
yinbfy to be updated at each step. The initial variable values y0 are provided by the
classifiers trained with the local features only. At iteration j, j = 1, . . . , J , we sample
ym as follows:

yj+1
m ∼ p(ym|yj+1

1 , . . . , yj+1
m−1, y

j
m+1, . . . , y

j
M ,x), (1)

where M is the total number of variables.
In the Gibbs sampling, the update of one variable on its neighborhood is computa-

tionally simple. However the convergence may be very slow, due to the dependencies
between consequent samples; this forms the so-called slow mixing effect. To partially
remedy the slow convergence of Gibbs sampling, we consider also its blocking vari-
ant [Jensen et al.(1995)]. The blocking Gibbs sampling tries to make the variable mix-
ing faster and increases the number of variables sampled at each step. It visits variables
simultaneously by groups, where one group of variables corresponds to a component in
the network. The union of components comprise all variables but one one variable may
be in several components. When a component is visited, it is sampled conditionally on
the neighborhood of all its variables. One iteration of blocking Gibbs sampling is com-
pleted when all components are visited by the algorithm. Like in (1) for variables y, in
the blocking Gibbs sampling, we sample a component cm at iteration j, j = 1, . . . , J ,
as follows:

cj+1
m ∼ p(cm|cj+1

1 , . . . , cj+1
m−1, c

j
m+1, . . . , c

j
C ,x), (2)

where C is the total number of components.

3.2 Stacked dependency networks

Stacked generalization is a general method of using a high-level model to combine
lower-level models to achieve a higher predictive accuracy. The high-level model is built
using the extended training set (x, ŷ, y), where ŷ is a one or multiple low-level model
predictions for labeling x with y. Recently, Cohen et al. extended the stacking to the
Web page classification [Kou and Cohen(2007)]. We apply the stacked generalization
method to the relational dependency networks and consider it as an alternative to the
Gibbs sampling.

The collective annotation of two elements with labels y and y ′, in the presence
of x, is given by the joint conditional probability p(y, y ′|x). When y and y′ are not

3004 Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

independent, the exact solution assumes the enumeration of all possible annotation of y

and y′:

p(y, y′|x) =
p(y, y′,x)∑

(y,y′) p(y, y′,x)
=

1
Z

exp
∑

j

λjf
j
p(y, y′,x). (3)

The RDN approximates the exact solution by factorizing the joint probability and
injecting the estimations as follows:

p(y, y′|x) ≈ p(y|ŷ′,x)p(y′|ŷ,x), (4)

where ŷ′ and ŷ are estimations of y ′ and y, respectively.
In the stacked version of RDNs, we are stacking a number of approximation mod-

els; in each model the collective annotation p(y, y ′|x) in the dependency network is
approximated by 2 · l models p(y i|ŷ′i−1,x) and p(y

′i|ŷi−1,x), i = 1, . . . , l, where
ŷi−1, ŷ

′i−1 are predictions for y and y ′ made on the previous level model, l is the stack
size.

In the general case of the dependency network G, we denote ynb all the neighbors
ynb the given y is linked with link features to. Then, the stacked RDN approximation
factorizes the joint distribution over y on the each level of the stack as follows:

p(ŷi|x) =
∏

yi∈yi

p(yi|ŷi−1
nb ,x). (5)

The stacking method constructs samples of (x,ŷ) where ŷ is a vector of class predic-
tions for x. To avoid the mismatch between data used in the training set and the testing
set, the cross-validation principle should be applied inside the learning algorithm. The
next section presents details of the learning and inference algorithms.

3.3 Supervised learning on stacked RDNs

If the input documents have nodes of different types, so does the dependency network,
one type per relation. In the document structuring example, two types of variables (out-
put nodes) refer to two different types, LINEs and PAGEs. Each node type t ∈ T is
associated with the proper class set YT and is characterized with an associated feature
set. Consequently, learning a model for the input documents requires training T type-
associated models, one model per type. Below, the learning and inference algorithms
describe stacking algorithms for multi-type data.

Learning algorithm. Given a training set S 0
t = (xt;yt) = {(xt, yt)}

for each type t ∈ T , a basic learning method M , a cross-validation
parameter K , a stack size l.

Split S0
t into K equal-sized disjoint subsets S0

t,1, . . . , S
0
t,K .

3005Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

for i = 1, . . . , l do
for k = 1, . . . , K do

for each type t ∈ T do
1. Get function F i

k by training the basic method M on the
set Si−1

t − Si−1
t,k

2. Construct an extended dataset S i
t,k of instances {(xt, ŷi

nb), yt}
by extending each xt, (xt, yt) ∈ S0

t,k with estimations of
neighbor nodes using function F i

k, ŷi
nb = F i

t,k(xt,yi−1
nb)

Compose Si
t = ∪K

k=1S
i
t,k

return functions F i
t by training the basic method M on the sets S i

t ,
i = 1, . . . , l, t ∈ T .

The algorithm generates |T | · K · l functions F i
t,k, k = 1, . . . , K , i = 1, . . . , l, t ∈ T

to produce the extended datasets for all levels and types and returns l · |T | functions F i
t

used in the inference.

Inference algorithm. Given an input document containing elements
of different types, x0 = {x0

t}, t ∈ T .
for level i = 1, . . . , l do

for each type t ∈ T do
1. Produce estimation for i-level ŷi

t = F i
t (xi−1

t)
2. Produce an extended set xi

t = {(x0
t , ŷ

i
ng)}

return the estimation for the last level ŷl
t = F l

t (x
l
t) for all t ∈ T .

The inference algorithm is linear in the size of the number of output variables/nodes
The complexity of inference algorithm is O(l · |T | · |y|), where |y| is the number of
output variables/nodes.

4 Evaluation

We now evaluate the stacked RDNs and compare it to Gibbs sampling methods. The
lower bound in our evaluation is the Baseline method, where the link features are ig-
nored and the prediction models are trained using the local features only. As the upper
bound for the stacking approximation, we may consider the Exact solution according
to (3). However, when the inference of exact solutions is intractable because of the large
size of input documents and complexity of dependency networks, we consider another
upper bound methodology. The Upper bound solution is one where an oracle is assumed
to correctly predict the neighbor classes. In our implementation, the oracle-based mod-
els are built with the extended training sets where the true neighborhood values y nb

augment explicitly the extended datasets for each y.

3006 Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

We then compare Stacking to several variants of the Gibbs sampling method. The
performance of Gibbs sampling depends on the order of visiting variables y ∈ y. We
test two visiting policies. In the Gibbs-random, variables y are visited randomly. In
the Gibbs-order, the variables are visited according to the reading order of elements in
the document. Finally, we evaluate the ordered Blocking-Gibbs variant. We run differ-
ent tests to compare Baseline, Upper, Stacking, Gibbs and Exact methods. The basic
method M used in Stacking is the maximum entropy classifier. Below we report some
results of tests applied on two different collections.

Figure 3: Inference with Stacking and Gibbs sampling methods.

Abstract annotation. The first collection is a set of 28 abstract sequences from
the collection whose elements are annotated with 6 metadata classes. Each abstract
is represented as a sequence of lines. In the dependency network generated for the
sequences, the element’s neighborhood is given by its left and right elements. Due to
the chain dependency network, we can deploy the CRF++ package 1 to obtain the exact
solutions.2 For all tested methods, we estimate the accuracy of element annotation.

In the stacking methods, the stack size is varied from 1 to 8 and 5-folding cross-
validation is used; the inner cross-validation parameter K is set to 2. In the first set of
tests, we run Stacking method on the sequence collection with the basic chain structure
(ynb) includes y’s left and right brothers) and compare it to Upper, Independent and
Exact solutions.

The model training is fast with both Stacking and Gibbs methods. Instead, for the

1 CRF++: Yet another CRF toolkit, http://crfpp.sourceforge.net/.
2 The inference with the CRF is O(N · Y 2) where Y is the number of different classes in y.

3007Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

inference, as Figure 3 shows, Stacking reaches the maximum accuracy in 3-4 iterations,
while it takes 3 to 20 times more iterations to Gibbs sampling. Among the Gibbs sam-
pling methods, the Blocking-Gibbs performs better than other variants.

Precision Recall F1

Upper 94.87 91.00 92.89
Stacking l=5 83.99 75.38 79.46
Stacking l=4 83.78 74.60 78.93
Stacking l=3 83.99 75.38 79.46
Stacking l=2 83.98 74.87 79.17
Stacking l=1 84.10 74.73 79.14
Gibbs 83.94 75.15 79.23
Baseline 77.38 69.87 73.44

Table 1: Evaluation for the section segmentation case.

Section segmentation. The second collection is composed of 13 large technical
documents, accounting in total for 7,073 pages and 275,299 lines. The document struc-
turing task has been presented in Sections 2; it targets annotating LINEs and PAGEs
in the layout-oriented documents which correspond to the beginning of sections and
the section titles; there are 1058 such lines and 501 such pages in the collection. The
link features of the target dependency network have been presented in Section 2.3. In
all tests, we report the precision, recall and F1 measures, separately for each type and
jointly for the entire set. As in Figure 2, ynb(LINE) includes two neighbor LINEs and
a PAGE the given line is a part of; ynb(PAGE) includes two neighbor PAGEs and all
LINEs on the page.

LINEs PAGEs LINEs+PAGEs

Upper 87.43 100.00 92.86
Stacking l=1 78.74 79.32 78.98
Gibbs 77.95 80.93 79.23
Baseline 75.04 70.79 73.01

Table 2: Evaluation for different element types.

When we train stacking models on the section collection, the stack size l vary from
1 to 5 and 5-folding is used for both internal and external cross-validations. Table 1

3008 Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

reports results for the Baseline, Upper, Gibbs and Stacking methods (no exact solution
is possible because of the graph size and complexity). As the table shows, we observe
no significant difference between models with different stack sizes. Unlike the first col-
lection, the Gibbs sampling converges fast with Finally, Table 2 reports F1 values for
different element types with the stacking inference and compares them to the Baseline
and Upper bounds. The clasification of PAGEs takes the maximum benefit from the
known neigbourhood in the Upper bound; with the Stacking, F1 values are comparable
for both types.

Analysis. The analysis of series of tests on both collections allowed us to make two
major conclusions. First, the stacking inference is comparable to Gibbs sampling in the
RDNs but additionally shows an important reduction in the inference time, despite the
extra work needed to train the stacking models. Second, in all the tests, the structure of
the dependency networks have been set manually, through the user-based definitions of
the link features. We are now looking for the RDN structure inference, by the automatic
discovery of important long-distance correlations between elements and their coupling
with the stacking generalization.

For a given document annotation task, the optimal solution should take into ac-
count the variability of documents and the complexity of structuring task. If a se-
quential ot tree-like representation of documents is possible, the exact inference with
CRF should be the first choice; such a conclusion being consistent with other deploy-
ments of CRF for the document analysis [Shetty et al.(2007)] and handwriting recog-
nition [Feng and McCallum(2007)]. Otherwise, the RDNs are a viable alternative for
complex structuring problems. The convergence of Gibbs sampling may vary consider-
ably from one case to another, and in most cases, the stacking generalization may help
reduce the inference time.

5 Conclusion

We have addressed the problems of annotating and segmenting the larges layout-oriented
documents. We approach the document structuring by the mapping from input data to
variables on typed nodes and links which are subjects of the collective classification. We
apply the principle of relational dependency networks defined by local and link features
that capture relationships between input elements and their labels as well as between el-
ements’ labels. We then extend RDNs with the stacking generalization principle which
ensures the fast inference as compared to the Gibbs sampling.

References

[Berger et al.(1996)] Berger, A. L., Pietra, S. D., Pietra, V. J. D.: “A maximum entropy approach
to natural language processing”; Computational Linguistics; 22 (1996), 1, 39–71.

[Bishop(2006)] Bishop, C. M.: Pattern Recognition and Machine Learning; Springer, 2006.
[Chanod et al.(2005)] Chanod, J.-P., Chidlovskii, B., Dejean, H., et al.: “From legacy documents

to xml: A conversion framework”; Proc. European Conf. Digital Libraries; 92–103; 2005.

3009Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

[Dejean and Meunier(2005)] Dejean, H., Meunier, J.-L.: “Structuring documents according to
their table of contents”; DocEng’05: Proc. ACM Symp. on Document Engineering; 2005.

[Feng and McCallum(2007)] Feng, M. R., S., McCallum, A.: “Exploring the use of conditional
random field models and hmms for historical handwritten document recognition”; Proc. 2nd
Intern. Conf. on Document Image Analysis for Libraries, DIAL’06; 30–37; 2007.

[Jensen et al.(1995)] Jensen, C., Kong, A., Kjaerulff, U.: “Blocking Gibbs sampling in very large
probabilistic expert systems”; Intern. Journal of Human Computer Studies; 42 (1995), 647–
666.

[Kopec and Chou(1994)] Kopec, G. E., Chou, P. A.: “Document image decoding using Markov
source models”; IEEE Trans. Pattern Anal. Mach. Intell.; 16 (1994), 6, 602–617.

[Kou and Cohen(2007)] Kou, Z., Cohen, W. W.: “Stacked graphical models for efficient infer-
ence in Markov random fields”; Proc. SIAM Data Mining; 2007.

[Lafferty et al.(2001)] Lafferty, J., McCallum, A., Pereira, F.: “Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data”; ICML ’01: Proc. 18th Intern.
Conference on Machine learning; ACM Press, New York, NY, USA, 2001.

[Liang et al.(2005)] Liang, P., Narasimhan, M., Shilman, M., Viola, P.: “Efficient geometric al-
gorithms for parsing in two dimensions”; International Conference on Document Analysis
and Recognition (ICDAR); 2005.

[Mao et al.(2003)] Mao, S., Rosenfeld, A., Kanungo, T.: “Document structure analysis algo-
rithms: a literature survey”; Proc. SPIE Electronic Imaging; volume 5010; 197–207; 2003.

[Neville and Jensen(2007)] Neville, J., Jensen, D.: “Relational dependency networks”; Journal
of Machine Learning Research; 8 (2007), 653–692.

[Shetty et al.(2007)] Shetty, S., Srinivasan, H., Beal, M., Srihari, S.: “Segmentation and labeling
of documents using Conditional Random Fields”; Proceedings of SPIE; 2007.

3010 Chidlovskii B., Lecerf L.: Stacked Dependency Networks ...

