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Abstract: This paper describes a new hybrid technique that combines a Greedy Randomized 
Adaptive Search Procedure (GRASP) and a genetic algorithm with simulation features in order 
to solve the Bus-Network Scheduling Problem (BNSP). The GRASP is used as an initialization 
method to find the routes between bus stops. The Genetic Algorithm is used to find the whole 
configuration of the bus network, together with a simulation tool that finds the values of the 
environmentally dependent dynamic variables. The new method was tested with an academic 
case of study, and the results clearly satisfy the requirements of both the transport user and the 
transport operator.  

Keywords: Hybrid Genetic Algorithms, Bus Network Scheduling Problem, Optimization 
Categories: I.6.3, I.2.m 

1 Introduction to the Bus-Network Scheduling Problem  

The Bus Network Scheduling Problem (BNSP) deals with the task of finding a bus 
network that fulfills several objectives. In a precise definition for a bus network it is 
necessary to consider several entities: the user, who is a passenger of the buses, the 
authorities that impose the system regulations and the operator of the lines. These 
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entities usually have different expectations for the bus network, which are generally 
confronted.  

The scheduling of a bus network involves the determination of many aspects: 
routes, frequencies, time schedules, fleet size and number of employees [Bielli, 02], 
[Zhao, 05], [Zhao, 06]. The whole process can be decomposed in several activities 
[Ceder, 86] as follows:  

1) Design of a route for the determination of the number of lines and paths,  
2) Determination of line frequencies,  
3) Determination of transfer times and synchronicity,  
4) Assignment of available fleet,  
5) Assignment of employees and other resources for each line.  
The first two stages comprise the most important ones since the results of them 

are directly used to achieve the other three activities. The initial crucial activity is to 
find the route’s design as an arrangement of lines and routes. The second one is to 
define the frequencies that vary according to the period of the day (midday, midnight, 
rush hour, etc) and the synchronicity of transfers, fleet size, resources and employees, 
which should be assigned for each line. Together with these requirements, the BNSP 
also involves many objectives, such as the maximization of quality of the service (i.e., 
minimization of traveling and waiting times) and the maximization of the benefit for 
the transport operator.  

It is important to notice that BNSP solving, based on decision-support tools, is 
growing constantly everywhere, not only being important in developing countries. 
The main challenging edges of this problem lie on its NP-complexity [Ceder, 98], 
[Baaj, 91], economic and social interests, and technical difficulties. Furthermore, an 
extra hindrance is constituted by the need to consider temporal features in the model. 

In this work, we have focused on the activities of line-scheduling and route-
design (activities 1 and 2), and the entities user and operator are considered with the 
same level of importance. In essence, several stages were established for the Time-
Dependent Hybrid Algorithm, by means of the combination of a Genetic Algorithm 
(GA), a Greedy Randomized Adaptive Search Procedures (GRASP) and a Simulation 
tool. The last component was included in order to proportion representative time-
related elements for the calculation of fitness values, which are necessary to carry off 
the dynamics of the real scenarios with precision.  

1.1 State of the Art 

A realistic design of a bus network generally requires the minimization of several 
conflicting objectives under complex constraints. This feature characterizes our problem 
instance as a Multi-Objective Problem (MOP). Different methods have been proposed 
to solve the BNSP: mathematical optimization, heuristics [Lampkin, 67], [Byrne, 72], 
[Rapp, 76], [Chang, 89], [Ceder, 97], and several meta-heuristics like genetic 
algorithms, ant-colonies, simulated annealing, and combinations of them [Aarts, 97], 
[Yongshuang, 06], [Zhao, 06], [Cheng-Fa, 04], [Bielli, 02], [Bookbinder, 92].  

The approaches based on mathematical optimization usually have rigorous 
problem statements, and a complete solution search space. However, these strategies 
may be too sensitive to the different settings of certain design parameters 
[Bookbinder, 92], [Bielli, 02]. Moreover, they also have drawbacks such as rapid 
convergence to a unique solution, which is clearly not desired in the case of MOPs.  
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The same happens with traditional heuristic approaches [Pearl, 84] like greedy 
algorithms, rollout algorithms, taboo search and simulated annealing [Bertsekas, 98], 
[Wolsey, 98]. Even more, these techniques usually obtain a local optimal, a sub-
optimal or a unique solution that satisfies a number of requirements, thus their results 
are not global in most cases or - what is worse - they are not even locally optimal 
[Mandl, 80], [Baaj, 91], [Shin, 94].  

Finally, the biologically inspired meta-heuristics like genetic algorithms are also 
used for solving the BNSP [Pattnaik, 98]. The main advantage of GA-based methods 
is that they can be naturally used to tackle MOPs, since they work with a population 
of individuals. Also, it is easy to incorporate constraints into a solution-searching GA 
process. However, GAs have their shortcomings too. They cannot guarantee that the 
optimal solution will be found, and in large-scale problems, they need to search huge 
solution spaces with an associated high cost. Though, they are especially suitable for 
MOPs since they naturally yield several solutions, instead of one. 

The employment of all the aforementioned techniques to tackle the BNSP 
presents the following weaknesses. The stochastic process of arrival of the passengers 
is often ignored, or it is considered in a very simplified manner. Then, the formulation 
of the problem is extremely elementary. In order to attain better results, the tendency 
in the last decade is to combine two or more meta-heuristics with the objective of 
dealing with the limitations of the existing studies [Liu and Abraham, 07], [Zhao, 06], 
[Yongshuang, 06]. Therefore, in this work we have integrated several techniques, 
having a multi-objective GA as the central part of the whole procedure. As it was 
aforementioned, the major novelty consists in the inclusion of simulation features for 
the calculus of the fitness function. It is important to note that there are no earlier 
procedures that model the handling of dynamic variables. Hence, a comparison with 
other existing methodologies used for the BNSP cannot be performed.  

This paper is structured in seven sections. In section two, the equations that are 
used to model the entities that participate in the bus-network optimization problem are 
introduced. Then, in the main section of the article, each stage of the hybrid procedure 
is presented: the GRASP algorithm and the GA are described; ending with the 
presentation of the Time-Dependent Hybrid Algorithm as an integration of them. The 
fourth section contains the experimental studies based on an academic case of study, 
and an analysis of the results. Finally, the last section discusses the conclusions, and 
outlines some speculations about future work on this issue. 

2 Modeling the entities 

Due to its structural complexity, methods that have previously tackled this problem do 
not contemplate the randomness of real systems. The strategy presented in this work 
is based on the model proposed by Gruttner [Gruttner, 02]. The objectives of the 
problem, related to each of those entities, are modeled through equations, which will 
be used by the GA to guide the search. The equations associated to the operator can 
be expressed as follows: 

 

( )
M M

L L L
L=1 L=1

FO = IO - CO∑ ∑  (1) 
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L L LIO = AF  T  (2) 

L L LCO = D  K  (3) 

where 
AFL: Total client influx for line L, 
TL: Price for a journey in line L, 
DL: Travel distance for each line L, 
KL: Unitary operative cost of operation per kilometer for line L. 

In Equation 1, FOL corresponds to the economic benefit to the operator. Equation 
2 represents the total income for line L (IOL), taking into account the total influx for L 
(AFL) and the price per trip in line L (TL). In contrast, Equation 3 (COL) is the cost the 
operator has to assume, considering traveling distance (DL) and the unitary operative 
cost per kilometer (KL).  

The equations associated to the client are defined as follows: 
M M

L L
L=1 L=1

M N N

ijL ijL
L=1 i=1 j=1

FU CU

WJA( + +  )  VST  Vηtδt tijL ijL ijL

= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

∑ ∑

∑ ∑∑
 (4) 

Where, 
VSTijL: Subjective value for the time corresponding to each pair origin-

destiny (i,j) that employs line L, 
VijL: Number of journeys for each pair (i, j) that employs line L, 
tA

ijL: Access time for line L,  
tJ

ijL: Journey time for line L,  
tW

ijL: Waiting time for line L, 
δ y η: Relative weights between access time and waiting time with respect to 

the journey time. 
In Equation 4, FUL represents the cost related to transporting a client in line L. 

The customer’s cost CUL considers the access time and the queue for line L.  
From the formulation of these equations arises the need to model the attribute of 

time. For this reason, in a later subsection this feature will be explained in the context 
of the calculation of the fitness function in the GA that constitutes de core of the 
strategy presented in this paper. 

3 The Time-Dependent Hybrid Algorithm 

The main stages of the algorithm presented in this article comprise: the initialization, 
which constitutes the estimation of the paths between each pair of bus stops and the 
corresponding distances; and the core, which yields the entire bus network. The 
Hybrid Algorithm defines the routes and distances from any pair of bus stops by 
means of the GRASP method. Then, it’s the turn of the multi-objective GA, which is 
based on the Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) proposed 
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by Deb [Deb, 00] [Deb, 02] and performs the most important task, assisted by the 
simulation tool. The general layout of the whole procedure is depicted in Figure 1. 
 

 

Figure 1: Time-Dependent Hybrid Algorithm general layout 

3.1 GRASP  Stage 

An important meta-heuristic that has recently arisen is the Greedy Randomized 
Adaptive Search Procedure (GRASP). It is an exploratory local search method used to 
solve combinatorial optimization problems [Pitsoulis, 01]. In its simplest version, it is 
a procedure whose iterations consist of two phases: a constructive phase, and a local 
search procedure, where solution neighborhoods are examined until a local optimum 
is found. The solution is constructed step by step, by adding one new element at a 
time. The next element is randomly chosen from a candidate list.  

For the BNSP treatment, a classification of a node map was introduced. A node is 
any point in the map. In particular, bus stops are special nodes since it is important to 
know the distance between one bus stop and the others. When a line has the same bus 
stop in its route as another line, then this shared bus stop is called a transfer point. 
This difference between bus stops and transfer points is crucial for the understanding 
of the whole procedure. 

3.1.1 Randomized Step 

The GRASP constitutes the initialization stage and it works on two bus stops for a 
given graph that contains all the nodes. It generates a sub-optimal route of nodes 
between both bus stops, and it also yields the distance between them. Given S, a 
partial feasible route between two bus stops, and k, the last node visited in the partial 
route, the algorithm selects the possible edges that contain k as their origin. Then, the 
probabilities of the edges to be selected in order to integrate S are set. For each node 
in the set of final nodes associated to the arcs e which depart from node k, the 
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selection probability contemplates the distance to the destination bus stop j (see 
Algorithm 1). 
  

Algorithm GRASP  
Input: i,j:  BusStop, iterMax:integer, beta: real; 
OutPut:    bestRoute Route, bestDist: real; 
Var:        alpha,distance: real; 
   e: set of edges; 

  k: node; 
  n: integer; 
  r: Route; 

1. bestDist:= infinity; 
2. for count := 1 to iterMax 
3.  alpha := (beta / count) 
4.  e := outEdges(i) 
5.  CreateProbabilities(e,alpha) 
6.  r(i,j).Actual := SelectAleatory(e) 
7.  Repeat 
8.         r(i,j).Distance := r(i,j).Distance 
   +  r(i,j).Actual.EdgeDistance 
9.         r(i,j).ListAdd(Route(i,j).Actual) 
10.         k := r(i,j).Actual.finalNode 
11.         e := outEdges(k) 
12.         CreateProbabilities(e, alpha) 
13.         r(i,j).Actual := SelectAleatory(e) 
14.  until k = j 
15.  r(i,j) := localSearch(r(i,j)) 
16.  if r(i,j).Distance < bestDist then 
17.   bestRoute := r(i,j) 
18.   bestDist := r(i,j).Distance 
19.  end if 
20. end for 
21. return bestRoute, bestDist  
22. end Algorithm 

Algorithm 1: Layout of the GRASP Stage 

In order to converge to a feasible solution, the variable α is introduced. α is equal 
to the function f, which depends on parameter β and the present iteration (equations 5 
and 6). In addition, f converges to zero as the iteration number grows. 

[ ] [ ]0,1( , iter);  iter 1, iterMax , .f= ∈ ∈ℜα β β  (5) 

[ ]0,1( , iter) ,
iter

f = ∈ℜββ β  (6) 

The probability function to choose a node kj is defined through α and the inverse 
of the distance (dkj

-1). A distortion in the probability function is generated by ordering 
the nodes on the basis of the function. They are chosen according to the minor 
distance to the final bus stop. Let n be the amount of final nodes associated to the arcs 
e which depart from node k. The distortion considers m nodes, whose distance to the 
final bus stop is less than or equal to the previous one. The probabilities of these 
nodes are calculated by applying Equation 8. Then, the new probabilities for nodes 
with a greater distance are calculated with Equation 7. 
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1

1 1 1

( ) 1 ( )

(1 )  
P( )

1 1 1    
( )

j

j i j

k

j n n m n

k k k
j n m i j n m

d
mk

d d d
m n m m

−

−
− − −

= − = = −

−

=
⎡ ⎤⎛ ⎞⎛ ⎞+ −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

α

α
 (7) 

3.1.2 Local Search Step 

The local search stage is necessary in order to return sub-optimal solutions. Then, the 
neighborhoods of each node in the feasible solution are explored to find a better 
solution. The local search algorithm (see Algorithm 2) takes the best route generated 
in the randomized GRASP step and examines the neighborhood of each node. 

Let i and j be the bus stops for which the route will be enhanced. We use an 
auxiliary variable k that goes from i to j, and for every node of this path we build a set 
of arcs, namely e, that emerge from node k. The set e is what we call the 
neighbourhood of a node. Then we search for all the nodes that connect k with j; 
formally rk, j = (k, …, j). If there is a node l in a sub-route rk,l = (k, …, h, …, l) that 
belongs to e, and h ≠ ∅ , then we replace sub-route rk,l = (k, …, h, …, l) by (k, l) and 
the new path from k to j becomes rk, j = (k, l, …, j). This procedure is repeated for all 
the subsequent nodes until k = j. Figure 2 shows the improvement achieved with the 
local search stage (Fig. 2.b) starting from the route between two bus nodes yielded by 
the randomized stage (Fig. 2.a). 

 
 

Algorithm LocalSearch  
Input: r(i, j): Route; 
OutPut: ( )i , jr i,..., j= : Route; 
Var:      k,l: node; 
1. i , jr := r(i, j) 
2.                 k := i 
3.                 while not (k = j) do 
4.                           e:=outEdges(k) 
5.                            if there is a bus stop l such that ( )k ,l e∈ and  

( )k , jr k ,..., j=  contains a sub-route ( )k ,lr k ,...,h,...,l=  then 
6.                                         replace ( )k ,lr k ,...,h,...,l=  with (k, l) 
7.                            end if 
8.                            ( ) := next k , jk k ,r  
9.                 end while 
10. return ( )i , jr i,..., j=  
11. end Algorithm 

Algorithm 2: Layout of the Local Search Procedure. 

1

1 1 1

( ) 1 ( )

 
( - )P( )

1 1 1    
( )

i

j i j

k

i n n m n

k k k
j n m i j n m

d
n mk

d d d
m n m m

−

−
− − −

= − = = −

=
⎡ ⎤⎛ ⎞⎛ ⎞+ −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∑ ∑

α

α
 (8) 

1 1i , ...,( n - m )        j ( n - m ), ..., n        k , ...,n= = =  

1
d ... d ... d          d ... d ... dk k k k kj ki ( n m ) ( n m ) n

≥ ≥ ≥ ≥ = = = =
− −
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Figure 2(a): Randomized Step Figure 2(b): Local Search Step 

3.2 Genetic-Algorithm Stage 

Several authors have shown that GAs succeed in obtaining sub-optimal solutions for 
NP-Hard problems [Baaj, 91]. The multi-objective GA proposed in this work is based 
on the NSGA-II proposed by [Deb, 00]. It starts from a set of parameters, the 
distances between bus stops obtained through GRASP, and an initial population 
randomly generated. Each individual of the population represents a bus network. The 
GA evolves the population until several satisfactory bus networks are achieved in the 
last generation. The parameters are the following: number of bus stops with 
concentrated demand, information of each bus stop (position, time between arrivals), 
number of lines (M), fee for traveling with each line L (TL), unitary cost of operation 
per kilometer for each line L (KL), starting nodes BS, return nodes BF, and maximum 
capacity of buses CMAX. 

3.2.1 The individuals: Set of lines 

An individual represents a bus network by means of a set of lines. Each route of a line 
is modeled by an ordered list of integers, starting from an initial bus stop BS and 
ending with a final bus stop BF. It is important to note that not all the integer strings 
constitute feasible solutions. Restrictions related to the feasibility of individuals are 
expressed according to the Set Theory. Consider that L1, L2,…, LM are the lines 
represented by the individual x. A feasible solution for the BNSP should fulfill these 
constraints: 
1. The solution should contain the same number of routes as the amount of lines (M) 

that were defined as input parameter of the algorithm (Equation 9). 
 

x = {L1, …, LM} (9) 
 
2. The number of transfer points should be consistent with the input parameter for the 

GA (Equation 10). 
L L L Li j i j,i j∀ ∃ ≠ ⇒ ∩ ≠ ∅  (10) 

 
3. All the bus stops should be present at least in one of the lines (Equation 11). 

{ } { } { } { } { } { }1 2 ML L ... LS I FB B B = ∪ ∪ ∪∪ ∪  (11) 
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3.2.1.1 Initial Population 

The procedure we implemented in order to generate the initial population is 
performed as follows. The bus stops in each line are determined from those that 
constitute the sets of initial (Bs), intermediate (BI) and final (BF) bus stops. Each bus 
stop in each set has a probability of being chosen equal to 1 divided by the amount of 
elements in the corresponding set. Then, for every line in the individual, a random 
number between 1 and the amount of possible bus stops in the set is generated. This 
first number, namely #BusStops, corresponds to the quantity of bus stops that will to 
be selected for that line. Then, #BusStops random numbers are generated in order to 
select the corresponding bus stops for the given line. This task is repeated for each 
line. When this job is finished, equations 9, 10 and 11 are evaluated. If some of them 
are not satisfied, the individual is modified according to the some feasibility rules. For 
example, in the case where a line is not connected with any other line (Equation 10), 
an intermediate bus stop is randomly selected from another line, and is inserted in the 
disconnected one.   

3.2.2 The fitness function: Optimization of FOL and FUL 

Taking into account that FOL and FUL are two clear objectives of this problem, there 
is not only one solution for the problem. Moreover, both objectives (FOL and FUL) are 
equally important. For this reason, in this paper we are proposing a multi-objective 
GA with the Pareto frontier concept to tackle this MOP. In this context, the FOL 
objective in Equation 1 is redefined, and Equation 12 shows the new formulation of 
this objective. 

M

L
L=1

1 1 FO⎛ ⎞+⎜ ⎟
⎝ ⎠

∑
  

(12) 

Then, the multi-objective optimization for the BNSP can be formalized as 
follows: 

Find a design-variable set: 

1 2= (x ,x ) x  (13) 

that minimizes the following objective function: 

( ) ( ) { }* 1, 2i if f i= ∀ ∈x x  (14) 

( )
M M

L L
L=1 L=1

( ) *   

1 1 FO , FU

i i

i

f f where

f

=

⎧ ⎫⎛ ⎞∈ +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∑

x x

 

(15) 

In that case, the solution set for the BNSP consists of all decision vectors, whose 
corresponding objective vectors cannot be improved in any dimension without 
degradation in another one. These vectors are known as Pareto optimal. For the 
BNSP, we consider two decision vectors x1 and x2. Then, for minimization problems, 
x2 is said to dominate x1 if: 
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{ }
{ }

2 1

2 1

1,2 ( ) ( ) 

1, 2 ( ) ( )

∀ ∈ ≤

∃ ∈ <
i i

i i

i f f and

i f f

x x

x x  
(16) 

Additionally, all the decision vectors that are not dominated by any other decision 
vector are called non-dominated, vis-à-vis this set. Non-dominated decision vectors 
constitute the so called Pareto-optimal front. As to the fitness assignment, the Hybrid 
Algorithm uses the Pareto-based approach proposed by Fonseca and Fleming 
[Fonseca, 93].  

3.2.2.1 The Simulation 

The manner in which the simulation is faced depends to a large extent on the 
optimization model built for the problem at hand. For the formal BNSP treatment, it 
was necessary to apply simulation techniques related to queue theory and access to 
resources. The static structure of a bus network is basically composed of different 
routes, the operator’s fleets, the network users, and the transfer points. A transfer 
point is in more than one route. This case may be associated to a user-change-of-unit 
centre that connects the transport network and enables the user to access every point. 
It should be taken into account that a bus moves from the initial line stop to the final 
one, and then it travels back directed towards the initial point. 

During the simulation, each entity is associated to some information that should 
be obtained, so that this information is later used to calculate the fitness function of 
the GA. For each user, we are interested in its own waiting time (tW

ijL), trip time (tJ
ijL), 

access time (tA
ijL), destination node, and - in the case he is traveling - the mobile the 

user is in. Each node keeps two lists: a list of clients who are queuing, i.e. waiting to 
get into a mobile (there is a list for each line crossing that node), and a list of the users 
or elements that will arrive in that stop. It also stores information on the number of 
users that arrived to this centre (VijL). The line’s attributes include a list of the nodes 
the line goes through, its fleet and the total influx of trips (AFL). Finally, each mobile 
has information about the point it is on, the next node, the current capacity (CA), the 
maximum capacity (CM), and the present clock (tNow). 
 
Event-Planner Implementation: Building the computational model for a simulation is 
a challenging enterprise, due to the complexity of posing the problem. The simulation 
time progresses in a discrete and synchronic way. For our problem instance, the 
planned event that advances the simulation clock is the arrival of a mobile to a node. 
Before beginning the simulation effectively for a mobile’s working-day, the arrival of 
all the clients to the respective transfer centers is generated, and they are put on the 
customers’ list that will potentially arrive to the stop. 

The simulation begins by generating each mobile’s arrival to its route’s initial 
point. The simulation clock advances to the first arrival of the first transport of the 
fleet. Two lists are updated: the list of clients that arrived at the node, and the list of 
clients that will arrive later. Besides, the transport arrival to the next node is planned 
taking into account the present clock and the distance that has been traveled, which 
was obtained through GRASP. The following attributes are updated: those that belong 
to the lines (AFL, VijL), to the user (tW

ijL, tJ
ijL, tA

ijL), and to the transport (CA, tNow). In 
this way, the clock moves forward until the simulation is over. 
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3.2.3 Genetic operators 

3.2.3.1 Crossover 

A variation of the two-point crossover operator (OX) was adopted for this problem. It is 
interesting to point out that the one-point approach yielded unsatisfactory results since 
the children’s fitness value became lower than their parents. The crossover method 
works in this way: The algorithm selects two edges for each route of each parent (two-
point crossover). For the first child (see Figure 4.a), the algorithm picks out the first 
parent’s first sub-routes (Line 1: 1-5-14-; Line 2: 2-6-13-16-23; Line 3: 2-7-12-11; Line 
4: 3-8-11-18-22; Line 5: 4-9-10, see Figure 3.a), and they are connected with the second 
parent’s middle sub-routes (Line 1: 15-24; Line 2: 16-25-33; Line 3: 12-17-23; Line 4: 
22-28; Line 5: 20-19-21-29, see Figure 3.b). For the last connection, it is done with the 
last sub-routes that belong to the first parent (Line 1: 25-26-34-35-36; Line 2: 37; Line 
3: 27-32-38; Line 4: 30-40; Line 5: 31-39, see Figure 3.a). 
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Figure 3(a): Scheme for parent 1 Figure 3(b):  Scheme for parent 2 

Figure 4(a): Scheme for child 1 Figure 4(b): Scheme for child 2 
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In the same way, for the second child (see Figure 4.b) the first sub-routes 
belonging to the second parent are taken (Line 1: 1-5-14-16; Line 2: 2-7-6-13: Line 3: 
3; Line 4: 3-8-11-18-23; Line 5: 4-8-9-10, see Figure 3.b).  Then, they are connected 
with the first parent’s middle sub-routes (Line 1: 15-24; Line 2: 25-33; Line 3: 17-23; 
Line 4: 28-29; Line 5: 20-19-21-29, see Figure 3.a).  Finally, they are connected with 
the second parent’s last sub-routes (Line 1: 26-34-35-37; Line 2: 36; Line 3: 27-33-
32-38; Line 4: 30-40; Line 5: 31-39, see Figure 3.b). 

By using the constraints defined in equations 9, 10 and 11, the algorithm detects 
unfeasible individuals in order to keep feasible individuals in the population. When 
the crossover produces unfeasible children, they are discarded and new cut-points for 
their parents are selected. 

3.2.3.2 Mutation 

As regards mutation, the children have two options: either edge or node mutation. 
Figure 5 shows a child before applying the mutation operator (Line 1: 1-5-14-16-15-
24-26-34-35-37; Line 2: 2-7-6-13-16-25-33-36; Line 3: 3-7-12-17-23-27-32-38; Line 
4: 3-8-11-18-22-28-30-40; Line 5: 4-8-9-10-20-19-21-29-31-39).  
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Figure 5: Child about to be mutated. 

Edge mutation randomly chooses two edges from two different routes and inverts 
the connection (see Figure 6.a; Line 1: 1-5-14-16-15-24-26-34-35-37; Line 2: 2-7-6-
13-16-28-30-40; Line 3: 3-7-12-17-23-27-32-38; Line 4: 3-8-11-18-22-25-33-36; 
Line 5: 4-8-9-10-20-19-21-29-31-39).   
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There are two alternatives for node mutation: to insert the randomly selected node 
into another route or to introduce it into the same route (see Figure 6.b; Line 1: 1-5-
14-16-15-24-26-34-35-37; Line 2: 2-7-6-13-16-25-33-36; Line 3: 3-7-17-23-27-32-
38; Line 4: 3-8-12-11-18-22-28-30-40; Line 5: 4-8-9-19-20-10-21-29-31-39). In both 
cases, if the resulting individual is unfeasible, it is discarded. Then, the original 
individual is mutated again until a feasible individual has been obtained. 

3.2.4 Putting it all together: GRASP + NSGA-II * SIMULATION 

In this section we will explain how all the aforementioned pieces are assembled.   
Firstly, the GRASP calculates the different paths and distances between every pair of 
bus stops. Then, based on the “map” yielded by the GRASP stage, a random 
population of feasible bus networks is built. Later, in order to evaluate the fitness of 
the individuals in the population, it is necessary to calculate the value of each one of 
the objectives, FOL and FUL to be short. For this aim, the algorithm simulates a day of 
work of the lines represented by each one of the individuals, and returns the values for 
the variables that are necessary for the calculation of the equations shown in section 
3.2.2. Afterward, a binary tournament selection is performed, and a variant of the 
two-point crossover and a mutation operator adapted for this problem instance are 
used to create the population Q0 of size N. In Algorithm 3 we show a simplified 
pseudo-code of the whole procedure, with a special focus on the NSGA-II. 

The solutions are ordered in Rt according to the frontier concept, and also with 
respect to the relative distance with two other near solutions, the so called crowding 
distance [Deb, 00]. The population is arranged in descending form of magnitude 
bearing in mind these values. Thus, the solutions that are more separated are selected 
and the population Pi+1 is created. Then, a Crowded Tournament Selection is realized 
who compares two solutions and returns the winners of the tournament. This is 
realized in every generation until a given generation number is reached.  

Finally, a short complexity analysis of the algorithm will be presented. The 
initialization algorithm is executed only once at the beginning of the procedure, with 
an execution time in the O(N3) [Feo, 95], [Resende, 99]. It has been demonstrated that 
NSGA-II needs O(gN2) to order a population of size 2N with the domination criterion. 

Figure 6(a).  Child after Edge Mutation Figure 6(b).  Child after Node Mutation 
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The calculation of the crowding distance [Deb, 02] needs no less than O(gN*logN) for 
what NSGA-II takes O(gN2). The simulation takes O(NM) for a population of size N 
with each individual representing M lines. In g generations, the entire time of the 
genetic algorithm is O(gN2). 

4 Practical Experience 

In this section, an academic case study is presented, and the results achieved by the 
Hybrid Algorithm are reported and analyzed. The experiments were carried out on the 
map of a hypothetical city that is represented with 100 nodes, 2 initial stops (BS), 6 
intermediate stops (BI), and 2 final stops (BF). Figure 7 shows the node layout and the 
position of the stops in the map, and the colours help to distinguish each bus-stop 
category. As it can be observed in the figure, Bs = {61, 21}, BF = {70, 40} and BI = 
{16, 42, 48, 65, 83, 89}. 
 

Algorithm: Time-Dependent Hybrid Algorithm 
Input: M: Map; BS, BF, BI: set of busStops;    
           [AFL, TL, DL, KL]: set of real; [VSTijL]: set of real; 
          ,δ η : real; g: integer; (g is the number of generations) 
           N: integer;   (N is the number of individuals in the Population) 
OutPut: gP  
Var distanceBusStops: list of Distance; routesBusStops:list of Route; 
0. Initialization of busStops’ distances and routes between all bus stops  
      (GRASP: BS, BF, BI) 
1. Generate random population 0P  
2. for each ix P∈  do  
3.  for each line L in x Simulation return [AFL, TL, DL, KL, tA

ijL, tJ
ijL, tW

ijL] 
4. end for 
5. Evaluate Objective FO and FU for each individual 0x P∈  
6. Assign Rank (level) Based on Pareto dominance 
7. Parents := Crowded Tournament Selection 
8. 0Q := Crossover(Parents) 
9. Mutation( 0Q ) 
10. for i := 0 to g-1 do 
11.  for each ix Q∈  do  
12.   for each line L in x Simulation return [AFL, TL, DL, KL, tA

ijL, tJ
ijL, tW

ijL] 
13.  end for 
14.  Evaluate Objective FO and FU for each individual ix Q∈  
15.  i i iR : P Q= ∪  
16.  for each  Parent and Child in Population iR  do 
17.   Assign Rank (level) based in Pareto 
18.   Generate sets of non-dominated vectors 
19.   Loop (inside) by adding solutions to next generation starting from 
  the first front until N individuals found determine crowding  
                               distance between points of each front 
20.  end for 
21.  Select points (elitist) on the lower front (with lower rank) and are outside  
         a crowding distance (crowded tournament selection) 
22.  Create Next generation 1iP+  
23.   Parents := Crowded Tournament Selection 
24.                 iQ := Crossover(Parents) 
25.   Mutation ( )iQ  
26. end for 
27. end Algorithm 

Algorithm 3: Hybrid Algorithm Layout. 
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91 92 93 94 95 96 97 98 99 100
81 82 83 84 85 86 87 88 89 90
71 72 73 74 75 76 77 78 79 80
61 62 63 64 65 66 67 68 69 70
51 52 53 54 55 56 57 58 59 60
41 42 43 44 45 46 47 48 49 50
31 32 33 34 35 36 37 38 39 40
21 22 23 24 25 26 27 28 29 30
11 12 13 14 15 16 17 18 19 20
1 2 3 4 5 6 7 8 9 10  

Figure 7: Nodes and bus stops of the fictitious city 

The goal is to design the routes for two bus lines L0 and L1. There is room for 25 
people in each bus, which is the maximum amount to be admitted. For this 
experiment, we modeled only one time frequency (the morning) that is set at the 
beginning of the run. The client arrivals and the corresponding destinies are arranged 
on a table that constitutes the entry to the simulation phase. The bus arrivals at each 
line’s initial stop are also stored on a table that is used during the simulation. Figure 
10 represents the nodes with numbers, the roads’ directions with arrows, and the bus 
stops with numbers in a different colour.  

The experimentation was conducted in two phases. The first phase was proposed 
to provide some expectation of convergence of the algorithm. All of the parameters 
were set fixed except for the number of generations, which varied among 50, 100, 150 
and 200. The parameters that remained fixed were the following. For the GRASP: 
iterMax = 1 and β  = 0.4; for the GA: popSize = 100, CrossoverProb = 0.9, 
MutationProb = 0.2; and for the simulation step the BusFrequency was of 10 minutes. 
For the second phase, the amount of generations was established from the analysis of 
the results of phase one. In this new stage, the aim was to test the Hybrid Algorithm in 
different scenarios, varying the bus frequency between 10, 20 and 40 minutes as 
shown in Table 1.  
 

 Simulation 
Parameters 

Scenarios Bus Frequency
1 10 
2 20 
3 40 

Table 1: Bus Frequency in minutes for each scenery 

At this point, it is important to remark that for this problem instance, iterMax =1 
because one single repetition was enough to achieve good results in short computing 
times. However, for real maps, several iterations might be needed and the algorithm 
presented in Section 3 should be implemented.   

start bus stop

intermediate bus stop

finish bus stop
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4.1 Experimentation: Phase 1 

For all the cases in the first phase, the performance of the Hybrid Algorithm was 
tested by means of ten independent runs for each amount of generations. At the end of 
each run, the final population was saved. Then, all these populations were gathered 
and analyzed in order to build a front of non-dominated individuals. The fronts 
obtained from each of these four pools of individuals are shown in Figure 8, as 
regards the values obtained for equations 1 and 4. 

 
Figure 8: Non-dominated individuals obtained for different numbers of generations 

As it can be seen in the graphic, the individuals for 200 generations are better 
than those of 50 generations, as it was to be expected. However, from 150 to 200 
generations, the improvement is not so significant. Moreover, for the FO objective, 
some perspective of convergence can be perceived. Therefore, more than 200 
generations do not seem to be necessary. 

4.2 Experimentation: Phase 2 

During the second phase, twenty runs with 200 generations were performed for each 
scenario. In order to give some illustrative examples before the analysis, four 
solutions were selected from the pool of non-dominated individuals generated during 
all the executions of the genetic algorithm, for each scenario. In terms of the policy on 
which solutions were best and why, we used the criteria of the entities. Two solutions 
were picked according to the client’s wills, and the other two were selected regarding 
the operator’s interests. At this point, it is important to note that an average of 20 non-
dominated solutions was generated in each execution of the genetic algorithm. Table 
2 illustrates the details of lines L0 and L1 represented by each one of these four non-
dominated solutions found by independent runs of the Hybrid Algorithm for the three 
scenarios with runs of 200 generations. The numbers listed for each line correspond to 
the nodes illustrated in Figure 7. 
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Finally, Table 3 reports the statistics calculated from the solutions that were near 
the Pareto-Front. This table is used to show the contrast of the results in each 
scenario. The comparison is based on the variables that characterize the quality of the 
transit-route network configurations [Desaulniers, 07], such as percentages of trips 
with zero, one, or more than one transfers, total travel time in a non-dominated 
solution, total route length, etc. These variables are the same as those chosen for their 
examples by the referents in the field [Mandl, 79], [Shih, 94]. For each user that gets 
on the bus at stop i and wants to get off at stop j, the number of transfers he has to 
make to go from i to j must be reported. For this reason, all the simulated users were 
classified in different rows of the table. If a user needs no transfer between lines, the 
journey is called a 0-transfer trip. Similarly, when a user needs q transfers between 
lines, the journey is called a q-transfer trip. Then, the transfer percentage is calculated 
from the total amount of journeys that took place (see the first 3 rows in Table 3). The 
value associated to the unsatisfied demand percentage (row 4 in Table 3) corresponds 
to the amount of users that could not reach their destination as the simulation 
concluded. The route’s length (row 5 in Table 3) is the addition of the distances 
between every pair of bus stops. The waiting time for a user (row 6 in Table 3) is the 
time that elapses since he arrives to the bus stop and the bus arrives. The operating 
cost (row 7 in Table 3) is an average of the FO objective for the non-dominated 
solutions.  

1 2 3
Line 0: 21-42-83-48-40 Line 0: 21-83-16-42-65-48-40 Line 0: 21-83-16-48-65-42-89-40 
Line 1: 61-65-16-89-48-70 Line 1: 61-89-16-70 Line 1: 61-65-70
Line 0: 21-83-65-42-16-48-89-40 Line 0: 21-42-48-16-40 Line 0: 21-83-42-16-48-65-89-40
Line 1: 61-48-70 Line 1: 61-65-83-89-48-70 Line 1: 61-16-70
Line 0: 21-65-83-42-16-48-40 Line 0: 21-65-83-42-16-48-40 Line 0: 21-83-16-48-42-65-89-40
Line 1: 61-89-16-70 Line 1: 61-89-16-70 Line 1: 61-83-70
Line 0: 21-83-42-83-48-40 Line 0: 21-16-48-40 Line 0: 21-83-65-42-16-48-89-40
Line 1: 61-65-16-89-48-70 Line 1: 61-83-65-42-89-48-70 Line 1: 61-83-70

Scenarios

1

2

4

Route 
Network 
Layouts 3

 

Table 2: Some examples of non-dominated solutions for the scenarios on Table 1 

1 2 3
% demand 0-transfer 68,68 70,505 46,8
% demand 1-transfer 31,3 29,245 13,2
% demand +1-transfer 0 0 0
% insatisfied demand 0 0 40

Line 0: 5533 Line 0: 3200 Line 0: 8900
Line 1: 3566 Line 1: 3800 Line 1: 2500

Average Wait Time for a user 2 min 30 sec 12 min 28 sec 25 min 54 sec
Average Operation Cost 5932,03 m.u 3983,24 m.u 3936,67 m.u

Statistical 
Results Average Total Route Length

Scenarios

 

Table 3: Statistical Results 

As it can be observed, the best results were obtained for the scenario 2. It is 
interesting to note that scenario 3 was directly discarded from the analysis since the 
results show that the 40% of the users could not reach their destination. Therefore, 
one of the main objectives of the BNSP was not fulfilled in that scenario. On the other 
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hand, in scenario 2 the lines are balanced as regards their length. Also, the users 
needed fewer amounts of transfers between lines. Moreover, as it can be seen in row 
1, there were more users that did not need any transfer at all. However, as it can be 
expected, since scenario 2 represents the situation with a frequency of 20 minutes, the 
wait time for the users grows from the one obtained for scenario 1. Nonetheless, the 
best trade-off between the user’s and operator’s interests was found in scenario 2.  

5 Conclusions and Future Work 

In this work we have presented the main features of a hybrid stochastic technique that 
efficiently combines several meta-heuristics to solve BNSP in a cooperative way. The 
proposed technique gathers a map initialization tool implemented by a GRASP with a 
route and scheduling technique based on a multi-objective GA. A simulation tool was 
included in the GA for the calculi of time-dependent variables associated to the fitness 
of the individuals. 

The method was tested on the map of a hypothetical city, which was represented 
with 100 nodes. Three scenarios were generated for the tests, with different bus 
frequencies. The results showed that a 20-minute time frequency yields the best trade-
off between the objectives of the user and the operator of the lines. These promising 
results encourage the testing of this novel technique on bigger maps. The main 
objective is to be able, in the future, to use the Hybrid Time-Dependent Algorithm as 
a decision support tool for the bus network scheduling of real congested urban areas. 
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