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Abstract: Wireless Sensor Networks (WSN) allow, thanks to the use of small wireless
devices known as sensor nodes, the monitorization of wide and remote areas with
precision and liveness unseen to the date without the intervention of a human operator.
For many WSN applications it is fundamental to achieve full coverage of the terrain
monitored, known as sensor field. The next major concerns are the energetic efficiency
of the network, in order to increase its lifetime, and having the minimum possible
number of sensor nodes, in order to reduce the network cost. The task of placing
the sensor nodes while addressing these objectives is known as WSN layout problem.
In this paper we address a WSN layout problem instance in which full coverage is
treated as a constraint while the other two objectives are optimized using a multi-
objective approach. We employ a set of multi-objective optimization algorithms for
this problem where we define the energy efficiency and the number of nodes as the
independent optimization objectives. Our results prove the efficiency of multi-objective
metaheuristics to solve this kind of problem and encourage further research on more
realistic instances and more constrained scenarios.
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1 Introduction

Wireless Sensor Networks (WSN) have recently become one of the hot topics
in research [Akyildiz et al. 2002, Culler et al. 2004]. Their capabilities for moni-
toring large areas, accessing remote places, real-time reacting, and relative ease
of use have brought scientists a whole new horizon of possibilities. WSN have
so far been employed in militar activities such as reconnaissance, surveillance
[Lédecze et al. 2005] and target acquisition [Nemeroff et al. 2001], environmental
activities such as forest fire prevention [Mladineo and Knezic 2000], geophysical
activities such as volcano activity study [Werner-Allen et al. 2006], biomedical
purposes such as health data monitoring [Yuce et al. 2007] or artificial retina
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[Schwiebert et al. 2001], or civil engineering such as structural health measure-
ment [Xu et al. 2004]. Their uses increase by the day and their potential applica-
tions seem boundless. The wide variety of applications results in a wide variety
of networks bearing different constraints and having different features, yet most
of them share some common issues that allow them to be treated homogenously.

When deploying a WSN the positioning of the sensor nodes becomes one of
the major concerns. For some applications the coverage of the network, which
depends directly on the positions of the nodes, is a critical issue. In the coun-
tersniper system [Lédecze et al. 2005] a sensor network is placed to secure an
area from possible snipers. The network is designed to be placed in an urban
scenario, where snipers can easily hide, and the nodes are equipped with sound
sensors capable of detecting the blast produced by the bullet. By retrieving this
information from several nodes the WSN is able to perform a space-temporal
data process in such a way that the position of the shooter can be estimated. In
such a critical system where lifes are on the line it is absolutely essential that
the sensors can detect the bullet trajectory no matter what this trajectory is;
therefore complete terrain coverage is a must. There are other applications for
which these concerns do not apply; for instance in a biomedical sensor network
the coverage is not an issue (since it is easily achieved), but the interface with
the patient and the safety of the system become of a critical importance.

There are two other important concerns. In the first place a WSN that is
likely to be deployed in a battleground, where it is unfeasible to provide it
neither support nor maintenance, has to operate by itself for the maximum
possible time. This causes energy saving to be one of the principal policies in
a WSN in order to increase the network lifetime. In the second place the WSN
has to operate as stealthy as possible so as to not be detected by the enemy.
This implies that the number of sensors has to be kept at a minimum in order to
reduce the probability of one of them being discovered. Besides, these concerns
are no strangers to civilian-purpose sensor networks, since either increasing the
lifetime or reducing the number of sensors will affect in a cost reduction of the
network.

Since many WSN have large numbers of nodes and some of their features
cannot be calculated in a simple manner, the task of selecting the geographical
positions of the nodes for an optimal resulting network -referred to as WNS
layout problem- can be very complex. Besides, this problem recalls the uni-
cost set covering problem, which is known to be NP. Therefore, metaheuristics
seem an interesting option to solve this problem. In this paper we propose a
solution method for the WSN layout problem using the Paradiseo framework
[Liefooghe et al. 2007]. In our problem definition we focus on minimizing both
the energy depletion of the nodes in the network and the number of nodes while
the coverage obtained by the network is considered as a constraint (full coverage

2550 Molina G., Alba E., Talbi E.-G.: Optimal Sensor Network Layout ...



of the sensor field required).
When a WSN has to be displayed there are many considerations that have to

be dealt with. The coverage has to fulfill some restrictions, and it is likely that
the highest coverage possible will be preferred. The number of sensor nodes,
while in principle is not as restrictive as the first, should also be kept low for
economy reasons. Finally the energy management of the network is a key issue
that has to be taken into careful consideration since the lifetime of the network
depends on it.

The rest of the paper is organized as follows. The existing state of the art
is briefly reviewed in Section 2. In Section 3 the wireless sensor network layout
problem is formulated. Section 4 presents and explains the algorithms employed.
Then in Section 5 the experiments performed and the results obtained are shown.
Finally the conclusions are drawn in Section 6.

2 Related Work

The positioning of nodes in a sensor network has received a notable attention in
research. We present in this section a short review of the published research on
this topic.

Zhang and Wicker [Zhang and Wicker 2005] study the positioning of sensors
in a terrain from the point of view of data transmission. They divide the terrain
into cells, then analyze how N sensors should be distributed among the cells, in
a way that avoids network bottlenecks and data loss.

In their work [Biagioni and Sasaki 2003], Biagioni and Sasaki study differ-
ent regular positioning methods for sensors: square, triangular and hexagonal
grids. In each case they deduce the minimum number of sensors required to
provide full coverage, and the resulting fault-tolerance, seen as the minimum
number of nodes that have to be shut down in order to degrade the network
coverage. They observe a tradeoff between node density and fault-tolerance, be-
ing the system with highest node density (thus highest number of nodes) the
one with the highest fault-tolerance. In a similar approach, Kar and Baner-
jee [Kar and Banerjee 2003] propose systematic placing methods to ensure con-
nected coverage to 2-dimensional regions and sets of points, that approach the
minimum number of sensor nodes required and have polynomial execution times.

In [Dhillon and Chakrabarty 2003], Dhillon and Chakrabarty propose two
greedy algorithms that select the locations for a sensor network with minimal
number of nodes. They use a grid model for the terrain and consider a proba-
bilistic coverage model for the sensors where the probability of coverage for any
point by a given sensor decreases exponentially with its distance from the sensor.
Their model allows them to include the effect of obstacles and terrain height as
well as incorporate an importance factor that gives preference to the coverage
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of some part of the terrain. However, their model lacks an explicit method to
handle network connectivity or energy optimization.

Other works study the performances of random node distributions in a ter-
rain. Zhang and Hou [Zhang and Hou 2005] study the upper limit of the network
lifetime with respect to a single node lifetime T ensuring α coverage (at least a
part α of the terrain is covered by the sensor network), for a WSN with uniformly
distributed nodes.

Network lifetime is regarded as the main objective in some works. Slijepce-
vic and Potkonjak [Slijepcevic and Potkonjak 2001] develop an algorithm that
selects different sets of active nodes from a previously deployed WSN. Every set
has to maintain full coverage and connectivity, and the number of sets has to
be maximal in order to maximize the network lifetime. The proposed algorithm
detects critical areas (minimum coverage zones) and forbids two nodes cover-
ing the same critical area from being in the same set. The technique is tested
against simulated annealing, and obtains higher number of sets on average. With
the same objective, Chen et al. [Chen et al. 2005] study the optimal number of
sensor nodes and their positioning in a linear WSN using a greedy technique.

Heuristic methods have already been used to solve WSN problems involving
network lifetime and coverage. Jourdan and de Weck solved an instance of WSN
layout using a multi-objective genetic algorithm in [Jourdan and de Weck 2004].
In their formulation a fixed number of ten sensors has to be placed in order to
maximize the coverage and the lifetime of the network. Djikstra’s algorithm is
repeatedly applied to the resulting topology to determine the number of rounds
that can be performed provided each node has a predefined starting energy.
Though the results obtained are encouraging, the small size of the network and
the fact the the number of nodes is fixed instead of an optimizable value leave
room for further research, as they state in their work.

We will contribute with this work to improve the state-of-the-art of the use
of multi-objective metaheuristics for solving the WSN layout problem. Our aim
is to provide an efficient solving method by comparing a set of state-of-the-art
multi-objective techniques applied in the same scenario. We want to solve a new
flexible instance in which, for the first time (to the best of our knowledge), both
the number and positions of the sensors can be freely chosen, with full coverage
of the sensor field guaranteed, and treating the energy efficiency and the overall
cost of the network as independent optimization objectives. Besides this, our
interest is to tackle complex instances in which the WSN size is in the same
order of magnitude as real WSN, with several hundred nodes.

3 Wireless Sensor Network Layout Problem

A Wireless Sensor Network is a wireless network formed by sensor nodes. Each
sensor node senses or monitorizes an area around itself called its sensing area.
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Figure 1: Wireless Sensor Network Example.

A parameter called sensing radius (RSENS) determines the sensitivity range
of the sensor node and thus the sensing area. The nodes communicate among
themselves using wireless communication links. These links are determined by
the parameter communication radius (RCOMM ), which is the maximum distance
at which two nodes can establish a link.

A special node in the WSN, the High Energy Communication Node (HECN),
is the gateway for external access to the network. The administrator of the net-
work gathers the measured data and sends commands through it. Therefore ev-
ery sensor node in the network must have communication with the HECN. Since
generally the communication radius is much smaller than the network size, direct
links are not possible for peripheral nodes. A multihop communication path is
established for those nodes that do not have the HECN within communication
range using intermediate nodes as relays. An example WSN graphical represen-
tation is shown in Figure 3. In this illustration the HECN, located at the centre
of the terrain, is represented using a star-shaped point and the standard nodes
are represented using round dots. The network topology (communication links
between nodes) are represented by lines and the covered terrain is shown in grey.

The Wireless Sensor Networks Layout problem amounts to providing the
geographical position of the sensor nodes that form a WSN. A solution for this
problem is a vector x of containing the 2D coordinates of the nodes. The coverage
obtained by the network is a direct result of the number of nodes placed and the
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locations chosen for those nodes. In most –if not all– sensor network applications
it is desireable to have as much coverage as possible.

Our aim is to obtain a full coverage network with minimum cost and maxi-
mum lifetime. The lifetime of a WSN is the period of time during which the net-
work functions properly. As time passes, nodes will eventually run out of energy
and stop operating, which results in a degradation of the network performance.
The exact moment when the WSN stops functioning properly is subjective, but
a broadly used measure for it is the time until the first node fails (Time To First
Failure, TTFF) [Singh et al. 1998].

In our formulation, we use a discrete grid model for the terrain, where each
point in the grid represents one square meter of the terrain. We assume a non-
fixed amount of equal sensor nodes has to be placed in the terrain to provide
it with full sensing coverage c (Eq. 1). The number of sensor nodes and their
locations have to be chosen in a way that minimizes the energy spent in com-
munications (Eq. 3) by the most loaded node in the network and the cost of
the network which, in this case, is calculated as the number of deployed sensor
nodes (Eq. 2). We minimize the load in the most loaded node of the network
since this node constitutes the bottleneck of the network with respect to the net-
work lifetime; the most loaded node will be the first node to run out of energy,
hence determinating the network lifetime according to the TTFF criterion. The
two objectives are opposed objectives, since the more nodes there are, the lower
share of retransmissions each of them has.

c = 100 ·
(

Covered points(x)
Total points

)
= 100 (1)

f1(x) = Length(x) (2)

f2(x) = Max
(
{Energy consumed(xi)}f1(x)

i=1

)
(3)

In order to determine the energy spent in communications by any node of the
WSN, the number of transmissions performed is calculated. The WSN operates
by rounds: in a round every node collects the data from its measurements and
sends it to the HECN; between rounds the nodes are in a low-energy state. We
consider a simple routing algorithm where every node transmits the information
packets to its neighbors that is closest (in hop count) to the HECN, or the HECN
itself whenever it is within communication range. When several neighbors are
tied for the shortest distance from the HECN, the traffic is distributed evenly
among them using random assignment. That is, if a node has n neighbors tied for
shortest distance from HECN, each one receives 1/n of its traffic load. Therefore,
every node has a traffic load equal to 1 (corresponding to its own sent data)
plus the sum of all traffic loads received from neighbors that are farther from
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the HECN. Algorithm 1 shows the pseudocode for the calculation of the energy
spent by every node.

Algorithm 1 Energy depletion
SetRoutingTree(WSN )
for node = from FirstNode(WSN ) to LastNode(WSN ) do

Load(node) ← 0
end for
distance ← FurthestDistance(WSN )
while distance > 0 do

for node ← from FirstNode(WSN ) to LastNode(WSN ) do
if distance == Distance(node) then

Load(node) ← Load(node) + 1
relay neighbours ← 0
for neighbour ← from FirstNeighbour(node) to LastNeighbour(node) do

if Distance(neighbour) < Distance(node) then
relay neighbours ← relay neighbours + 1

end if
end for
for neighbour ← from FirstNeighbour(node) to LastNeighbour(node) do

if Distance(neighbour) < Distance(node) then
Load(neighbour) ← Load(neighbour) + Load(node)/relay neighbours

end if
end for

end if
end for
distance ← distance - 1

end while

4 Optimization Techniques

In this section we present the optimization techniques employed to tackle the
problem. These techniques are implemented using Paradiseo [Cahon et al. 2004],
a white-box object-oriented framework dedicated to the flexible design of meta-
heuristics. In the last subsection, we will describe the operators we have specifi-
cally designed for this problem. These operators are common to all of the algo-
rithms employed.

4.1 Nondominated Sorting Genetic Algorithm-II

Deb et al. proposed in [Deb et al. 2002] the second Nondominated Sorting Ge-
netic Algorithm (NSGA-II) as a multi-objective technique that dealt with the
main problems existing in the field: high computational complexity of nondomi-
nated sorting, lack of elitism and need of a sharing parameter specification. The
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authors fixed these problems by using a fast non-dominated sorting, an elitist
Pareto dominance selection and a crowding distance method.

NSGA-II is based on a genetic algorithm. Its behavior can be seen in Al-
gorithm 2. The differences between this algorithm and mono-objective GAs lie
within the fitness assignment strategy.

In NSGA-II, the solutions are first sorted according to restriction fulfillment.
Feasible solutions come first, then unfeasible solutions are sorted by increasing
degree of constraint violation. Feasible solutions and every set of solutions with
the same violation degree are the sorted according to Pareto dominance. This
sorting is performed by successively extracting form the chosen subpopulation
the set of non-dominated solutions (fronts). All the solutions in a front are
given the same rank value, beginning at 0 for the first front extracted, 1 for the
second and so on. This way, solutions can be sorted according to rank, starting
at 0. Finally, within every group of solutions having the same rank, solutions
are sorted according to the crowding distance. This criterion places first those
solutions whose closest neighbors are farther, thus enhancing diversity.

4.2 Indicator-Based Evolutionary Algorithm

The IBEA was proposed by Zitzler and Künzli in [Zitzler and Künzli 2004]. This
evolutionary algorithm does not employ the Pareto dominance concept –like
NSGA-II does– but a performance indicator I instead. This indicator is a binary
performance measure that can be used to compare two sets of non-dominated so-
lutions. Using it, the goal of a multi-objective algorithm can be set to minimizing
I(A, S) where S is the Pareto set and A is the set obtained.

IBEA is an algorithm that employs an indicator as a sorting method for the
solutions in the population. When the indicator is employed for this matter, it
does not compare sets of non-dominated solutions, but single solutions instead.
In this sense, every solution in the population is compared to every other solu-
tion and the results are added to get a single value. To enforce the dominance
preference, the results of binary comparisons are not the indicators themselves,
but instead the one shown in Eq. 4 (P is the population and k is a scaling factor
that has to be greater than 0).

F (x1) =
∑

x2∈P\{x1}
−e−I({x2},{x1})/k (4)

Paradiseo offers two indicators for the IBEA algorithm, both are defined in
[Zitzler and Künzli 2004]: the epsilon indicator and the hypervolume indicator.
The epsilon indicator Iε+(A, B) gives the minimum distance by which a Pareto
set approximation A needs to or can be translated in each dimension of the
objective space such that it weakly dominates another approximation B. The
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Algorithm 2 NSGA-II
t← 0
Initialize(Pa)
while not EndingCondition(t,Pa) do

Parents ← SelectionParents(Pa)
Offspring ← Crossover(Parents)
Mutate(Offspring)
Pi ← Merge(Pa,Offspring)
RankingCrowding(Pi)
Pn ← ElitistSelection(Pi)
t← t + 1
Pa ← Pn

end while

hypervolume indicator IHD(A, B) gives the volume of the space that is domi-
nated by B but not by A.

4.3 Operators

This problem requires specific operators, mainly because of the special coding
required for the candidate solutions: vectors of coordinates with varying lengths
(the number of nodes, hence the number of coordinates in the vector, is an
optimization objective). In the following subsections we will describe the initial
solution generator, the mutation, and the crossover operators.

4.3.1 Initial Solution Generator

When a candidate solution is initialized, the number of nodes and their location
have to be selected. In order to obtain good starting solutions for the algorithms,
we decided to set the number of nodes in an initial solution using Eq. 5.

#nodes = 4 · Total Area

πR2
SENS

(5)

This value equals four times the theoretical lower bound for the number of
nodes necessary. This value was selected in such a way that initial solutions
are likely to produce high coverage values, in order to help the optimization
technique to quickly attain full coverage solutions.

Every node in the initial solution is assigned a random position selected as
follows. A distance d is randomly selected from [0, MinSize/2], where MinSize

is the minimum value between the x and the y sizes of the sensor field. An angle
a is randomly selected from [0, 360]. The coordinates of the position of the node
are then calculated with equations 6 and 7.
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x = xHECN + d · cos a (6)

y = yHECN + d · sin a (7)

In these equations xHECN and yHECN are the coordinates of the HECN
(which is located in the centre of the sensor field).

4.3.2 Mutation

We have designed two different kinds of mutation: the shift mutation, and the
add-remove mutation. When mutation is applied to a candidate solution, either
one or the other is used. The type of mutation used is selected at random, with
relative probability of 60% for the shift mutation, and 40% for the add-remove
mutation.

In the shift mutation, a randomly selected node of the WSN has its posi-
tion modified by adding a random bounded translation movement (shifting) to
it. To calculate the movement, a random distance d is selected between from
[0, RSENS], and a random angle a is selected from [0, 360]. The shifting is then
applied following equations 8 and 9.

xi+1 = xi + d · cos a (8)

yi+1 = yi + d · sin a (9)

If either xi+1 or yi+1 takes a value outside its permitted range (outside the
sensor field), then the closest permitted value is assigned to the variable instead.

In the add-remove mutation, the size of the WSN is modified. This mutation
adds a new sensor node with 50% probability, or removes a randomly selected
node in the rest of the cases. When a new node is added, its location is selected
using the same criterion as in the initial generator. The remove procedure is only
performed if the WSN contains at least two nodes.

4.3.3 Crossover

We have adapted the two point crossover to the WSN case. This crossover can
not be straightly used for this problem since the solution vectors will typically
have different lengths. In our crossover, the indexes of the two points have to be
selected from [0, minsize−1], where minsize is the length of the shortest vector
selected for the crossover.
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5 Experiments

In this work we solve an instance where a terrain of 500× 500 meters has to be
covered using nodes with coverage and communication radii equal to 30 meters.
Since full coverage of the terrain is required, and no constraint handling mecha-
nism is provided by Paradiseo, we have used a penalty method. In this method,
a penalty function depending on the coverage is added to the two independent
objectives, number of sensors and energetic load.

To define the penalty function we must first have a general idea of the upper
bounds for the desired values. The terrain has an area of 250,000 square meters,
and each sensor covers 2,827 square meters, meaning that in ideal conditions
only 89 would be necessary. Now, these ideal conditions do not exist since they
would imply that no overlap exists between any two nodes sensing areas, which
is impossible due to their geometrical shape (circle). An example of solution
that achieves full coverage of the region is a square grid formed by the sensors
separated by 30 meters. Starting at the HECN, 250 meters have to be covered
to each side of the terrain, requiring 8 sensors. Therefore the grid has 17 (8 +
8 + 1) rows and 17 columns, thus 289 sensors –including the HECN–. In this
symmetrical configuration there are four nodes directly connected to the HECN,
so the complete traffic of the network –288 messages per round– is evenly divided
among them. This results in the most loaded nodes having a load of 72 messages.
So this candidate solution obtains (288, 72).

All sensors need to be within communication range of at least another sensor,
which results in an overlap between those two sensors’s sensing areas (unless
RCOMM > 2RSENS). Therefore an upper bound for the possible coverage of a
WSN using n nodes is shown in Equation 10.

Upper Limit = (n · Coverage) − ((n − 1) · Overlap) (10)

where we have:

Coverage = π · R2
SENS (11)

Overlap = R2
SENS · (q − sin(q)) (12)

q = 2 · arccos (RCOMM/2RSENS) (13)

According to Eq. 10, the smallest amount of nodes required to produce full
coverage (using RCOMM = RSENS = 30 m and Coverage = 250,000 m2) is
94. However this upper bound for the coverage is not tight in a full-coverage
scenario, since for each node in the WSN it takes into account the overlap with
only one other node (its relay to the HECN). This implies the network has to
be composed of a given number of non-overlaping spokes, which is not realistic
since full coverage can not be achieved unless some overlap exists between the
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spokes. Therefore, the expected minimum number of nodes for full-coverage is
higher than 94.

The solutions of the front will probably be in the order of magnitude of 102,
so a suitable penalty function should compute in the same order of magnitude.
Besides, we have identified three desirable features for the penalty function:

1. The function should be progressive: the more uncovered area, the larger the
penalty function value. The function equals 0 when full coverage is attained.

2. A step at the origin is desireable, to stress the quality difference between
complete coverage and uncomplete coverage –even for small values of uncov-
erage.

3. The penalty has to be large enough to counter the benefits (in the objectives)
of violating the restriction.

The penalty function adds a value to the two objectives depending of the
coverage achieved. We use Eq. 14 as the penalty function for this problem, where
u ∈ [0, 100] is the percentage of uncovered area (u = 100 − c).

Penalty(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 (u = 0)
100 (0 < u ≤ 0.001)
200 (0.001 < u ≤ 0.01)
500 (0.01 < u ≤ 0.1)
1, 000 (0.1 < u ≤ 1)
10, 000 · u (1 < u)

(14)

To solve the problem we apply a NSGA-II algorithm, two IBEA-like algo-
rithms, and a MOEA. The MOEA algorithm is a generic genetic algorithm that
employs the Pareto dominance concept by performing a NSGA-II-like nondomi-
nated sorting. The main difference between NSGA-II and MOEA is the selection
method employed to select the next population: NSGA-II employs an elitist se-
lection process (the best individuals are selected), while MOEA uses a roulette
wheel, where each individual is assigned a selection probability according to its
Pareto ranking (higher ranking values result in lower probabilities). We run 30
independent executions performing 100,000 solution evaluations for each of the
algorithms. The non-dominated solutions obtained are returned at the end of
each execution. We present in Table 1 the parametric configuration employed
for the algorithms.

The two edges of the tradeoff between the number of nodes and the energy
load in the most loaded node are plotted in Figure 2. In the left side we show
the solution Solminnodes, which is the solution found with the minimum number
of nodes (260 nodes, 123.5 load in the most loaded node). In the right side we
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Table 1: Parametric configuration of the algorithms

MOEA NSGAII IBEA
Population 100 Population 100 Population 100
Selection 2-tourn. Selection 2-tourn. Selection 2-tourn.
Offspring 100 Offspring 100 Offspring 100

Mutation
shift

Mutation
shift

Mutation
shift

addremove addremove addremove
Mutation rate 0.8 Mutation rate 0.8 Mutation rate 0.8
Crossover dpx Crossover dpx Crossover dpx
Crossover rate 0.8 Crossover rate 0.8 Crossover rate 0.8
Diversity crowding Diversity crowding rho 1.1
Replacement roulette Replacement elitist kappa 0.05
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Figure 2: Example solutions obtained with MOEA: minimum number of nodes
(left), minimum energy spent (right).

show the solution Solminload, which is the one with the smallest energy load in
the network bottleneck (36 load in the most loaded node, 291 nodes).

Both solutions represented in Figure 2 produce full terrain coverage. The
main difference between them can be found in the area close the HECN (in the
center of the figure). The solution with the minimum number of nodes (left) has
a low density of nodes, whereas the solution with minimum energy load (right)
has a high density. All the information collected by the network has to be sent to
the HECN, so the nodes that are close to the HECN have to retransmit all the
information received from farther nodes. These nodes are thus likely to be the
most loaded nodes of the network, since all the traffic load has to be supported
by them. Assuming that the traffic load of the network is roughly similar in the
two cases, the solution with higher node density around the HECN will have a
larger lifetime, since the traffic load is shared among the nodes. Each of these
nodes connects a spoke (or branch) to the HECN. If the network has N nodes
and there are n such spokes, each spoke will approximately have N/n nodes;
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the highest load in the network is then lower bounded by N/n. In the left side
solution there are 260 nodes, 3 spokes, and the load is 123.5 (loosely bounded
by 260/3 = 86.67), in the right side solution there are 291, 8 spokes, and the
load is 36 (very tightly bounded by 291/8 = 36.38).

Table 2 shows the mean hypervolume of the fronts obtained by the different
algorithms. Since in multi-objective optimization there is no unique manner to
present the data obtained from the executions in a tabular form, we employ
the hypervolume metric in order to measure the different algorithms obtained
solutions. The hypervolume has been calculated as the union of the rectangular
surfaces comprised between each point in the front and the top-right bound de-
fined at (500, 250). The value is then normalized with respect to the rectangular
area defined between to top-right bound, and the bottom-left bound at (250, 0);
this value is selected in a way that the normalization value is the same for the
two objectives (250), so that no objective is given preference. We also show in
Figure 3 the best fronts obtained (those having the highest hypervolume value)
for the different algorithms used.

Table 2: Experiment results for the four algorithms used

Algorithm MOEA NSGA-II IBEAε IBEAHD

Mean Hypervolume 0.7388 0.7306 0.7280 0.7189
Max. Hypervolume 0.7847 0.7868 0.7704 0.7654
Min. Sensors 260 262 262 265
Min. Load 36 41 41.5 41

Every algorithm tested was able to find a front of non-dominated feasible
solutions (achieving full coverage of the sensor field) in every independent run.
Our MOEA obtained slightly better results than the other three algorithms. The
average hypervolume of the fronts obtained using the MOEA is 0.7388, while
using NSGA-II it is 0.7306 and the using IBEA it is 0.7280 with the epsilon
indicator, or 0.7189 with the hypervolume indicator.

We performed a statistical analysis to check the differences between the mean
hypervolumes. This analysis is as follows. First a Kolmogorov-Smirnov test is
performed in order to check whether the variables are normal or not. If they
are, an ANOVA I test is performed, otherwise we perform a Kruskal-Wallis test.
After that, we do a multiple comparison test. However, the differences are small
and no statistical significance could be found.

In Fig. 3, we can notice that the number of nodes in the network (x axis) and
the energy load in the most loaded node (y axis) are umbalanced in the fronts
obtained. While the first has a range of approximately 20 units, the second has
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Figure 3: Best fronts obtained by the algorithms MOEA, NSGAII, IBEAε and
IBEAHD

around 80 units. A increase of 8% in the number of nodes leads to a decrease
of 75% in the energy load due to transmissions. If we assume that this term
dominates the overall energy consumption in the network (which is generally
true), this would mean that a cost increase in the network of 8% would produce
a network with four times as much lifetime. When the network designer desires
to put emphasis on one of the objectives (cost or lifetime), additional constraints
(e.g., maximum energy load) can be added as penalty functions to the objective
functions in order to achieve better balanced fronts non-dominated solutions.

6 Conclusions

In this work several multi-objective metaheuristic algorithms have been used to
solve the Wireless Sensor Network layout problem. This problem consists in pro-
viding the number and locations of the sensor nodes that form a WSN, so that
full coverage of a given sensor field is achieved, and the lifetime and cost of the
network are optimized. In our formulation of the problem, a 500 × 500 square
meter area had to be fully covered using equal sensor nodes whose sensing and
communication radii were set to 30 meters. The optimization objectives were
to minimizes both the number of nodes deployed and the energy spent due to
transmissions in the most loaded node. A standard Multi-Objective Evolutionary
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Algorithm (MOEA), a Non-dominated Sorting Genetic Algorithm (NSGA-II)
and two configurations of Indicator-Based Evolutionary Algorithms (IBEAε and
IBEAHD), implemented using the Paradiseo library, were applied to the prob-
lem instance. Every algorithm was able to find a set of non dominated feasible
solutions in every independent execution, and the solutions obtained were found
to be efficient by visualization analysis. The results obtained by MOEA were
slightly better than those obtained by the other three techniques, although no
statistical significance could be found in the difference between the algorithms.
These results suggest that multi-objective metaheuristics are powerful and ver-
satile methods to the solve the WSN layout problem. Additional constraints may
be used to focus the search towards desired regions in terms of number of nodes
and energy load. Further research should be driven in two major directions. The
first line should lead to find algorithms that have statiscally significant better
performances than the rest (optimal techniques). The second line of research
should lead to more realistic models for the problem, incorporating complete
energy models for the nodes and terrain issues (height, obstacles, soil, etc.).
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