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Abstract: BigBatch is an image processing environment designed to process batches of 
thousands of monochromatic documents. One of the flexibilities and pioneer aspects of 
BigBatch is offering the possibility of working in distributed environments such as clusters and 
grids. This paper presents an overview of BigBatch image processing features and analyzes the 
results of a number of experiments devised to compare its cluster and grid configurations. 
Although preliminary results were published earlier on, the new data shown here that sheds 
new lights onto this aspect. The results obtained exhibit almost no difference in total execution 
times for some grid and cluster configurations, but significant differences for others, indicating 
that the choice between such configurations must take into account a number of details in order 
to reach peak performance. Besides those, there are other qualitative aspects that may impact 
this choice. This paper analyzes these aspects and provides a general picture of how to 
successfully use BigBatch to process document images employing computers in parallel for this 
task.  
 
Keywords: Cluster, grid, image processing, load-balancing 
Categories: D.1.3 

1 Introduction  

Digital documents are replacing paperwork in organizations in every corner 
throughout the world. This step to be effective must encompass the paper legated 
documents. Thus document digitalization is the way to bridge the gap between past 
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and present technologies. The paramount numbers involved in document 
digitalization demand efficient and low cost solutions. Production-line, automatically 
fed flatbed scanners (such as [Kodak, 1999]) for the digitalization of batches of 
thousands of documents offer a viable solution to balance the cost-performance 
binomial. However, this process may introduce into document images a number of 
undesirable artefacts such as noisy borders, skew, salt-and-pepper noise, that not only 
damage document readability by humans, but also demands larger storage space, 
claims for more computer network bandwidth for document transmission and 
degrades OCR response. Thus, an environment that efficiently removes such artefacts 
is most desirable.  Each digitalized image must be processed by a series of filters to 
get them ready for storage and later use as digital documents, and this must be done 
for large batches of documents, which would normally take a long time in a single 
computer. In general, the number of images scanned by a production line flatbed 
scanner in a day is several times larger than the time needed to process such images 
only to remove the artefacts mentioned. The use of OCR to automatically find 
keywords for instance is a factor about ten the filtering time. However, organizations 
often have many computers with spare machine cycles available, and this 
computational power could be used for such tasks. BigBatch [Lins, 2006] can process 
monochromatic document images in batches, and may make use of all the computers 
available to document image filtering, either by employing a cluster configuration 
(mostly restricted to single Local-Area Networks) or a grid configuration distributed 
over many LANs or WANs. The grid configuration of BigBatch allows the use of the 
spare processing cycles of machines in an organization for document filtering and 
indexing. 

This paper presents BigBatch, the problems it solves, and how it can be used on 
clusters and grids. Once an organization decides to employ a distributed environment 
with many computers to the task of document processing with BigBatch, however, it 
must select either a cluster or grid configuration for this. This paper is thus concerned 
with comparing both configurations in quantitative and qualitative aspects, to provide 
guidelines for systems administrators to take such a decision. These results and 
considerations were obtained in the context of BigBatch, but can be generalized to 
any application that processes a batch of documents in distributed systems. In 
previously published work [Mattos, 2008], the BigBatch tool was presented, along 
with preliminary results for comparing cluster and grid configurations; the new results 
are reported in this paper that widens and deepens the previous results obtained, 
besides making use of more modern machine architectures including multiprocessor 
ones. 

The paper is organized as follows: Section 2 describes the problems that occur in 
raw digitalized images of documents and that hamper their efficency as digital 
documents. Next, Section 3 presents BigBatch, a software platform designed to solve 
those problems for a large numbers of documents, taking advantage of all 
computational power that an organization can make available for this task, and thus 
including the possibility of working with clusters and grids of workstations. Then, 
Section 4 describes a series of experiments designed and executed to assess the 
performance of cluster and grid configurations. The results are presented and 
analyzed in Section 5, in which are also considered qualitative aspects of comparison 
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between both distributed configurations. Finally, Section 6 concludes the paper and 
presents directions for further investigation. 

2 Digitalized Document Images 

The direct scanning of a document does not usually produce a useful digital 
document. The use of a scanner, either manually-fed flatbed or a production-line, 
automatically-fed one, introduces artefacts to the raw digitalized image that are 
undesirable in digital documents. Three common problems are the presence of black 
borders, wrong orientation, document skew, and the presence of salt-and-pepper 
noise. 

Depending on a number of factors such as the size of the document, its state of 
conservation and physical integrity and the presence or absence of dust in the 
document and scanner parts,  very frequently the image generated is framed either by 
a solid or stripped black border (Figures 1-4 present some of the most typical kinds of 
noise border). This undesirable artefact, also known as marginal noise, not only drops 
the quality of the resulting image for CRT visualization, but also consumes space for 
storage and large amounts of toner for printing. Removing such frame manually is not 
practical, for it is a time-consuming operation that requires specialized users. Several 
production-line scanner manufacturers have developed software tools for removing 
such noisy borders. However, many of these programs [ClearImage, 2003] 
[Leadtools, 2001] [ScanFix, 2001] [Skyline, 2003] are too greedy and tend to remove 
essential parts of documents. 

 

 

Figure 1: Solid black noisy 
frame 

 

Figure 2: Irregular shape noise 
border 

 

Figure 3: Pattern with stripes 

 

Figure 4: Information linked to 
noise border 
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Documents are not always correctly placed on the flatbed scanner, either 
manually by operators or by the automatic feeding device. This problem yields either 
incorrectly oriented or rotated images. For humans, badly oriented and rotated images 
are difficult for visualization and reading. For machine processing, a number of 
problems arise that range from needing extra space for storage to making more error-
prone the recognition and transcription of the image by automatic OCR tools. Thus, 
orientation and skew correction are present in any environment for document 
processing. However, the precision of orientation and rotation angle detection, the 
quality of skew-correction, and the time required for processing in those operations 
vary widely from one tool to another. Three problems often appear in the rotation of 
monochromatic images: white holes appear within flat black areas, smooth edges 
become uneven and full of ripples, and neighboring areas become disconnected. Very 
often the result of rotating a monochromatic image shows degradation effects such as 
the ones presented on Figure 5. 

The digitalized image may also include some noise in areas that were originally 
homogeneous, or near contours, especially the kind of noise known as salt-and-
pepper. Removal of this kind of noise can often improve document quality and 
facilitate further document processing, like character recognition using OCR tools. 

At a minimum, a tool for processing images of digitalized documents must 
include filters for at least these three problems. The next section describes BigBatch, a 
document processing tool that includes these filters. 

 

 

Figure 5: Word rotated by 45º and -45º by classical algorithm 

3 The BigBatch Solution 

BigBatch was designed to automatically process thousands of monochromatic images 
of documents generated by production line scanners. BigBatch opens a batch of 
documents and, for each one, removes its noisy borders, checks and corrects its 
orientation, calculates and compensates the skew angle, crops the image standardizing 
document dimensions, removes salt-and-pepper noise, and finally compresses it 
according to a user-defined file format. BigBatch includes some of the best recent 
algorithms for monochromatic document images [Ávila, 2004a] [Ávila, 2004b] 
[Ávila, 2005a] [Ávila, 2005b] [Lins, 2004]. Figures 6 to 9 present an example on the 
document processing capabilities of BigBatch. 
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Figure 6: Original Scanned 
Document Image 

 
 

Figure 7: Noise Border 
Removed 

 
 

Figure 8: Orientation and 
skew corrected image 

 

  
 

Figure 9: Cropped and 
filtered image 

 
BigBatch may work either in standalone or operator-assisted modes. The 

operator-assisted mode allows a user to apply each filter and visualize its results to 
improve a given image. In standalone mode a full batch of documents, specified by 
the user, is processed, in one of three configurations: sequential (using a single 
computer), cluster or grid. In cluster or grid mode, BigBatch automatically dispatches 
document processing tasks from a server to workstations available to the job, 
collecting the results from each of them afterwards. 

The image processing algorithms in BigBatch were implemented in C. The 
graphical user interface, and support for cluster and grid configurations, were 
developed using Scala [Odersky, 2005], a language that runs on the Java platform. To 
test the program, a set of test images were generated using Kodak 0 production line 
scanners, with 200dpi resolution and compressed in TIFF(G4) file format. The quality 
of the resulting images after processing with BigBatch was at least as good as the best 
ones produced by the other commercial tools tested 00000. Sequential processing in 
BigBatch outperformed all the other tools whenever images of comparable quality 
were generated (many times some of the other tools demanded less time than 
BigBatch for border removal, for instance, but their results were unsatisfactory). A 
previous version of BigBatch, limited to sequential processing of documents in a 
single node, is described in a paper by Lins, Ávila and Formiga [Lins, 2006]. 
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One innovative feature of BigBatch is the possibility of using cluster and grid 
configurations for processing large batches of documents. High-performance 
computing was once restricted to institutions that could afford the significantly 
expensive supercomputers of the time. Nowadays, more than 70% of the top 500 
computing systems in the world are clusters [Top500, 2007]. Besides the adoption of 
clusters, computational grids – mostly composed of PC workstations – have become 
prominent in recent years. Clusters are associated with local-area networks (LANs), 
and are composed of dedicated nodes. On the other hand, grids are traditionally 
associated with wide-area networks (WAN) and internets, and can include nodes in 
different domains; the promise of grids is to integrate computational resources that are 
available across an internet and to bridge organizational barriers for the execution of 
tasks. Clusters tend to be used in applications where there is communication between 
nodes, whereas grids are better suited to applications where the work units are 
independent and there is little inter-node communication. 

With BigBatch giving the choice of using either a cluster or grid configuration to 
take advantage of a number of computers made available for document processing 
tasks, it is up to the user to select one of them to execute these tasks. For this, the user 
must know the advantages and disadvantages of each configuration, in both 
quantitative and qualitative aspects. The primary aspect for comparison is 
performance: whichever configuration achieves greater throughput is often preferable, 
as the processing of large amounts of document images may take a long time. But 
there are also other aspects to consider: how easy it is to setup each configuration, if 
the computer must be dedicated to the document processing task, what are the 
requirements to run a cluster or grid configuration, amongst others. 

The questions about performance are not clear at first. For instance, it is 
frequently assumed that the flexibility brought by grids, allowing the use of 
computers over the Internet or in different organizational domains, would degrade the 
performance for tasks executed locally, in an environment wholly controlled by a 
single organization. To determine if this is indeed the case, and if so, what are the 
performance penalties to pay when using a grid configuration on a dedicated LAN, a 
set of experiments were designed for comparing the execution of BigBatch tasks over 
a cluster and a grid. The cluster and grid configurations both included the same 
number of machines, and executed the same tasks over the same test images. The 
document processing tasks generated by BigBatch are ideal for distribution over grids 
and clusters, because they are easily partitioned: each computer can be assigned to 
process a subset of images from the complete batch, and return the results. 

The next subsections describe the configurations, and Section 4 describes the 
experiments performed. Section 5 presents the results of the performance comparison 
and considers other aspects, mostly qualitative, about the choice of configurations. 

3.1 The Cluster Configurations 

There is a wide variety of cluster software libraries and middleware programs that can 
be used to help managing tasks in a cluster, e.g. openMosix [openMosix, 2002], 
Condor [Litzkow, 1998] and Microsoft Cluster Server [Microsoft, 2003]. It is more 
common that applications must be explicitly written with the cluster in mind, 
incorporating the division of tasks between nodes and the communication between 
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them. The programming of cluster tasks often uses specialized libraries such as MPI 
[Snir, 1998] and OpenMP [Chandra, 2000]. 

Initially, the support for distributing BigBatch tasks to nodes in a cluster 
configuration was custom written for this application, using the Scala programming 
language [Odersky, 2005]. Scala is a functional and object-oriented language that was 
designed to run in the Java Virtual Machine and interoperate with Java libraries and 
APIs. It was chosen because it was desirable to work with the Java platform, 
leveraging its portability and the availability of libraries; further, Scala includes good 
support for distributed programming using Actors [Haller, 2006]. Another reason for 
having the BigBatch application running over the Java platform is to ease integration 
with the grid component, as will be explained in the next subsection.  

Later, another cluster configuration was prepared, to take advantage of a cluster 
running MPI [Snir, 1998]. The distribution of tasks was written as a C program that 
used MPI calls to coordinate between nodes. Thus it is possible to compare cluster 
software written using MPI with a custom cluster program written in Scala.  

Nodes in the image processing application are divided into worker nodes and a 
single master node which coordinates the distribution of tasks between the workers. 
The computer where the main BigBatch application is executed is the master node, 
while worker nodes must execute a smaller component called the BigBatch Client 
Module. Communication between the nodes is done by message-passing, always from 
the master to the workers or from one worker to the master, never between workers. 
The master dynamically balances the load by distributing tasks to the available 
worker nodes, maintaining a list of tasks that need to be executed and available 
worker nodes. Whenever there are pending tasks and workers are available, the 
master assigns tasks to the workers in some arbitrary order (as nodes are 
homogeneous, it makes no sense to select one over another for a given task). A 
worker node that receives a task is marked as busy, and it stays in this state until the 
task is completed and a message is sent to the master to signal that; the master then 
marks the node as available again, adding it to the list of available nodes. This process 
continues until there are no more tasks to be executed. Load-balancing is thus very 
simple, due to the homogeneous nature of the cluster architecture and the data-
parallelism nature of the problem. 

3.2 The Grid Configuration 

Computational grids are also formed from a collection of general-use computers that 
are coordinated to the execution of related tasks. The main difference between a grid 
and a cluster is that the latter tends to be established using dedicated resources that are 
local to a single organization, while the former may include non-dedicated, non-local 
computers as nodes. It is common for grid software to take over a workstation 
computer (that would normally be available to human users) to execute tasks while it 
is idle. Therefore, grids are a distributed computing environment that features lower 
coupling than what is expected of clusters. 

The low-coupling between nodes and the distributed nature of processing makes 
the programming of applications over grids more complex and challenging than is the 
case with clusters. A special case of problems that can be solved with grid platforms 
are the ones whose sub problems are independent and need no communication 
between the nodes themselves. This class of applications is commonly called bag-of-
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tasks applications, and their execution is simpler to manage in grids. Taking 
advantage of that, a number of software systems have been developed to support the 
execution of this kind of tasks on computational grids, the so-called grid middleware 
systems. One such system is OurGrid, which was selected to be used in the support 
for grids provided by BigBatch. Document processing tasks generated by BigBatch 
fulfill the bag-of-tasks requirements. 

OurGrid [Cirne, 2006] is both an open-source grid middleware and a grid 
infrastructure where sites may make available their computational resources from idle 
computers; in exchange, a participating site can obtain access to the computational 
resources from other sites, whenever necessary. To organize the exchange of 
computational favors, OurGrid establishes a peer-to-peer network between interested 
sites, in which the “currency of exchange” is computational time. This is done to 
assure that participation in the grid and allocation of resources is fair, and the peer-to-
peer network formed is called a “network of favors” [Andrade, 2004]. Participation in 
the network of favors is optional and an organization may use the OurGrid 
middleware only internally, as is the case reported in this paper. 

In the OurGrid solution there are three main components: MyGrid, the Peer, and 
the UserAgent. The MyGrid component is responsible for the management and 
scheduling of grid tasks – organized in collections called jobs. The Peer manages 
nodes in a site and the exchange of computational resources with other sites. Finally, 
the UserAgent is a small program that must be installed in each node that will be part 
of the grid. The grid needs a node executing the MyGrid component and a node 
executing the Peer component (these two may execute in a single node), in addition to 
the UserAgent executing in each worker node. 

MyGrid is further subdivided into two modules: the scheduler and the replica 
executor. The scheduler is responsible for receiving new tasks from users and 
managing them, allocating nodes for their execution; it creates replicas of the tasks (if 
necessary) and communicates with the Peer requesting nodes for execution of the 
replicas. The nodes returned by the Peer may be local, or may be obtained from 
remote sites through the network of favors. The replica executor manages the 
execution of replicas of tasks and the sending of task results to the scheduler. 

Currently, MyGrid works with two scheduling strategies: Workqueue with 
Replication [Paranhos, 2003] and Storage Affinity [Santos-Neto, 2005]. The first was 
designed for CPU-intensive applications, while the latter was created to improve the 
performance of applications that process large data sets. 

A collection of tasks related to the same problem is called a job in OurGrid. A job 
is composed of independent tasks, each one composed of three phases: init, remote 
and final. These phases are executed on sequence, with the init and final phases being 
mostly used to transfer files needed for execution of the task; they are thus executed 
on the MyGrid node. The remote phase is executed in one or more worker nodes 
(depending on the replication strategy), and comprises the computation needed by the 
job. While executing a job, MyGrid requests nodes from the Peer to assign tasks to 
them. 

Execution of the job is managed by the MyGrid component, which schedules 
tasks between the nodes made available by the Peer following the chosen scheduling 
method. This proceeds until all tasks have been executed. In the case of BigBatch, the 
BigBatch application creates the job, based on the batch of document images that 
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must be processed, and communicates this job to the MyGrid component. As both this 
component and the main BigBatch application run over the Java platform, this 
communication is easily performed using the Java Remote Method Invocation (RMI) 
mechanism. 

4 The Experiments 

A number of experiments were devised and executed to assess comparatively the 
performance of cluster and grid configurations. Besides the experiments and results 
presented in [Mattos, 2008], further configurations were tested. For completeness, this 
section describes all the experiments, including the new ones. In total, three different 
physical configurations were used, while three different logical configurations were 
laid over the physical structure in different combinations.  
The first physical configuration used to run the experiments with BigBatch was 
composed by eight 3.2GHz Pentium IV computers with HyperThreading technology 
and clock at 3.2GHz, 512Mb of RAM, connected in a local-area network by a 
standard Ethernet connection and a 100Mb/s Ethernet switch; henceforth, this 
configuration will be called HT1. The second physical configuration was composed 
of similar machines, with eight Pentium IV computers with HyperThreading 
technology, clocked at 3.2GHz and with 1Gb of RAM; the only difference to the first 
configuration is the amount of memory. This configuration will be called HT2 in the 
rest of the paper. The third configuration employed four 2.66GHz Intel Core 2 Duo 
computers having 2Gb of RAM, and will be called CoreDuo. The logical 
configurations, and the names they will be referred to in the rest of the paper, were as 
follows: 

• Grid: grid configuration using OurGrid. The operating system was Ubuntu 
Linux 6.06 [Ubuntu, 2006] with a standard desktop installation. 

• Cluster-Scala: custom cluster configuration using software written in Scala 
version 2.4.0 [Odersky, 2005]. The operating system was Ubuntu Linux 6.06 
[Ubuntu, 2006] with a standard desktop installation. 

• Cluster-MPI: cluster configuration using software written in C with MPI 
[Snir, 1998]. The operating system was Microsoft HPC Server 2008.  

 
Table 1 shows the combinations of physical and logical configurations that were 

used in experiments.  
 

 Grid Cluster-Scala Cluster-MPI 
HT1    
HT2    
CoreDuo    

Table 1: Combinations of physical and logical configurations used in experiments. 
Shaded cells represent combinations that were used.  
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In the Grid configuration, the MyGrid and Peer components where executed in 
the same node, designated as the master node. All other nodes, the workers, executed 
a copy of the UserAgent component. The image processing tasks were specified to 
OurGrid by the BigBatch application, including the transfer of files necessary to each 
task. For the cluster configuration, there were two programs that coordinated the work 
between nodes, the master program and the worker program. The master program is 
the main BigBatch application, and was executed in the master node, and each worker 
node executed a copy of the BigBatch Client Module. 

Each image processed is relatively small, in the order of 100Kb. The filtering of 
each image is independent of the others, which confirms that the application is 
naturally bag-of-tasks, and suggests a partition of the problem. To minimize network 
and scheduling overheads, it was decided to assign to each task the processing of an 
image package, composed of a number N of images each, instead of one task per 
image. For example, with a hundred images per package and a total of 21,200 images, 
212 packages were generated, totaling 212 independent tasks that should be run in 
cluster and grid configurations. The number of images N was initially fixed as a 
hundred per package and later varied in subsequent experiments, as explained later. 

As both OurGrid and the BigBatch application run on the Java platform, the Java 
Virtual Machine, version 1.6.0, was used in the nodes for all configurations. The 
BigBatch application used Scala version 2.4.0 (compiler and libraries). In the Grid 
configuration, OurGrid version 3.3 was used, selecting Storage Affinity as the 
scheduling algorithm, as the application is clearly data-intensive. The image packages 
were initially stored in a single node, the master node, so it was necessary to transmit 
the package file to a worker node prior to processing the task assigned to it. After 
processing, the worker had to transmit the resulting package of filtered images to the 
master. In the Grid configuration, this was performed in the init and final phases of 
tasks, while in the Cluster-Scala configuration the necessary file transfers over the 
network were designed into the BigBatch application. For the Cluster-MPI 
configuration, the files were kept in a shared network directory.  

Using this basic setup, tasks were executed under different conditions, where the 
objective was to observe what changed when some variables were changed 
independently. For this first group of variations, the tasks were executed with N (the 
number of images per package) equal to one hundred. The first condition observed 
was the allocation of tasks to the master node: in one configuration, a node was used 
only as a master node, never a worker; in another, the master node was also a worker 
node. In cluster configuration, the master node executed the part of the application 
responsible for scheduling and storage of image packages; in the grid, the master node 
executed the MyGrid and Peer components, as already discussed. These two 
possibilities of use of the master node were exercised on both configurations. 

The Grid configuration included another varying condition: as a computational 
grid may include non-dedicated nodes, an external computational load was simulated 
by continuously playing a DVD in the worker nodes, while they were also executing 
image processing tasks. This was done to assess how an additional computation load, 
not related to the grid tasks, would affect the performance of a worker node. 

As a further experiment, the number N of images per package was varied to 
assess the impact of the size of tasks in the performance. Complete sets of tasks were 
generated to process all 21,200 images in packages of N equal to 25, 50, 500 and 
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1,000 images. These tasks were executed, with the master node being allocated also 
as a worker node, and their times were noted. The case for N=100 was already 
measured in previous experiments. This was done to measure how differences in load 
balancing would affect performance. 

In the configurations that used dual-core computers (Cluster-Scala over 
CoreDuo and Cluster-MPI over CoreDuo), the experiments were also executed and 
measured with the scheduling of two tasks per node, to take advantage of the two 
cores. This was also tried for the Cluster-Scala configuration over computers with 
Simultaneous Multi-Threading (configuration HT1). 

In each observed condition, the number of nodes used to compose the cluster or 
grid was varied, to determine how the application scales up in relation to the number 
of nodes made available. The number of nodes in the experiments reported here 
varied from one to eight. 

5 Comparison between Cluster and Grid Configurations 

In this Section the results from the experiment described in Section 4 are presented to 
establish a performance comparison between cluster and grid configurations. Later on 
some qualitative aspects of the comparison between the two configurations are seen. 

5.1 Performance: Grid x Cluster-Scala 

Table 2 shows the total execution times for the tasks in Grid and Cluster-Scala 
configurations, in the conditions detailed in Section 4, with a hundred images per 
package (N = 100). The physical configuration was HT1. 

 
 Grid Cluster-Scala 

# 
Computers 

Time 
with non-
dedicated 

master  

Time 
with 

dedicated 
master 

Time with 
non-dedicated 

master and 
DVD 

Time 
with non-
dedicated 

master 

Time 
with 

dedicated 
master 

1 10:27 13:24 14:25 11:21 13:42 
2 05:20 06:18 06:30 06:19 06:42 
3 03:53 03:58 04:43 04:09 04:11 
4 03:00 03:07 03:20 03:41 03:46 
5 02:26 02:34 02:53 02:55 02:57 
6 02:08 02:15 02:22 02:27 02:30 
7 01:45 01:59 02:05 01:53 01:54 
8 01:24 --- 01:53 01:32 --- 

Table 2: Total execution time (hh:mm) of tasks (N=100) in HT1 configuration. 

For the purpose of comparing total execution times between Grid and Cluster-
Scala, Figure 10 shows graphically the results for both configurations when executing 
tasks with a dedicated master node. 

It is clear that there is little difference in total time between configurations, with 
times for the cluster still a little higher than for the grid. This was not initially 
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expected, as the cluster software was custom developed for this image processing 
application. This aspect of the results may be explained by some inefficiency in the 
cluster application that went undetected during the experiments. However, in both 
configurations the load is balanced dynamically, the cluster software being in 
advantage only that its scheduling algorithm may be far simpler and achieving similar 
results. For this reason, it is to be expected that total times for both cluster and grid be 
similar, even if the cluster software is improved, as both configurations do essentially 
the same work. These results indicate that there are no losses when executing bag-of-
tasks applications using a grid platform instead of a cluster. 

Figure 11 shows a graph similar to Figure 10, but this time without a dedicated 
master node, that is, the master node also was a worker node and executed image 
processing tasks. Once again, results for configurations Grid and Cluster-Scala are 
very similar. 

 
Figure 10: Execution time of tasks in cluster and grid with master processing tasks 

(N=100), using configuration HT1 (512Mb RAM). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Execution time of tasks in cluster and grid configurations without master 
processing tasks (N = 100), using configuration HT1 (512Mb RAM). 
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To observe the effects of varying the conditions established in Section 4, Table 2 
shows the total execution times separately for Grid and Cluster-Scala, respectively, 
for the case of one hundred images per package. It is clear that dedicating a node to 
act only as the master, or not, imposes very little difference on total execution times 
when many worker nodes are present; observed variations are only significant for a 
small number of worker nodes. 

The effect of adding an external computational load in the grid configuration, 
simulated by playing a video, has similar impact, affecting the total time significantly 
only for a small number of workers. In a scenario of grid use by an organization, it is 
expected that the number of local nodes that can be allocated to running tasks is 
greater than seven or eight, which indicates that external loads can have limited 
impact to the grid performance. However, it is important to observe that the 
continuous playing of a video does not realistically simulate external computational 
loads in nodes that are used both as worker nodes in the grid and user workstations; in 
a real situation, a user would impose an external load which varies widely in time, 
possibly executing very demanding applications, sometimes. Another observation is 
that the computers used included multithreaded processors, which manage the 
execution of simultaneous tasks better than traditional single-threaded processors. 
However, as the current trends in computer architecture indicate a growing use of 
single-chip multiprocessors, which handle simultaneous tasks even better, it is 
expected that such processors may make the use of grids even more advantageous for 
an organization, because not only the grid tasks will be less affected by loads imposed 
by users, but also the user experience will be less affected by the fact that his 
computer is executing grid tasks at the same time. 

Another observation regarding performance is to take under consideration the 
network protocols. Both configurations used message-passing over a TCP/IP stack, 
while in cluster applications it is usual to use MPI implementations that incur in lower 
network overheads. This was considered for further experiments that are detailed in 
Section 5.2. Another envisaged way to make the cluster more efficient is to perform 
load-balancing statically and a priori, taking advantage of the fact that the network 
configuration available to the cluster is known in advance. 

Tables 3 and 4 show the results of varying the number of images per package 
(and thus the size of tasks) when processing all the images, for physical configuration 
HT1. Table 3 shows the results for Grid and Table 4 for Cluster-Scala. 

 
# Computers N=25 N=50 N=100 N=500 N=1000 

1 10:36 10:34 10:27 10:30 10:30 
2 05:30 05:38 05:20 05:28 05:36 
3 03:38 04:38 03:53 03:36 03:58 
4 02:50 02:57 03:00 02:50 02:56 
5 02:14 02:40 02:26 02:21 02:21 
6 01:54 01:57 02:08 02:02 02:08 
7 01:36 1:38 01:45 01:49 01:56 
8 01:25 01:38 01:24 01:30 01:32 

Table 3: Execution time of tasks (hh:mm) in grid with differing package sizes 
(configuration: Grid + HT1). 
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In both cases, the results clearly show that there is little variation in total times. 
This is to be expected, as total processing times for each task, for N=100, are more 
than two orders of magnitude greater than the time taken to transmit the image 
package over the network. As such, the distribution of the load is not greatly affected 
by the sizes of tasks. 

 
# Computers N=25 N=50 N=100 N=500 N=1000 

1 11:22 11:23 11:21 11:25 11:27 
2 06:24 06:23 06:19 06:20 06:21 
3 04:10 04:11 04:09 04:09 04:10 
4 03:42 03:42 03:41 03:43 03:42 
5 02:57 02:56 02:55 02:58 02:59 
6 02:31 02:30 02:27 02:28 02:29 
7 01:55 01:54 01:53 01:56 02:01 
8 01:35 01:38 01:32 01:33 01:36 

Table 4: Execution time of tasks (hh:mm) in cluster with differing package sizes 
(Cluster-Scala + HT1). 

Table 5 and Table 6 show the results for the same experiment of varying package 
sizes, but for the HT2 physical configuration. The Cluster-Scala configuration, in 
this case, scheduled two tasks per node, to take advantage of Hyperthreading 
technology.  

The results are quite similar to those obtained previously for the Grid 
configuration. The load balancing is not affected by differing package sizes. For the 
Cluster-Scala configuration, the results indicate a reduction of about 25% in 
processing time when scheduling two tasks per node. This gain must be attributed to 
the Simultaneous Multi-Threading present in the computers. In Grid configuration 
such scheduling is not possible. 

 
# Computers N=25 N=50 N=100 N=500 N=1000 

1 10:46 10:42 10:36 10:33 10:32 
2 05:26 05:25 05:19 05:20 05:38 
3 03:38 03:38 03:35 03:36 03:44 
4 02:44 02:43 02:41 02:47 02:54 
5 02:11 02:10 02:10 02:13 02:18 
6 01:49 01:49 01:49 01:56 02:07 
7 01:34 01:34 01:34 01:44 01:59 
8 01:22 01:22 01:22 01:21 01:31 

Table 5: Execution time of tasks (hh:mm) in grid with differing package sizes 
(configuration: Grid + HT2). 

All the experiments presented earlier concern the comparison between Grid and 
Cluster-Scala configurations, and is similar to what was presented in earlier work 
[Mattos, 2008]. The next results permit a comparison between the three logical 
configurations considered. Tables 7-9 show the results of running the image 
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processing tasks, with varying package sizes in Grid, Cluster-Scala and Cluster-
MPI configurations, respectively. Here the physical configuration used was 
CoreDuo; in both cluster configurations, two tasks were scheduled per node, to take 
advantage of the two processing cores available. 

 
# Computers N=25 N=50 N=100 N=500 N=1000 

1 8:37 8:35 8:32 8:33 8:34 
2 4:18 4:18 4:18 4:18 4:20 
3 3:29 3:27 3:28 3:30 3:30 
4 2:13 2:12 2:10 2:10 2:11 
5 1:56 1:54 1:52 1:52 1:53 
6 1:30 1:30 1:31 1:32 1:33 
7 1:14 1:13 1:13 1:14 1:14 
8 1:05 1:04 1:04 1:05 1:06 

Table 6: Execution time of tasks (hh:mm) in cluster with differing package sizes 
(Cluster-Scala + HT2). 

# Computers N=25 N=50 N=100 N=500 N=1000 
1 10:35 10:31 10:25 10:24 10:24 
2 05:24 05:22 05:18 05:20 05:30 
3 03:38 03:38 03:35 03:37 03:40 
4 02:50 02:44 02:42 02:49 02:55 

Table 7: Execution time of tasks (hh:mm) in grid  with differing package sizes 
(configuration: Grid + CoreDuo). 

# Computers N=25 N=50 N=100 N=500 N=1000 
1 06:53 06:49 06:47 06:46 06:46 
2 03:39 03:35 03:33 03:33 03:35 
3 02:17 02:16 02:17 02:17 02:19 
4 01:38 01:40 01:42 01:44 01:47 

Table 8: Execution time of tasks (hh:mm) in cluster with differing package sizes 
(Cluster-Scala + CoreDuo). 

# Computers N=25 N=50 N=100 N=500 N=1000 
1 4:13 4:12 4:11 4:13 4:13 
2 1:51 1:51 1:52 1:53 1:53 
3 1:18 1:16 1:18 1:19 1:17 
4 1:03 1:03 1:04 0:59 0:58 

Table 9: Execution time of tasks (hh:mm) in cluster with differing package sizes 
(Cluster-MPI + CoreDuo). 

The results in both cluster configurations indicate an improvement of 35% on 
average when compared to the Grid configuration because the cluster configurations 
are able to use the dual-core processors by scheduling two tasks per node, thus 
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reaching better times. Furthermore, the use of MPI presented a significant 
performance improvement over the custom cluster architecture, in some cases 
reaching a reduction of almost 40% in running times. A comparison between the 
results for Cluster-MPI and Grid show a total reduction in running time of more 
than 50%. These results indicate further that the custom cluster software may have 
sources of inefficiency that went undiscovered, and that it may be advantageous to 
use cluster configurations when running tasks over computers with dual-core 
processors, or processors with more cores. However, it’s likely that the OurGrid 
middleware will be improved in future versions to allow the scheduling of more than 
one task per node, which will allow it to reap the benefits of multicore processors. A 
lesson to be learned here is that the cluster configurations allow for more control over 
task scheduling, in relation to grid configurations, in which the grid middleware 
decides over scheduling autonomously.  

5.2 Qualitative Aspects 

Although performance is probably the main point of comparison for users, there are 
other aspects which deserve to be considered, and these are often not measurable. 
This subsection considers some of those aspects. 

Ease of use is an important aspect, which includes ease of installation. The main 
BigBatch application is used in both configurations, so the user sees the same 
interface. However, additional software must be installed in worker nodes, and for the 
grid it is necessary to install the OurGrid components. Further, as both the BigBatch 
application and OurGrid are based on the Java platform, a Java runtime must be 
installed in all computers involved in the execution of tasks. In summary, for the 
cluster configuration, it is necessary to install the Java runtime in all nodes, the 
BigBatch main application in the master node, and the BigBatch Client Module in 
worker nodes; for the grid, the setup includes the Java runtime in each node, the 
BigBatch main application in the master node, along with the MyGrid and Peer 
components of OurGrid, and the OurGrid UserAgent component in each worker node. 
The grid setup is thus a little more complicated, but not significantly more so. The 
cluster configuration using MPI requires computers with the MPI libraries installed, 
and access to a shared network directory. More relevant is the fact that using the grid 
imposes an additional software dependency in comparison with the cluster, because 
the grid depends on the OurGrid middleware. This may raise maintenance costs in the 
long term. 

Another aspect is the possibility of using the worker nodes for other tasks 
concurrently with the document processing, like making the computer available for 
users. In the grid case this is easily supported; for the cluster configuration, it is usual 
to use nodes as dedicated cluster computers, but the BigBatch Client Module does not 
prevent the execution of other applications in the same computer. The two 
configurations are very similar in this respect. 

With regards to expansibility to a greater number of computers, the grid 
configuration is clearly superior, as grids were designed with this in mind. A user may 
easily include worker nodes from different domains in the same organization, or even 
take advantage of the distributed OurGrid infrastructure and get nodes from other 
domains over the Internet. Of course, this entails, by the network of favors, making 
some nodes internal to the organization available to external users of the grid, but this 
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can usually be arranged, at least for a limited number of nodes. However, the 
distribution of document processing tasks over external nodes may be counter-
productive, as each task includes the transmission of a large package of images over 
the network; the bandwidth over a WAN may make the transmission times greater 
than the processing times, offsetting general performance. This is a topic for further 
investigation. 

The grid is also more flexible, making it possible, for example, to make 
computers execute document processing tasks only when idle and not being used by a 
person – this can be detected by the execution of a screen saver, for instance. 
Although this can be programmed into the BigBatch Client Module, it is one more 
feature that is already present on the grid. This feature, together with the ease of 
including further nodes in the grid, makes one to expect that it is far easier for grid 
configurations to muster a greater number of worker nodes than in the case of 
clusters. However, it is important to highlight the fact that sending documents for 
processing in nodes outside the organization could be a privacy problem. This should 
be seriously considered if the organization wishes to use external grid nodes. 

As shown in the results when considering dual-core computers, the cluster 
configurations are easier to change to take advantage of scheduling conditions not 
designed into the grid software. The system administrator has more control over the 
scheduling of tasks in cluster configurations, and this is an advantage when new 
technology is being adopted.  

To summarize the comparison, there are no significant performance differences 
between cluster and grid for the BigBatch tasks when running on single-core 
computers, but there is still a significant difference if multi-core computers are 
available; furthermore, using MPI for the cluster currently presents the best 
performance for BigBatch, and MPI itself is a mature and efficient technology, 
already a de facto standard in the High-Performance Computing community. The 
cluster is slightly easier to setup, and has fewer software dependencies; however, the 
grid is more flexible and expandable.  

6 Conclusion and Lines for Further Work 

This paper analyses the parallel processing capabilities of BigBatch, a software tool 
designed to process batches of thousands of monochromatic images from digitalized 
documents. BigBatch can use the computers available to this task in different 
configurations: a grid or two different cluster configurations. The results presented 
herein generalize and update for more modern architectures expand the performance 
data reported in previous work [Mattos, 2008].  

To compare the use of these distributed configurations, a benchmark was set and 
the results show no significant performance differences between a cluster and a grid 
of similar physical configuration, executing the same image processing application, 
except when multi-core processors are available. Other qualitative aspects were 
considered, allowing a user to better decide between a cluster or grid configuration for 
his tasks. These results were generated by executing the BigBatch application over the 
two configurations, but can be safely generalized for any application that applies the 
same processing to a batch of documents in distributed fashion. However, the work 
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reported here does not cover all useful possibilities of comparison, as there are other 
variations and interesting variables that can be observed using similar experiments. 

One point where the comparison can be made more interesting is to observe that 
high-performance cluster applications usually do not perform dynamic load-
balancing; this is made statically, by dividing the work between cluster nodes during 
development and before execution. This eliminates all the need for scheduling and file 
transmission in the cluster, which would certainly reduce the execution time by 
exploiting the a priori knowledge of the configuration that is characteristic of clusters. 
As the grid uses generic software that was designed to work over varying and 
heterogeneous physical configurations, it can not take advantage of a fixed 
configuration and must always balance the load dynamically.  

Another interesting possibility would be to make the scheduler smarter, by using 
properties of the images to algorithmically group them into packages in an attempt to 
achieve better load-balancing. This once again entails the use of information specific 
to the application to improve performance. In the experiments reported here, images 
were arbitrarily packed in packages of 25, 50, 100, 500 and 1000 images each, with 
no other grouping criteria than scanning order. As a result, some packages are much 
bigger than others, and this may lead to a sub-optimal load-balancing. To investigate 
better ways of grouping images into packages, depending on their properties and 
characteristics, it would be necessary to create models which related these properties 
and characteristics of the images with the times spent processing them. A simple 
model would take into consideration the generation of equally-sized (in bytes, not 
images) packages, for instance. 

For the grid, another possibility would be to simulate a more realistic external 
load, by randomly executing CPU-intensive tasks, for example. This would better 
predict how the grid behaves in situations were users may affect the execution of 
tasks. A simulation along these lines may be made more interesting by using recent 
single-chip multiprocessor (multicore) computers. Also, it would be interesting to 
investigate the use of external nodes, obtained from other grid sites on the OurGrid 
infrastructure. It is not clear if the increase in network latency and the decrease in 
bandwidth would impact on the feasibility and desirability of using external nodes 
from the Internet. 

On the cluster side, another possibility would be to use ready-made cluster 
software, including packages that run on Linux/Unix and Windows environments. 

Finally, the set of image filters applied by BigBatch is not necessarily fixed. 
Some users may want to incorporate other filters in all their document processing 
tasks, while others may need to use a specific filter in a specific set of images. 
BigBatch could be easily fitted to use different filters. Even more interesting would be 
to make this configurable: the user would specify which filters to run in each batch, 
and could even provide filters not included in BigBatch. 
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