
Quantum-Inspired Evolutionary State Assignment for

Synchronous Finite State Machines

Marcos Paulo Mello Araujo
(Department of Electronics Engineering and Telecomunications

Engineering Faculty, State University of Rio de Janeiro
Rio de Janeiro, Brazil
marcos@eng.uerj.br)

Nadia Nedjah
(Department of Electronics Engineering and Telecomunications

Engineering Faculty, State University of Rio de Janeiro
Rio de Janeiro, Brazil
nadia@eng.uerj.br)

Luiza de Macedo Mourelle
(Department of Systems Engineering and Computation
Engineering Faculty, State University of Rio de Janeiro

Rio de Janeiro, Brazil
ldmm@eng.uerj.br)

Abstract: Synchronous finite state machines are very important for digital sequential
designs. Among other important aspects, they represent a powerful way for synchro-
nizing hardware components so that these components may cooperate adequately in
the fulfillment of the main objective of the hardware design. In this paper, we propose
an evolutionary methodology to solve one of the problems related to the design of finite
state machines. We optimally solve the state assignment NP -complete problem using
a quantum inspired evolutionary algorithm. This is motivated by the fact that with
an optimal state assignment one can physically implement the state machine using a
minimal hardware area and response time.

Key Words: Quantum computation, finite state machine, state assignment problem.

Category: B.1.2, B.2.2, I.2.2

1 Introduction

In general, implementation of sequential digital systems consist of a datapath
and controller. The datapath is a set of registers, counters and multiplexers
and the controller is an implementation of the finite state machine (FSM) that
models the required behavior. Implementation of FSMs, as depicted in Fig. 1,
have two main characteristics: there is at least one feedback path from the system
output signal to the system input signals; and there is a memory capability that
allows the system to determine current and future output signal values based

Journal of Universal Computer Science, vol. 14, no. 15 (2008), 2532-2548
submitted: 22/2/08, accepted: 30/6/08, appeared: 1/8/08 © J.UCS

on the previous input and output signal values [Rhyne 1973]. Since a machine
state is nothing but a counting device, combinational control logic is necessary
to activate the flip-flops in the desired sequence.

In Fig. 1, the feedback signals constitute the machine state, the control logic
is a combinational circuit that computes the state machine output signals (also
called primary output signals) from the state signals (also called current state)
and the input signals (also called primary input signals). It also produces the
signals of new machine state (also called next state). Traditionally, the design
process of a state machine goes through five main steps:

1. Specification of the sequential system, which should determine the next
states and outputs for every present state of the machine. This is done using
state tables and state diagrams;

2. State reduction, which should reduce the number of present states using
equivalence and output class grouping;

3. State Assignment, which should assign a distinct binary combination to every
state. This may be done using Armstrong-Humphrey heuristics [Armstrong
1962] [Humphrey 1958];

4. Minimization of the control combinational logic using K-maps and transition
maps for the used flip-flops;

5. Implementation of the state machine, using gates and flip-flops.

In this paper, we concentrate on the third step of the design process, i.e. the
state assignment problem. We present a quantum inspired evolutionary algo-
rithm designed for finding a state assignment of a given synchronous finite state
machine, which attempts to minimize the cost related to the state transitions.

The remainder of this paper is organized into sixsections. In Section 2, we
introduce the problems that face the designer of finite state machine, which are
mainly the state assignment problem and the control logic. We show that a bet-
ter assignment improves considerably the cost of the control logic. In Section
3, we give an overview on the principles of quantum computation. In Section 4
we introduce the quantum inspired evolutionary algorithm and their application
to solve NP-problems. In Section 5, we design a quantum inspired evolutionary
algorithm for evolving best state assignment for a given state machine specifica-
tion. We describe the state assignment encoding, the variation operator used as
well as the fitness function, which determines whether a state assignment is bet-
ter than another and how much. In Section 6, we present results evolved through
our quantum inspired evolutionary algorithm for some well-known benchmarks.
Then we compare the obtained results with those obtained by the genetic algo-
rithms described in [Amaral et al. 1995] and [Nedjah and Mourelle 2004] as well

2533Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Figure 1: The structural description of a finite synchronous state machine

as to nova, which uses well established but non-evolutionary method [Villa and
Sangiovanni-Vincentelli 1990]. In Section 7, we summarise the ideas presented
throughout the paper and draw some conclusions.

2 State Assignment Problem in FSMs

Once the specification and the state reduction step have been completed, the
following step consists of assigning a code to each state present in the machine.
It is clear that if the machine has N distinct states then one needs N distinct
binary combinations. So one needs K flip-flops to store the machine current
state, wherein K is the smallest positive integer such that 2K ≥ N . The state
assignment problem consists of finding the best assignment of the flip-flop com-
binations to the machine states.

The control logic component in a state machine is responsible of generating
the primary output signals as well as the signal that allow generating the next
state. It does so using the primary input signals and the signals that constitute
the current state. Traditionally, the combinational circuit of the control logic is

2534 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Table 1: Example of state transition function

Present Next State Output (O)

State I = 0 I = 1 I = 0 I = 1
s0 s0 s1 0 0
s1 s2 s1 0 1
s2 s0 s3 1 0
s3 s2 s1 1 1

Figure 2: FSM schematics for different state assignment A0

obtained using the transition maps of the flip-flops [Rhyne 1973]. The complexity
of the control logic depend heavily on the outcome of the state assignment step.
For instance, consider the state machine of one input signal (I), one output signal
(O) and four states whose state transition function is given in tabular form in
Table 1 and assume that we use D-flip-flops to store the machine current state.
Then the state assignment A0 = {s0 ≡ 00, s1 ≡ 11, s2 ≡ 01, s3 ≡ 10} requires
a control logic that consists of three not gates, five and gates and three or

gates while the assignments A1 = {s0 ≡ 00, s1 ≡ 10, s2 ≡ 01, s3 ≡ 11} requires
a control logic that consists of only two not gates, five and gates and two or

gates. The schematics of the state machines that encode the state according to
state assignments A0 and A1 are given in Fig. 2 and Fig. 2 respectively.

Given a state transition function, the requirements of area and time vary
for different assignments of flip-flop combinations to allowed states. Therefore,
so does the cost of the controller as a whole. Consequently, the designer or the
Computer-Aided Design tool for hardware synthesis should always seek the as-
signment that minimizes the complexity and so the cost of the combinational
logic required to control the state transitions. In the rest of the paper, we con-
centrate on the state assignment problem. We present a quantum inspired evolu-

2535Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Figure 3: FSM schematics for different state assignment A1

tionary algorithm designed for finding a state assignment of a given FSM, which
attempts to minimize the cost related to the state transitions.

3 Principles of Quantum Computing

In quantum computing, the smallest unit of information stored in a two-state
system is called a quantum bit or qubit [Hey 1999]. The 0 and 1 states of a
classical bit, are replaced by the state vectors |0〉 and |1〉 of a qubit. This vectors
are usually written using the braket notation, introduced by Paul Dirac. The
state vectors of a qubit are represented as in (1)

|0〉 =
[
1
0

]
e |1〉 =

[
0
1

]
. (1)

While the classical bit can be in only one of the two basic states that are
mutually exclusive, the generic state of one qubit can be represented by the
linear combination of the state vectors |0〉 and |1〉, as in (2)

|ψ〉 = α |0〉 + β |1〉 , (2)

wherein α and β are complex numbers. The state vectors |0〉 and |1〉 form a
canonical base and the vector |ψ〉 represents the superposition of this vectors,
with α and β amplitudes. The unit normalization of the state of the qubit ensures
that (3) is true:

|α|2 + |β|2 = 1. (3)

The phase of a qubit is defined by an angle ζ as in (4)

ζ = arctan(β/α), (4)

and the product α · β is represented by the symbol d and defined as in (5),

d = α · β, (5)

2536 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

where d stands for the quadrant of qubit phase ζ. If d is positive, the phase ζ
lies in the first or third quadrant; otherwise, the phase ζ lies in the second or
fourth quadrant [Zhang et al. 2006].

The physical interpretation of the qubit is that it may be simultaneously
in the states |0〉 and |1〉, which allows that an infinit amount of information
could be stored in state |ψ〉. However, in the act of observing a quantum state,
it collapses to a single state [Narayanan 1999]. The qubit collapses to state 0,
with probability |α|2 or state 1, with probability |β|2. A system with m qubits
contains information on 2m states. The linear superposition of possible states
can be represented as in (6)

|ψ〉 =
2m∑
k=1

Ck |Sk〉 , (6)

wherein Ck specifies the probability amplitude of the corresponding states Sk

and subjects to the normalization condition of (7).

|C1|2 + |C2|2 + ...+ |C2m |2 = 1 (7)

The state of a qubit can be changed by the operation of a quantum gate or Q-
gate. The Q-gates apply a unitary operation U on a qubit in the state |ψ〉 making
it evolve to the state U |ψ〉, which maintains the probabilities interpretation
defined in the (3). There are several Q-gates, such as the NOT gate, Controlled-
NOT gate, Hadamard gate, rotation gate, etc.

4 Quantum Inspired Evolutionary Algorithm

As any evolutionary algorithms, this algorithm is based on a population of so-
lutions which is maintained through many generations. It seeks the best fitted
solution to the problem, evaluating the characteristics of those included in the
current population. In the next sections, we describe the quantum inspired rep-
resentation of the individual and the under laying computational process.

4.1 Quantum inspired representation

The evolutionary algorithms, like the genetic algorithms, for instance, can use
several representation that have been used with success: binary, numeric and
symbolic representation [Hinterding 1999]. The quantum inspired evolutionary
algorithms use a new representation, that is a probabilistic representation based
on the concept of qubits and a q-individual as a string of qubits. A q-individual
can be defined as in (8) wherein |αi|2 + |βi|2 = 1, for i = 1, 2, 3, ...,m.

p =
[
α1 α2 α3 · · · αm

β1 β2 β3 · · · βm

]
(8)

2537Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

The advantage of the representation of the individuals using qubits instead
of the classical representation is the capacity of representing the linear superpo-
sition of all possible states. For instance, an individual represented with three
qubits (m = 3) can be represented as in (9):

p =

[1√
2

1√
3

1
2

1√
2

√
2
3

√
3

2

]
, (9)

or represented in the alternative way of (10),

p =
1

2
√

6
|000〉+

1
2
√

2
|001〉+

1
2
√

3
|010〉+

1
2
|011〉

1
2
√

6
|100〉 +

1
2
√

2
|101〉+

1
2
√

3
|110〉+

1
2
|111〉 . (10)

The numbers in the (10) represent the amplitudes whose square-roots indi-
cate the probabilities of representing the states |000〉, |001〉, |010〉, |011〉, |100〉,
|101〉, |110〉 and |111〉, which are 1

24 , 1
8 , 1

24 , 1
12 , 1

24 ,18 , 1
24 and 1

12 , respectively.
The evolutionary algorithms with the quantum inspired representation of the

individual should present a population diversity better than other representa-
tions, since they can represent the linear superposition of states [Akbarzadeh-T
and Khorsand 2005] [Han and Kim 2002]. Only one q-individual, as the one indi-
cated in (9) for instance, is enough to represent eight states. Using the classical
representation, eight individuals would be necessary.

4.2 Algorithm description

The basic structure of the quantum inspired evolutionary algorithm presented
in this paper is described by Algorithm 1.

The quantum inspired evolutionary algorithms maintain a population of q-
individuals, P (g) = {pg

1, p
g
2, ..., p

g
n} at generation g, where n is the size of popu-

lation, and pg
j is a q-individual defined as in (11)

pg
j =

⎡
⎢⎣α

g
j1

αg
j2

αg
j3

· · · αg
jm

βg
j1

βg
j2

βg
j3

· · · βg
jm

⎤
⎥⎦ , (11)

where m is the number of qubits, which defines the string length of the q-
individual, and j = 1, 2, ..., n.

The initial population of n individuals is generated setting α0
i = β0

i = 1/
√

2
(i = 1, 2, ...,m) of all p0

j = pg
j |g=0 (j = 1, 2, ..., n). This allows each q-individual

to be the superposition of all possible states with the same probability.
The binary solutions in Sg are obtained by an observation process of the

states of every q-individual in Pg. Let Sg = {sg
1, s

g
2, ..., s

g
n} at generation g. Each

2538 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Algorithm 1 Quantum Inspired Evolutionary Algorithm
1. g := 0;
2. generate initial population P0 with n individuals;
3. observe P0 into S0;
4. evaluate the fitness of every solution in S0;
5. store S0 into B0;
6. while (not termination condition) do
7. g := g + 1;
8. observe Pg−1 into Sg;
9. evaluate the fitness of every solution in Sg;

10. update Pg using a Q-gate;
11. apply probability constraints;
12. store best solutions among Bg−1 and Sg into Bg;
13. store the best solution in Bg into b;
14. if (no improvement for many generation) then
15. replace all the solution of Bg by b;
16. end if
17. end while

solution, sg
i for (i = 1, 2, ..., n), is a binary string with the length m, that is,

sg
i = s1s2...sm, where sj for (j = 1, 2, ...,m) is either 0 or 1.

The observation process is implemented using random probability: for each
pair of amplitudes [αk, βk]T (k = 1, 2, ..., n×m) of every qubit in the population
Pg, a random number r in the range [0, 1] is generated. If r < |βk|2, the observed
qubit is 1; otherwise, it is 0.

The q-individuals in Pg are updated using a Q-gate, which is detailed in
later. We impose some probability constraints such that the variation operation
performed by the Q-gate avoid the premature convergence of a qubits to either
to 0 or 1. This is done by not allowing neither of |α|2 nor |β|2 to reach 0 or 1. For
this purpose, the probability |α|2 and |β|2 are constrained to 0.02 as a minimum
and 0.98 as a maximum. Such constraints allowed the algorithm to escape local
minima.

After a given number of generation, if the best solution b does not improved,
all the solutions stored into Bg are replaced by b. This step can induce a variation
of the probabilities of the q-individuals. This operation is also performed in order
to escape local minima and avoid the stagnant state.

5 Application to the State Assignment Problem

The identification of a good state assignment has been thoroughly studied over
the years. In particular, Armstrong [Armstrong 1962] and Humphrey [Humphrey

2539Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

State S0 S1 S2 S3

q-individual α0
1 α

0
2 α

1
1 α

1
2 α

2
1 α

2
2 α

3
1 α

3
2

β0
1 β

0
2 β

1
1 β

1
2 β

2
1 β

2
2 β

3
1 β

3
2

Possible observation 1 1 0 1 0 0 1 0

Figure 4: Example of state assignment encoding

1958] have pointed out that an assignment is good if it respects two rules, which
consist of the following:

– two or more states that have the same next state should be given adjacent
assignments;

– two or more states that are the next states of the same state should be given
adjacent assignments. State adjacency means that the states appear next to
each other in the mapped representation. In other terms, the combination
assigned to the states should differ in only one position;

– the first rule should have precedence over the second.

Now we concentrate on the assignment encoding and the fitness function.
Given two different state assignments, the fitness function allows us to decide
which is fitter.

5.1 State Assignment Encoding

In this case, a q-individual represents a state assignment. Each q-individual con-
sists of an array of 2 × N �(log2N)� entries, wherein each set of 2 × �log2N�
entries is the qubit assigned to a single machine state. For instance, Fig. 4 rep-
resents a q-individual and a possible assignment for a machine with 4 states
obtained after the observation of the qubits states.

Note that when an observation occurs, one code might be used to represent
two or more distinct states. Such a state assignment is not possible. In order
to discourage the selection of such assignment, we apply a penalty every time
a code is used more than once within the considered assignment. This will be
further discussed in the next section.

5.2 State Assignment Fitness Evaluation

This step of the quantum inspired evolutionary algorithm evaluates the fitness
of each binary solutions obtained from the observation of the states of the q-
individuals. The fitness evaluation of state assignments is performed with respect
to two rules of Armstrong [Armstrong 1962] and Humphrey [Humphrey 1958]:

2540 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Present Next State Output (O)
State I = 0 I = 1 I = 0 I = 1
s0 s0 s1 0 0
s1 s2 s1 0 1
s2 s0 s3 1 0
s3 s2 s1 1 1

Table 2: Exemplo of a state transition function

1 2 0 0

1 0 0 0

1 0 2 0

0 1 0 1

Figure 5: The adjacency matrix for the state transition function of 2

– how much a given state assignment adheres to the first rule, i.e. how many
states in the assignment, which have the same next state, have no adjacent
state codes;

– how much a given state in the assignment adheres to the second rule, i.e.
how many states in the assignment, which are the next states of the same
state, have no adjacent state codes.

In order to efficiently compute the fitness of a given state assignment, we use
an N × N adjacency matrix, wherein N is the number of the machine states.
The triangular bottom part of the matrix holds the expected adjacency of the
states with respect to the first rule while the triangular top part of it holds the
expected adjacency of the states with respect to the second rule. The matrix
entries are calculated as described in (12), wherein AM stands for the adjacency
matrix, functions next(σ) and prev(σ) yield the set of states that are next and
previous to state σ respectively. For instance, a state machine and its respective
4 × 4 adjacency matrix are shown in Table 2 and Fig. 5 respectively.

2541Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

AMi,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(next(qi) ∩ (next(qj)) if i > j

(prev(qi) ∩ (prev(qj)) if i < j

0 if i = j

(12)

Using the adjacency matrix AM , the fitness function applies a penalty of 2 or
1, every time the first or second rule are broken, respectively. In (13) shows the
details of the fitness function applied to a state assignment σ, wherein function
na(q, p) returns 0 if the codes representing states q and p are adjacent and 1
otherwise. Note that state assignments that encode two distinct states using the
same codes are penalized by adding the constant ψ to the fitness function.

f(σ) =
∑

i�=j & σi=σj

ψ +
N−2∑
i=0

N−1∑
j=i+1

(AMi,j + 2 ×AMj,i) × na(σi, σj) (13)

For instance, considering the state machine described in Fig. 5, the state
assignment {s0 ≡ 00, s1 ≡ 10, s2 ≡ 01, s3 ≡ 11} has a fitness of 5 as the codes
of states s0 and s3 are not adjacent but AM0,3 = 1 and AM3,0 = 1 and the
codes of states s1 and s2 are not adjacent but AM1,2 = 2 while the assignments
{s0 ≡ 00, s1 ≡ 11, s2 ≡ 01, s3 ≡ 10} has a fitness of 3 as the codes of states s0
and s1 are not adjacent but AM0,1 = 1 and AM1,0 = 1.

The objective of the quantum inspired evolutionary algorithm is to find the
assignment that minimize the fitness function as described in (12). Assignments
with fitness 0 satisfy all the adjacency constraints. Note that such an assignment
does not always exist.

5.3 Q-gate for State Assignment

To drive the individuals toward better solutions, a Q-gate is used as a variation
operator of the quantum inspired evolutionary algorithm presented at this pa-
per. After an update operation, the qubit must always satisfy the normalization
condition |α′|2 + |β′|2 = 1, where α′ and β′ are the amplitudes of the updated
qubit.

Initially, each q-individual represents all possible states with the same prob-
ability. As the probability of every qubit approaches either 1 or 0 by the Q-qate,
the q-individual converges to a single state and the diversity property disappears
gradually. By this mechanism, the quantum inspired evolutionary algorithm can
treat the balance between exploration and exploitation [Han and Kim 2002]. The

2542 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Q-gate used is inspired by a quantum rotation gate. This is defined in (14).

[
α′

β′

]
=

⎡
⎣ cos(Δθ) −sin(Δθ)

sin(Δθ) cos(Δθ)

⎤
⎦[

α

β

]
, (14)

where Δθ is the rotation angle of each qubit toward states 0 or 1 depending on
the amplitude signs.

The value of the angle Δθ can be selected from the Table 3, where f(sg
i) and

f(bg
i) are the fitness values of sg

i and bg
i , and sj and bj are the jth bits of the

observed solutions sg
i and the best solutions bg

i , respectively.
The rotation gate allows changing the amplitudes of the considered qubit, as

follows:

1. If sj and bj are 0 and 1, respectively, and if f(sg
i) ≥ f(bg

i) is false then:

– if the qubit is located in the first or third quadrant as defined in (5), θ3,
the value of Δθ is set to a positive value to increase the probability of
the state |1〉;

– if the qubit is located in the second or fourth quadrant, −θ3 should be
used to increase the probability of the state |1〉.

2. If sj and bj are 1 and 0, respectively, and if f(sg
i) ≥ f(bg

i) is false:

– if the qubit is located in the first or third quadrant, θ5 is set to a negative
value to increase the probability of the state |0〉;

– if the qubit is located in the second or fourth quadrant, −θ5 should be
used to increase the probability of the state |0〉.

When it is ambiguous to select a positive or negative number for the angle
parameter, we set its value to zero as recommended in [Han and Kim 2002].
The magnitude of Δθ has an effect on the speed of convergence. If it is too big,
the search grid of the algorithm would be large and the solutions may diverge
or converge prematurely to a local optimum. If it is too small, the search grid
of the algorithm would be small and the algorithm may fall in stagnant state.
Hence, the magnitude of Δθ is defined as a variable, which values depend on the
aplication problem. In the state assignment problem, we used θ1 = θ2 = θ4 =
θ6 = θ7 = θ8 = 0, θ3 = 0.05π, and θ5 = −0.05π.

6 Performance Results

In this section, we compare the assignment evolved by the quantum inspired
evolutionary algorithm presented in this paper to those yield by the genetic

2543Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Table 3: Look-up table of Δθ

sj bj f(sg
i) ≥ f(bg

i) Δθ

0 0 false θ1
0 0 true θ2
0 1 false θ3
0 1 true θ4
1 0 false θ5
1 0 true θ6
1 1 false θ7
1 1 true θ8

Table 4: Fitness of best assignments yield by the compared systems

State machine #AdjRes quantum ga1 ga2 nova1 nova2

Shiftreg 24 0 0 0 8 0
Lion9 69 21 21 27 25 30
Train11 57 17 18 19 23 28
Bbara 225 125 127 130 135 149
Dk14 139 68 68 75 72 76
Bbsse 328 216 223 225 230 239
Donfile 432 246 247 276 343 310

algorithms [Amaral et al. 1995] and [Nedjah and Mourelle 2004] and to those
obtained using the non-evolutionary assignment system called nova [Villa and
Sangiovanni-Vincentelli 1990]. The examples are well-known benchmarks for
testing synchronous finite state machines [University 2008].

Table 4 gives the fitness of the best state assignment produced by the quan-
tum inspired evolutionary algorithm, the genetic algorithms from [Amaral et al.
1995] (ga2) and [Nedjah and Mourelle 2004] (ga1) and the two versions of nova

system [Villa and Sangiovanni-Vincentelli 1990]. The #AdjRes stands for the
number of expected adjacency restrictions. Each adjacency according to rule 1 is
counted twice and that with respect to rule 2 is counted just once. For instance,
in the case of the Shiftreg state machine, all 24 expected restrictions were ful-
filled in the state assignment yielded by the compared systems. However, the
state assignment obtained the first version of the nova system does not fulfil 8
of the expected adjacency restrictions of the state machine.

Table 5 shows the best state assignment generated by the compared systems.
The size column shows the total number of states/transitions of the machine.

2544 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

0 1000 2000 3000 4000 5000
20

40

60

80

100

120

140

Generation
F

itn
es

s

Best solution
Average

(a) Lion9

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

140

160

180

Generation

F
itn

es
s

Best solution
Average

(b) Train11

0 1000 2000 3000 4000 5000
120

140

160

180

200

220

240

260

Generation

F
itn

es
s

Best solution
Average

(c) Bbara

0 1000 2000 3000 4000 5000
60

80

100

120

140

160

180

Generation

F
itn

es
s

Best solution
Average

(d) Dk14

0 1000 2000 3000 4000 5000
200

250

300

350

400

450

500

Generation

F
itn

es
s

Best solution
Average

(e) Bbsse

0 2000 4000 6000 8000 10000
200

250

300

350

400

450

500

550

600

650

Generation

F
itn

es
s

Best solution
Average

(f) Donfile

Figure 6: Fitness of best and average assignments with a population size = 50

Table 6 shows the best state assignment generated by benchmark donfile. The
total number of states, in this case, is 24 and that of transitions is 96.

For most of the benchmarks used, we show, in Fig. 6, the best fitness and the
average fitness over the generations. The chart of Fig. 7 compares graphically
the degree of fulfillment of the adjacency restrictions expected in the state ma-
chines used as benchmarks. The chart shows clearly that our quantum inspired
evolutionary algorithm always evolves a better or equal state assignment.

2545Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Table 5: Best state assignment yield by the compared systems for the benchmarks

FSM System State Assignment
Shiftreg GA2 [0,2,5,7,4,6,1,3]
8/16 NOVA1 [0,4,2,6,3,7,1,5]

NOVA2 [0,2,4,6,1,3,5,7]
GA1 [5,7,4,6,1,3,0,2]
QUANT [4,0,2,6,5,1,3,7]

Lion9 GA2 [0,4,12,13,15,1,3,7,5]
9/25 NOVA1 [2,0,4,6,7,5,3,1,11]

NOVA2 [0,4,12,14,6,11,15,13,7]
GA1 [10,8,12,9,13,15,7,3,11]
QUANT [10,2,8,0,1,5,13,12,4]

Train11 GA2 [0,8,2,9,13,12,4,7,5,3,1]
11/25 NOVA1 [0,8,2,9,1,10,4,6,5,3,7]

NOVA2 [0,13,11,5,4,7,6,10,14,15,12]
GA1 [2,6,1,4,0,14,10,9,8,11,3]
QUANT [6,7,4,11,10,15,14,0,2,12,8]

Bbarra GA2 [0,6,2,14,4,5,13,7,3,1]
10/60 NOVA1 [4,0,2,3,1,13,12,7,6,5]

NOVA2 [9,0,2,13,3,8,15,5,4,1]
GA1 [3,0,8,12,1,9,13,11,10,2]
QUANT [2,4,5,7,6,14,12,3,1,0]

Dk14 GA2 [0,4,2,1,5,7,3]
7/56 NOVA1 [5,7,1,4,3,2,0]

NOVA2 [7,2,6,3,0,5,4]
GA1 [3,7,1,0,5,6,2]
QUANT [0,4,1,3,6,7,5]

Bbsse GA2 [0,4,10,5,12,13,11,14,15,8,9,2,6,7,3,1]
16/56 NOVA1 [12,0,6,1,7,3,5,4,11,10,2,13,9,8,15,14]

NOVA2 [2,3,6,15,1,13,7,8,12,4,9,0,5,10,11,14]
GA1 [15,14,9,12,1,4,3,7,6,10,2,11,13,0,5,8]
QUANT [9,1,0,5,2,4,6,14,10,15,7,3,11,13,8,12]

7 Conclusions

In this paper we exploited a quantum evolutionary algorithm to solve the NP -
complete problem of state encoding in the design process of finite state machines.
We compared the state assignment evolved by our algorithm for machines of
different sizes. Our algorithm always obtains better or equal assignments.

2546 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

Table 6: Best state assignment yield by the compared systems for the benchmark
donfile

System State Assignment
GA1 [0,12,9,1,6,7,2,14,11,17,20,23,8,15,10,16,21,19,4,5,22,18,13,3]
NOVA1 [12,14,13,5,23,7,15,31,10,8,29,25,28,6,3,2,4,0,30,21,9,17,12,1]
NOVA2 [6,30,11,28,25,19,0,26,1,2,14,10,31,24,27,15,12,8,29,23,13,9,7,3]
GA2 [2,18,17,1,29,21,6,22,7,0,4,20,19,3,23,16,9,8,13,5,12,28,25,24]
QUANT [7,6, 23,31,26,27,15,14,13,5,10,4,22,30,12,8,11,9,18,19,2,0,3,1]

Figure 7: Graphical comparison of the degree of fulfillment of rule 1 and 2 reached
by the systems

Acknowledgment

We are grateful to the reviewers and the editor that contributed to the great im-
provement of the original version of this paper with their valuable comments and
suggestions. We also are thankful to FAPERJ (Fundação de Amparo à Pesquisa
do Estado do Rio de janeiro, http:// www.faperj.br) and CNPq (Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico, http://www.cnpq.br)
for their continuous financial support.

References

[Akbarzadeh-T and Khorsand 2005] Akbarzadeh-T, M.-R., Khorsand, A.-R.
(2005). “Quantum Gate Optimization in a Meta-Level Genetic Quantum Al-

2547Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

gorithm”. Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics. volume 4. 3055–3062. IEEE Press, Piscataway, NJ, USA.

[Amaral et al. 1995] Amaral, J. N., Tumer, K., Glosh, J. (1995). “Designing Ge-
netic Algorithms for the State Assignment Problem”. IEEE Transactions on
Systems, Man, and Cybernetics. 25, 4, 686–694.

[Armstrong 1962] Armstrong, D. B. (1962). “A Programmed Algorithm for As-
signing Internal Codes to Sequential Machines”. IRE Transactions on Elec-
tronic Computers. EC-11, 4, 466–472.

[Han and Kim 2002] Han, K.-H., Kim, J.-H. (2002). “Quantum-Inspired Evolu-
tionary Algorithm for a Class of Combinatorial Optimization”. IEEE Trans-
actions on Evolutionary Computation. 6, 6, 580–593.

[Hey 1999] Hey, T. (1999). “Quantum computing”. Computing Control Engi-
neering Journal. 10, 3, 105–112.

[Hinterding 1999] Hinterding, R. (1999). “Representation, constraint satisfac-
tion and the knapsack problem”. Proceedings of the Congress on Evolutionary
Computation. volume 2. 1286–1292. IEEE Press, Piscataway, NJ, USA.

[Humphrey 1958] Humphrey, W. S. (1958). Switching Circuits with Computer
Applications. McGraw-Hill, New York, USA.

[Narayanan 1999] Narayanan, A. (1999). “Quantum computing for beginners”.
Proceedings of the Congress on Evolutionary Computation. volume 3. 2231–
2238. IEEE Press, Piscataway, NJ, USA.

[Nedjah and Mourelle 2004] Nedjah, N., Mourelle, L. M. (2004). “Evolutionary
synthesis of synchronous finite state machines”. N. Nedjah, L. M. Mourelle,
eds., Evolvable Machines. 103–128. Springer-Verlag, Berlin, Germany. 1 edi-
tion.

[Rhyne 1973] Rhyne, V. T. (1973). Fundamentals of digital systems design.
Computer Applications in Electrical Engineering Series. Prentice-Hall.

[University 2008] University, N. C. S. (2008). “Collaborative benchmarking and
experimental algorithmics lab”.

[Villa and Sangiovanni-Vincentelli 1990] Villa, T., Sangiovanni-Vincentelli, A.
(1990). “NOVA”. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems. 9, 9, 905–924.

[Zhang et al. 2006] Zhang, G., et al. (2006). “Novel Quantum Genetic Algorithm
and its Applications”. Frontiers of Electrical and Electronic Engineering in
China. 1, 1, 31–36.

2548 Araujo M.P.M., Nedjah N., de Macedo Mourelle L.: Quantum-Inspired Evolutionary ...

