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Abstract: Adaptive behavior and learning are required of software agents in many ap-
plication domains. At the same time agents are often supposed to be resource-bounded
systems, which do not consume much CPU time, memory or disk space. In attempt
to satisfy both requirements, we propose a novel framework, called APS (standing for
Analysis of Past States), which provides agent with learning capabilities with respect
to saving system resources. The new solution is based on incremental association rule
mining and maintenance. The APS process runs periodically in a cycle, in which phases
of agent’s normal performance intertwine with learning phases. During the former ones
an agent stores observations in a history. After a learning phase has been triggered,
the history facts are analyzed to yield new association rules, which are added to the
knowledge base by the maintenance algorithm. Then the old observations are removed
from the history, so that in the next learning runs only recent facts are processed in
search of new association rules. Keeping the history small can save both processing
time and disk space as compared to batch learning approaches.
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1 Introduction

Adaptivity and learning plays an important role in agent-related research. Since
Patti Maes defined the notion of adaptive agents [Maes, 1994], numerous ap-
proaches have been developed both for learning of a single agent (Single Agent
Learning, SAL) and multi-agent learning (MAL) [Sen and Weiss, 1999]. In many
of these works general machine learning methods were adapted to work within
agent architectures, e.g.: model-based learning [Maes, 1994, Yao et al. 2002] or
reinforcement learning [Ribeiro, 2002]. There are also solutions, where the learn-
ing process is an integral part of an agent architecture, such as chunking in Soar
[Laird et al. 1987, Newell, 1990].

We propose a new, general framework called APS (standing for Analysis of
Past States) for incremental, statistical learning of an agent. It uses data mining
algorithms in order to discover association rules in a large set of observations,
which are collected by an agent while interacting with an information-rich en-
vironment. The APS method first of all is meant to be used within a learning
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agent, which operates in a cycle with interlaced phases of performance and be-
ing idle. During the former phase the agent works on current tasks: it conducts
reasoning, performs actions and perceives information from the outside world.
At the same time agent stores in its history some of observed data (e.g. re-
sults of performing an action in a given situation). As the observed facts are
often too numerous to be efficiently processed on-line (during the performance
phase), they are just accumulated as experience for further analysis and learning.
A good opportunity for processing the history observations occurs during a
stand-by phase, when the agent is not charged with any current task, con-
sequently not utilizing much system resources. Then the agent can switch to
learning - analyzing the history facts, discovering new rules and adding them to
the rule base with appropriate maintenance of previously existing knowledge.

Consider the following example of a personal web browsing recommender
agent, which helps a user choose relevant pages, using a model of preferences,
based on accumulated experience. The agent is a silent background process,
running at a PC, observing WWW browsing activity and being able to log
events, which indicate user’s interest (such as bookmarking, saving or printing a
web page). Moreover, the agent provides a simple interface for explicit evaluation
of viewed pages (e.g. relevant or irrelevant), if the user wishes so. Every time
a user responds to a viewed page in one of the above ways, the agent adds a
new fact into the history, with page information (index terms which are frequent
in the text, query context etc.) and user’s response (bookmarked, saved, printed,
relevant etc.). Depending on browsing activity, the agent can store even hundreds
or thousands of such observations weekly. When the history contains a sufficient,
representative number of facts1 and system resources are not loaded heavily, the
agent analyses the history, generalizing accumulated knowledge into association
rules (e.g. architecture∧development∧schema ⇒ relevant∧stored yes), which
can be used later for recommending potentially relevant pages to the user. After
the rule mining has been completed, the history is cleared of all the processed
facts and newly discovered rules are added to the existing ones using such a
maintenance procedure, that the resulting rule base reflects not only the recent
analysis, but learning in a longer period. Then the agent can return to normal
performance phase, working on tasks and storing new observations for further
learning runs. As the history is regularly emptied, its size is kept relatively small,
which not only saves disk space, but also CPU time used for learning as compared
to batch processing of all the facts stored during the agent’s life-time. Moreover,
proper maintenance of the rule base makes it contain stable and statistically
reliable rules as if they were discovered in the whole observation history, stored
during agent’s life.
1 Setting a threshold of representative history size is up to a system designer or ad-

ministrator.
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The remainder of the paper is as follows. In section 2 we present a high-level
view of the APS learning procedure, while in section 3 we introduce the formal
model of knowledge structures and specification of data processing algorithms. In
section 4 we show how APS works on an example of a web browsing assistant. The
next section contains the plan of experimental evaluation, test data description
and discussion of the results. In section 6 the proposed method is compared to
related research. Finally, we conclude the contributed work and outline directions
of its further development.

2 APS Learning cycle

The key idea of the APS method is to incorporate a general data mining process
[Mannila, 1997] into an agent architecture, in order to achieve a rule-based, sta-
tistical learning technique. It is based on the procedure, running in a cycle and
interacting with the agent’s knowledge base, which consists of four functional
modules (see Figure 1). The history KBH is a log of collected observations, po-
tentially very numerous. The rule base KBR stores rules produced from history
facts as their generalization, ready for use in reasoning and decision making.
The temporal knowledge module KBT is a kind of short term memory, which
contains operational data necessary within a single learning run, whereas the
general knowledge KBG is a long-term memory with information needed across
many learning runs. The beneath APS Learning procedure shows the details of
the learning process and its interaction with knowledge base modules (input and
output data flow).

The key steps of data processing are performed by the algorithms: FSEL,
HTRANS, HFILL, ENV, ARM and RMAIN, which are original contribution of
this work. The whole loop reflects agent’s life cycle with repeatable performance
phases (steps 2-3) and learning phases (steps 4-13). While being in the perfor-
mance phase an agent works towards its objectives, saving in the history KBH

selected information about its interaction with the outer world. The designer
needs to decide what kind of event is to be captured as a new fact event and
what kind of information is to be stored. In the previous web browsing scenario
such an event can be bookmarking, saving, printing or evaluating a web page by
a user, while the registered information could be frequent index terms describing
the page, query context and user’s response. Every new fact put into the history
is assigned a unique identifier and timestamp of the very moment of observation.
When the number of facts in the history is sufficient (due to some threshold set
by a designer) and the agent has no current tasks to perform, the analyze facts
event is raised and the APS procedure enters the learning phase (steps 4-13).
First, the agent retrieves parameter values from previous learning runs, stored
in the KBG general knowledge module (step 5). They are necessary for pro-
viding continuous processing of incremental data portions. In the next step the
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Figure 1: The APS learning cycle in interaction with knowledge base modules.

Procedure 1 APS Learning
Input: KBG, KBT , KBH , KBR

Output: updated KBG, KBT , KBH , KBR

1: while not Event Close Agent Process do
2: if Event New Fact then
3: Store Fact(input KBH , output KBH)
4: else if Event Analyse Facts then
5: Get Parameters (input KBG, output KBT )
6: Select Facts (input KBH , KBT , output KBH , KBT )
7: Transform History Schema (input KBH , output KBH , KBT )
8: Fill New Schema (input KBH , output KBH)
9: Remove N Values (input KBH , KBT ), output KBH , KBT )

10: Mine Rules (input KBH , KBT , output KBT )
11: Update Rule Base (input KBR, KBT , KBG, output KBR, KBG)
12: Delete Facts (input KBH , KBT , output KBH)
13: end if
14: end while
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FSEL algorithm chooses a set of recent history facts for rule discovery in the
current run. By default all the observations in KBH are retrieved. Afterwards,
the selected facts are transformed to the acceptable input format for a data min-
ing algorithm - namely transactions with binary attributes. First, a new history
schema is created, using the HTRANS algorithm (step 7) and then it is filled
with transformed facts by the HFILL algorithm (step 8). During further prepro-
cessing transactions with unknown values are replaced by all the possible facts,
using the ENV algorithm (step 9). The prepared history facts are then analyzed
by an association rule mining algorithm (e.g. Apriori [Agrawal et al. 1994]), in-
corporated into the ARM algorithm (step 10), which plays a role of an interface
between a mining algorithm and the APS procedure. After a set of new associ-
ation rules R has been discovered, it is combined with the former rule base in
KBR (step 11) so that the resulting rule set reflected all the facts analyzed so
far (i.e. in the current and previous learning runs). The necessary rule mainte-
nance is done by the RMAIN algorithm, which is truly essential for the whole
method. Then, the recently processed history observations are disposed (step
12), updated parameter values needed for further learning runs are saved in the
general knowledge KBG, while the temporal knowledge module KBT is cleared
of all the information concerning the recent run and the agent switches back to
the performance phase.

The presented approach of periodic clearing the history can be classified as
learning with imperfect recall [Dudek et al. 2005, Fagin et al. 1995] and partial
memory learning [Maloof and Michalski, 2004]. Nevertheless, although the agent
forgets elementary past events, it keeps and maintains rules, which are general
conclusions about observations, potentially useful for reasoning.

3 Formal model

After the overview of the APS method given in the previous section, we present
formal specification of knowledge base structures and data processing algorithms.
Some preliminary elements of the APS model were introduced briefly in the pre-
vious work [Dudek et al. 2005], while a general presentation of the APS method
without detailed formalism was introduced in [Dudek, 2007].

3.1 Knowledge base structure

Below we formally define data structures and some auxiliary elements, which are
used in the APS learning cycle. The presented model is partly based on the rela-
tional database notation by Pankowski [Pankowski, 1992]. It also refers to models
of transaction databases and association rules provided in [Agrawal et al. 1993,
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Agrawal et al. 1994]. However, our model is significantly richer, covering non-
binary and multi-valued attributes, extended rule representation, time depreci-
ation functions and original APS agent’s knowledge modules.

Definition 1 Fact. Let SH = {K, T, U} be called a schema, where the sym-
bol K is a key, the symbol T is time, and U is a finite set of attributes U =
{AS

1 , . . . , AS
n , AM

1 , . . . , AM
k }. The elements AS

i ∈ U , for i = 1, . . . , n (n ∈ N) are
called single-valued attributes, and AM

j ∈ U , for j = 1, . . . , k (k ∈ N) are called
multi-valued attributes. Let K and T be assigned respectively a set DK ⊆ N

called the key domain and a countable set of time points DT , which is ordered
by a strong linear order relation <. Let each single-valued attribute AS

i , for
i = 1, . . . , n be assigned a domain, which is a finite set of values DS

i . Let each
multi-valued attributed AM

j , for j = 1, . . . , k, be assigned a domain, which is
a set DM

j = 2Vj of all possible subsets of a finite set Vj . A fact of a schema
SH = {K, T, U} is defined to be any function s, such that: s : {K, T, U} →
DK ∪ DT ∪ ⋃{DS

i : AS
i ∈ U, i = 1, . . . , n} ∪ ⋃{DM

i : AM
j ∈ U, j = 1, . . . , k}.

Multi-valued attributes are very useful for description of real-life objects.
For instance a web page can be characterized by a multi-valued attribute term,
which is assigned a collection of values – terms describing this document. We
denote a fact s of a schema SH = {K, T, U} as a set of attribute-value pairs
s = {(K, k), (T, t), (AS

1 , aS
1 ), . . . , (AS

n , aS
n), (AM

1 , aM
1 ), . . . , (AM

k , aM
k )}, where

AS
i , AM

j ∈ U , for i = 1, . . . , n and j = 1, . . . , k.
Values of the key K, time T , a single-valued attribute AS

i and a multi-valued
attribute AM

j in a fact s are denoted as: K(s) = k, T (s) = t, AS
i (s) = aS

i , and
AM

j (s) = aM
j , respectively. We denote an unknown value of an attribute (single-

or multi-valued) by a symbol N . A set of all single-valued attributes AS
i ∈ U for

i = 1, . . . , n in a schema SH = {K, T, U} is denoted by SS
H , while similar set of all

multi-valued attributes AM
j ∈ U for j = 1, . . . , k is denoted by SM

H . The following
properties are satisfied: SS

H ⊆ SH\{K, T }, SM
H ⊆ SH\{K, T }, and SS

H∩SM
H ≡ ∅.

A set of all the facts of a schema SH is denoted by a symbol FACT (SH). We
allow solely discrete attribute domains, which potentially implies necessity of
discretization for continuous domains (e.g. real numbers). However, dealing with
problem is strongly domain-dependent and goes beyond the scope of this paper.

Definition 2 History. Let a schema SH = {K, T, U} be given. A history KBH

of a schema SH is any subset of the set of all facts of the schema SH . Formally:
KBH ⊆ FACT (SH).

We denote: the k−th time point belonging to the set DT by tk, the time point
of the first fact in the history by t0, the time point referring to the presence by
tnow, and the time interval from the moment ti until tj , where ti � tj , by [ti; tj ].
For each fact s ∈ KBH the following dependency is satisfied: t0 � T (s) � tnow.
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Definition 3 Fact portion. Let a history KBH of a schema SH = {K, T, U}
be given. A fact portion of the history KBH for the time interval [t1; t2], where
t1, t2 ∈ DT ∧ t1 � t2, is the set: KBH(t1, t2) = {s ∈ KBH : t1 � T (s) � t2}.

Definition 4 Proper domain of a single-valued attribute. Let a history
KBH of a schema SH = {K, T, U} be given. A proper domain of a single-
valued attribute AS

i ∈ SS
H in the history KBH for the time interval [t1; t2],

where t1, t2 ∈ DT ∧ t1 � t2, is a set: DW
i (KBH(t1, t2)) = {AS

i (s) 
= N : s ∈
KBH ∧ (t1 � T (s) � t2)}.

Definition 5 Proper domain of a multi-valued attribute. Let a history
KBH of a schema SH = {K, T, U} be given. A proper domain of a multi-
valued attribute AM

j ∈ SM
H in the history KBH for the time interval [t1; t2],

where t1, t2 ∈ DT ∧ t1 � t2, is a set: DW
j (KBH(t1, t2)) =

⋃{AM
j (s) 
= ∅ . s ∈

KBH ∧ (t1 � T (s) � t2)} \ {N}.

The proper domain of an attribute is a set of all its values (except for the
unknown value N), which are actually present in a given subset of history facts.
Narrowing attribute values to their proper domains (as opposed to all the possi-
ble values) allows to speed up transformation of the history to the format with
binary attributes and N-values {0, 1, N}.

Definition 6 Rule. Let a set U ′ = {A1, A2, . . . , Am} of binary attributes be
given. Each attribute Ai where i = 1, 2, . . . , m is assigned a set of values Db =
{0, 1, N}. Let a countable set of time points DT be given, ordered by the relation
< of strong linear order. A rule r is defined as a tuple: r = (X, Y, sup, con, b, tm) ∈
2U ′ ×2U ′ × [0; 1]× [0; 1]×N×DT , where: X is called antecedent, Y – consequent,
sup – support, con – confidence, b – base number, tm – mean time of the rule.

The above rule representation extends a classical association rule defini-
tion, used in many works (such as the one proposed in [Agrawal et al. 1993,
Agrawal et al. 1994]). The novel elements needed for the APS incremental learn-
ing process are: (i) the base number b – the number of history facts, based on
which the rule r was discovered, (ii) mean time tm of these facts.

Definition 7 Syntactical equity of rules. Two rules r1 = (X1, Y1, sup1, con1,

b1, tm1) and r2 = (X2, Y2, sup2, con2, b2, tm2), where r1, r2 ∈ 2U ′ × 2U ′ × [0; 1]×
[0; 1] × N × DT , are said to be syntactically equal, denoted by r1 ≡ r2, iff
X1 ≡ X2 ∧ Y1 ≡ Y2.

Definition 8 Rule base. Let a set U ′ = {A1, A2, . . . , Am} of binary attributes
be given. Each attribute Ai for i = 1, 2, . . . , m is assigned a set of values Db =
{0, 1, N}. Let a countable set of time points DT be given. A rule base KBR is
the following set:
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KBR ⊆ {r = (X, Y, sup, con, b, tm) ∈ 2U ′ × 2U ′ × [0; 1] × [0; 1] × N × DT },
where ¬∃r1, r2 ∈ KBR. r1 ≡ r2.

Definition 9 Vector of current run parameters. Let U and DT be defined
as before. A vector of current run parameters is a tuple:
vc = (idc, Xc, Yc, bmax, bc, ηc, σc, γc, σ̂c, γ̂c, mx, my, trc, tmc, tsc, tec, kec) ∈
N×2U×2U×N×N×N×[0; 1]×[0; 1]×[0; 1]×[0; 1]×N×N×DT×DT×DT×DT×N

where σ̂c ∈ [0; σc] ∧ γ̂c ∈ [0; γc] ∧ tsc � tmc � tec.

The symbol idc is a unique run identifier, Xc and Yc – a set of attributes,
which are allowed in the rule antecedent and consequent, respectively; bmax –
the maximal number of facts, which can be analyzed during the current run; bc

– the number of facts actually analyzed in the current run; ηc – the maximal
number of allowed N-values in a single fact; σc and γc – thresholds of minimum
rule support and confidence, respectively; σ̂c and γ̂c – expected support and
confidence of rejected rules; mx and my – the maximal number of attributes
in the rule antecedent and consequent, respectively; trc – time of starting the
current run; tmc, tsc, tec – the mean, the earliest and the latest time of facts
analyzed in the current run; kec – the key of the last analyzed fact. In the
APS framework the vc vector of current run parameters belongs to the temporal
knowledge module KBT , i.e. vc ∈ KBT . We do not provide a formal definition
of KBT , as its structure depends on an application domain.

Definition 10 Time depreciation function. The time depreciation function
is any function fT : [0; +∞) → [0; 1], such that: (i) fT (0) = 1 and (ii) ∀x1, x2 ∈
[0; +∞). x1 < x2 ⇒ fT (x1) � fT (x2).

We denote the family of all fT functions by F . The argument of the fT is time,
which has passed since a given past moment t until tnow, i.e. (tnow − t), for time
points t, tnow ∈ DT . For the current moment t = tnow the fT function achieves
the maximal value 1. The actual formula and parameters of a fT function depend
on a given application (see Figure 2 for example shapes).

Definition 11 Vector of global parameters. Let F and DT be defined as
before. A vector of global parameters is a tuple:
vg = (bg, σg, γg, σ̂g, γ̂g, tmg , tsg, teg, keg , fT ) ∈ N × [0; 1] × [0; 1] × [0; 1] × [0; 1] ×
DT × DT × DT × N ×F , where: σ̂g ∈ [0; σg] ∧ γ̂g ∈ [0; γg] ∧ tsg � tmg � teg .

The components of the vector concern all the learning runs performed so
far: bg – the number of facts which were analyzed; σg and γg – thresholds of
minimal support and confidence; σ̂g and γ̂g – expected support and confidence
of rejected rules; tmg mean time of all processed facts; tsg and teg – time of
the first and the last analyzed fact; keg – the key of the last analyzed fact;
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Figure 2: Example shapes of the fT time depreciation function.

fT – time depreciation function (formula and parameters). The defined vector of
global parameters belongs to the general knowledge module (long-term memory),
denoted by KBG, together with the history schema, i.e. vg ∈ KBG∧SH ∈ KBG.

3.2 Data processing algorithms

In the current subsection we introduce original algorithms for data process-
ing inside the APS cycle1. We omit two procedures Store Facts (step 3) and
Get Parameters (step 5), which are domain-dependent, but also quite simple
and straightforward. An intuitive example of how the proposed APS algorithms
work is presented in Section 4.

3.2.1 Selecting facts for analysis

In the step 6 the APS procedure selects history facts, which are to be pro-
cessed in the current learning cycle. The task can be described as follows. Given
the history KBH with a schema SH = {K, T, U} and the maximal number
of facts to be retrieved bmax, find a portion of facts KBH(tsc; tec), such that:
|KBH(tsc; tec)| � bmax and ∀s ∈ KBH(tsc; tec). tsc � T (s) � tec ∧ ¬∃s′ ∈
KBH \KBH(tsc; tec). T (s′) < T (s). In other words, at most bmax of the earliest
facts are to be selected, whose registration time lies within the given interval.
The name of the solution algorithm FSEL comes from Fact SELection.

Provided that the history KBH is managed by a relational database engine
(RDBMS), selecting facts is a simple operation, which can be effectively realized
by SQL commands such as SELECT TOP N...FROM...ORDER BY, together
with aggregation functions: MIN, MAX, AVERAGE. The computational com-
plexity of FSEL is linear: O(n), where n is the number of facts in KBH .
1 Some elements and preliminary versions of the algorithms were introduced in the

previous works [Dudek and Zgrzywa, 2005, Dudek et al. 2005], while their thorough
analysis (including computational complexity) was done in [Dudek, 2005].
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Algorithm 1 FSEL: Choosing facts for analysis
Input: history KBH ; maximal number of facts bmax(vc), where vc ∈ KBT

Output: selected fact portion KBH(tsc, tec); updated vc ∈ KBT

1: KBH(tsc, tec) := ∅

2: if |KBH | � bmax then
3: KBH(tsc, tec) := KBH

4: end if
5: if |KBH | > bmax then
6: KBH(tsc, tec) := {s1, s2, . . . , sn ∈ KBH : n = bmax

∧∀i, j ∈ {1, 2, . . . , n}.(i < j ⇔ T (si) < T (sj))∧∀s ∈ KBH .T (s1) < T (s)}
7: end if
8: bc(vc) := |KBH(tsc, tec)|
9: tsc(vc) := MIN{T (s) : s ∈ KBH(tsc, tec)}

10: tec(vc) := MAX{T (s) : s ∈ KBH(tsc, tec)}
11: tmc(vc) := 1

n

∑
s∈KBH(tsc,tec)

T (s)
12: ke(vc) := K(s), where T (s) = tec(vc)
13: return KBH(tsc, tec), updated vc ∈ KBT

3.2.2 Transforming the history schema

After history facts are selected, the APS procedure needs to transform them
into a form with binary attributes, which would be acceptable for a data mining
process. First we need a new attribute schema, which can be further filled with
facts. This is done by the Transform History Schema procedure (step 7) of the
APS cycle. Formally, the problem can be stated as follows. Given the history
schema SH = {K, T, U} and the selected fact portion KBH(t1, t2), find a new
schema S# = {K, T, U ′}, such that ∀Ai ∈ U ′. Di = {0, 1, N}. The only non-
binary attributes allowed in the new schema are special attributes: the key K

and the timestamp T , which remain unchanged as compared to the previous his-
tory schema. As a solution we propose the following HTRANS (History schema
TRANSformation) algorithm. Attributes Ai

(v) of the new S# schema are found
based on proper domains of initial attributes Ai (both single and multi-valued)
that is all distinct values (except for N), which occurred in the processed fact
portion. Observe that transforming the history schema in every APS learning
run potentially narrows the number of resulting binary attributes, as compared
to building a huge, general schema suitable for all runs (thus possibly containing
many redundant attributes for a single run). Moreover, in our approach different
history attributes can be used during different periods of storing observations.
The complexity of the HTRANS algorithm is O(k2mn), where n is the number
of facts in the portion KBH(tsc, tec), m is the number of attributes in U , and k

is average number of attribute’s distinct values in that portion.
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Algorithm 2 HTRANS: Transforming the history schema
Input: history schema SH = {K, T, U}, selected fact portion KBH(tsc, tec)
Output: the new schema S#

1: S# := ∅

2: S# := S# ∪ {K, T }
3: for all Ai ∈ U , where i ∈ [1; |U |] do
4: find DW

i (KBH(tsc, tec)).
5: S# := S# ∪ {A(v)

i : Ai ∈ SH ∧ v ∈ DW
i (KBH(tsc, tec))}.

6: end for
7: return S#

3.2.3 Populating the new schema

We transform on the fly the facts from the initial portion KBH(tsc, tsc) into
the new S# schema, using the following HFILL algorithm (History FILLing).
The resulting portion KB#

H(tsc, tec) consists of the same number of facts as
KBH(tsc, tsc). Single-valued attributes are processed through straightforward
value comparison (steps 4–12), while for multi-valued ones set membership needs
to be tested (steps 13–21). Assume that the portion KBH(tsc, tec) consists of
n facts and the set U ′ of the schema S# = {K, T, U ′} contains m attributes,
n, m ∈ N. Then the HFILL algorithm has computational complexity of O(mn).

3.2.4 Eliminating unknown values

The facts transformed to the schema with binary attributes may be still unac-
ceptable for many association rule mining algorithms as long as they contain
unknown values N . We propose the ENV algorithm (Elimination of N Values)
to deal with this problem. Essentially, the idea is to replace a fact containing
one or more N values, with all the possible scenarios without N values. We use
here the random worlds approach, treating all the possibilities equally probable
[Bacchus et al. 1996]. This solution, even though simplified, decreases complex-
ity of N value removal process and still provides good reliability of reasoning
in information rich environments, as shown in [Bacchus et al. 1996]. In order to
ensure consistency of generated facts, a complex condition is used in step 4. It
guarantees that only one binary attribute A

(vj)
i ∈ S# coming from a single-

valued attribute Ai ∈ SS
H can have value 1, while for multi-valued attributes

Aw ∈ SM
H there can be more than one derived binary attribute A

(vj)
w ∈ S# with

value 1. If there are more than ηc unknown values in a fact, it is considered
too little informative and deleted without replacement2. After all N values have
2 At the same time, reducing the number of facts decreases computational complexity

of ENV.
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Algorithm 3 HFILL: Filling the new history schema
Input: selected fact portion KBH(tsc; tec); attribute sets

SS
H , SM

H ⊆ SH \ {K, T }, where SS
H ∩ SM

H ≡ ∅; new history schema S#

Output: set of transformed facts KB#
H(tsc; tec)

1: KB#
H(tsc, tec) := ∅

2: for all facts s ∈ KBH(tsc, tec) do
3: create a new fact s∗ of a schema S#:

s∗ = {(K, K(s)), (T, T (s)), (A(v1)
1 , N), (A(v2)

1 , N), . . . , (A(vk)
1 , N), . . . ,

(A(vl)
n , N), (A(vl+1)

n , N), . . . , (A(vm)
n , N)},

where A
(vj)
i ∈ S#, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}

4: for all A
(vj)
i ∈ S#, such that Ai ∈ SS

H , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}
do

5: if Ai(s) = vj then
6: A

(vj)
i (s∗) := 1

7: else if Ai(s) 
= vj ∧ Ai(s) 
= N then
8: A

(vj)
i (s∗) := 0

9: else if Ai(s) = N then
10: A

(vj)
i (s∗) := N

11: end if
12: end for
13: for all A

(vj)
i ∈ S#, such that Ai ∈ SM

H , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m}
do

14: if vj ∈ Ai(s) then
15: A

(vj)
i (s∗) := 1

16: else if vj /∈ Ai(s) ∪ {N} then
17: A

(vj)
i (s∗) := 0

18: else if Ai(s) ∈ {N} then
19: A

(vj)
i (s∗) := N

20: end if
21: end for
22: KB#

H(tsc, tec) := KB#
H(tsc, tec) ∪ {s∗}

23: end for
24: return KB#

H(tsc, tec)

been removed, time parameters tsc and tec of the vc vector are adjusted to the
new set of facts3.

The ENV algorithm has high, non-polynomial complexity of O(n2m), pro-

3 Either the first or the last fact could have been removed, if it contained too many
N values.
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Algorithm 4 ENV: Removing unknown values

Input: transformed fact portion KB#
H(tsc; tec), vector vc ∈ KBT including the

maximal number of unknown values in a single fact ηc(vc); attribute sets
SS

H , SM
H ⊆ SH \ {K, T }, where SS

H ∩ SM
H ≡ ∅; schema S# = {K, T, U ′}

Output: fact portion KB#
H(tsc; tec) without N values;

updated vector vc ∈ KBT

1: for all facts s∗ ∈ KB#
H(tsc, tec) do

2: m :=
∣∣∣{A(v)

i ∈ S# : A
(v)
i (s∗) = N}

∣∣∣
3: if 0 < m � ηc then
4: KB#

H(tsc, tec) := KB#
H(tsc, tec) ∪ {s′ =

{(K, K(s∗)), (T, T (s∗)), (A(v1)
1 , a

(v1)
1 ), (A(v2)

1 , a
(v2)
1 ), . . . , (A(vk)

1 , a
(vk)
1 ),

. . . , (A(vl)
n , a

(vl)
n ), (A(vl+1)

n , a
(vl+1)
n ), . . . , (A(vp)

n , a
(vp)
n )} : A

(vj)
i ∈ S#

∧ i ∈ {1, 2, . . . , n} ∧ j ∈ {1, 2, . . . , p}
∧ ∀A

(vj)
i ∈ S#, where Ai ∈ SM

H .

(A(vj)
i (s′) ∈ {0, 1}) ∧ (A(vj)

i (s∗) 
= N ⇔ A
(vj)
i (s∗) = A

(vj)
i (s′)))

∧ ∀A
(vj)
i ∈ S#, where Ai ∈ SS

H .

(A(vj)
i (s′) ∈ {0, 1}) ∧ (A(vj)

i (s∗) 
= N ⇔ A
(vj)
i (s∗) = A

(vj)
i (s′))

∧ ∀Ai ∈ SS
H .
∣∣∣{A(vj)

i ∈ S# : A
(vj)
i (s′) = 1}

∣∣∣ = 1))}
5: end if
6: if m > 0 then
7: KB#

H(tsc; tec) := KB#
H(tsc; tec) \ {s∗}

8: end if
9: end for

10: tsc(vc) := MIN{T (s′) : s′ ∈ KB#
H(tsc; tec)}

11: tec(vc) := MAX{T (s′) : s′ ∈ KB#
H(tsc; tec)}

12: return KB#
H(tsc; tec), vc

vided that KB#
H(tsc, tec) contain n facts, k of them have at least one unknown

value, and let the maximal number of N values in a single fact be m, where
k, m, n ∈ N and k � n. Hence, this algorithm should be used carefully and
parameterized with possibly low ηc threshold values.

3.2.5 Association rules discovery

After the history facts have been preprocessed, they can be analyzed by the
rule mining procedure, using an algorithm chosen by the system developer (e.g.
Apriori). The association discovery alone follows classical problem statement pre-
sented in other works [Agrawal et al. 1993, Agrawal et al. 1994, Goethals, 2002],
but the novel solution is to place a rule mining algorithm inside the ARM algo-
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rithm (Association Rule Mining), which plays a role of an interface – making use
of the extended rule model and providing interoperation of the mining process
with the APS architecture. There are two cases considered in the ARM algo-
rithm. The first path (steps 2–3) is chosen, when the incorporated rule mining
algorithm, apart from standard thresholds of minimal support σc and confidence
γc, is able to handle additional constraints concerning the rule antecedent and
consequent: Xc, Yc, mx and my (see explanation in the Definition 9). Then the
mining algorithm takes all the constraints as input and yields a set of newly
found rules R. In the second path (steps 4–6) the rule mining algorithm can
accept solely σc and γc, so the resulting rule set R needs to be filtered outside
this algorithm (step 6), using constraints Xc, Yc, mx and my. By handling both
cases we achieve higher flexibility, being able to employ in the APS process a
wide class of existing association mining algorithms. Afterwards, all the recent
rules in R are assigned the same base numbers b(r) and timestamps tm(r).

Algorithm 5 ARM: Association rules discovery

Input: preprocessed fact portion KB#
H(tsc; tec), vector vc ∈ KBT , including

constraints Xc(vc), Yc(vc), σc(vc), γc(vc), mx(vc), my(vc), bc(vc), tmc(vc)
Output: set of new rules R

1: R := ∅

2: if the rule mining algorithm accepts constraints concerning the rule an-
tecedent X and consequent Y then

3: R := Rule Mining Algorithm(σc, γc, Xc, Yc, mx, my)
4: else if the rule mining algorithm does not accept constraints concerning X

and Y then
5: R := Rule Mining Algorithm(σc, γc)
6: R := {r ∈ R : X(r) ⊆ Xc ∧ Y (r) ⊆ Yc ∧ |X(r)| � mx ∧ |Y (r)| � my}
7: end if
8: if ¬R ≡ ∅ then
9: for all rules ri ∈ R, i ∈ [1; |R|] do

10: b(ri) := bc(vc)
11: tm(ri) := tmc(vc)
12: end for
13: end if
14: return R

Computational complexity of the ARM algorithm is strictly dependent on
the encapsulated Rule Mining Algorithm. Hence, it can be considered beneficial
that we do not force any specific algorithm, but allow a developer choose the
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best one available. Additional workload of the steps 6 and 9–11 does not seem
to be a serious problem, as it gives linear complexity of O(n), where n is the
number of rules r ∈ R.

3.2.6 Rule base maintenance

Updating the rule base KBR, when old rules are combined with new ones R, is
truly the crucial phase of the whole APS cycle. This maintenance is to keep the
rule base in such a shape, as if all the rules were discovered in a single batch
of history facts, accumulated since the very beginning of APS learning, even
though actually only a recent portion of observations is processed in every run
and analyzed past events are disposed. Formally, given two rule sets KBR and R

found in sets of facts h1 and h2, where h1 ∩ h2 ≡ ∅∧∀si ∈ h1, ∀sj ∈ h2.T (si) <

T (sj), the new, combined rule set KB′
R is to be found, such that KB′

R
∼= KBS

R,
where KBS

R is a rule set found in h1 ∪ h2.
As a solution to the stated problem we introduce the RMAIN algorithm4

(Rule MAINtenance). Its key idea is to find pairs of rules – one from KBR and
the other one from R – with similar antecedents and consequents, and combine
their support, confidence and other parameters, using appropriate proportion
formulae (see the RMAIN algorithm). If a given rule does not exist in one of the
combined sets, we use estimators of expected support σ̂ and confidence γ̂, which
substitute corresponding values of a hypothetical, rejected rule (because of too
low support or confidence), in order to decrease computation error [Dudek, 2005].
Moreover, we use the time depreciation function fT : [0; +∞) → [0; 1] (see Defi-
nition 10 in the section 3.1) in order to promote recent rules and deprecate old
ones. Otherwise, in subsequent learning runs the old rules would be more and
more resistant to any changes.

In the algorithm three cases of rule comparison are considered: (i) stable rules,
which are present both in R and KBR (steps 2–7); (ii) new rules, which belong
to R, but are not found in KBR (steps 2, 8–12); (iii) old rules, which belong
solely to KBR and are not present in R (steps 15–20). In each case rule’s sup-
port, confidence, base number and time are updated, using proportion formulae.
However, in cases (ii) and (iii) the unknown values of rule parameters are ap-
proximated by the estimators. After parameter update, new rules from R can be
added to KBR, if only they satisfy minimum support and confidence thresholds.
At the same time old rules are withdrawn from KBR, if their updated support
or confidence do not meet the threshold requirements. In order to simplify the
formulae notation inside the RMAIN algorithm, we use the following abbrevi-
ations: fpj = ft(tnow − tm(pj)), fri = ft(tnow − tm(ri)), fg = ft(tnow − tmg),
fc = ft(tnow − tmc).
4 A preliminary version of the RMAIN algorithm was introduced in the previous work

[Dudek and Zgrzywa, 2005].
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Algorithm 6 RMAIN: Rule base maintenance
Input: KBR, R; vectors vc ∈ KBT and vg ∈ KBG; current system time tnow

Output: updated KBR and vg ∈ KBG

1: update vg: σ(vg) := σ(vg)b(vg)+σ(vc)b(vc)
b(vg)+b(vc)

, γ(vg) := γ(vg)b(vg)+γ(vc)b(vc)
b(vg)+b(vc)

2: for all rules ri ∈ R, i ∈ [1; |R|] do
3: if ∃pj ∈ KBR. pj ≡ ri then

4: update pj : sup(pj) :=
b(pj)sup(pj)fpj +b(ri)sup(ri)fri

b(pj)+b(ri)
,

con(pj) :=
con(pj)con(ri)(b(pj)sup(pj)fpj )+b(ri)sup(ri)fri)

b(pj)sup(pj)fpj con(ri)+b(ri)sup(ri)fricon(pj)
,

tm(pj) :=
b(pj)tm(pj)+b(ri)tm(ri)

b(pj)+b(ri)
, b(pj) := b(pj) + b(ri).

5: if after the update sup(pj) < σ(vg) or con(pj) < γ(vg) then
6: KBR := KBR\{pj}
7: end if
8: else if ¬∃pj ∈ KBR. pj ≡ ri then

9: update ri: sup(ri) :=
b(vg)σ̂(vg)fg+b(ri)sup(ri)fri

b(vg)+b(ri)
,

con(ri) :=
γ̂(vg)con(ri)(b(vg)σ̂(vg)fg+b(ri)sup(ri)fri)
b(vg)σ̂(vg)fgcon(ri)+b(ri)sup(ri)fri γ̂(vg)

, if 0 < γ̂(vg) � 1,

con(ri) := con(ri), if γ̂(vg) = 0,

tm(ri) := b(vg)tm(vg)+b(ri)tm(ri)
b(vg)+b(ri)

, b(ri) := b(vg) + b(ri)
10: if after the update sup(ri) � σ(vg) and con(ri) � γ(vg) then
11: KBR := KBR ∪ {ri}
12: end if
13: end if
14: end for
15: for all rules pj ∈ KBR, such that ¬∃ri ∈ R.pj ≡ ri do

16: update pj : sup(pj) :=
b(pj)sup(pj)fpj +b(vc)σ̂(vc)fc

b(pj)+b(vc)
,

con(pj) :=
con(pj)γ̂(vc)(b(pj)sup(pj)fpj +b(vc)σ̂(vc)fc)
b(pj)sup(pj)fpj

γ̂(vc)+b(vc)σ̂(vc)fccon(pj)
, if 0 < γ̂(vc) � 1,

con(pj) := con(pj), if γ̂(vc) = 0,

tm(pj) := b(pj)tm(pj)+b(vc)tm(vc)

b(pj)+b(vc)
, b(pj) := b(pj) + b(vc)

17: if after the update sup(pj) < σ(vg) or con(pj) < γ(vg) then
18: KBR := KBR\{pj}
19: end if
20: end for
21: update the vector vg: σ̂(vg) := σ̂(vg)b(vg)+σ̂(vc)b(vc)

b(vg)+b(vc)
,

γ̂(vg) := γ̂(vg)b(vg)+γ̂(vc)b(vc)
b(vg)+b(vc)

, tm(vg) := b(vg)tm(vg)+b(vc)tm(vc)
b(vg)+b(vc)

22: update the vector vg: b(vg) := b(vg) + b(vc)
23: return updated KBR and vg
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Figure 3: History KBH of an example web browsing assistant.

The complexity of RMAIN is polynomial O(mn), where n is the number of
new rules in R and m is the number of old rules in KBR, m, n ∈ N. Other
properties of the RMAIN algorithm were analyzed in [Dudek, 2005].

4 Example: web browsing assistant

In order to illustrate how the APS learning cycle works, we present the beneath
example, referring to the personal web browsing assistant agent scenario (de-
scribed in the Introduction). The agent history KBH is as table containing the
following columns (see Figure 3): HKey, HTime, Term, Eval, and Stored, repre-
senting: unique key, observation moment, collection of frequent index terms in
the page (multivalued column), user’s evaluation (relevant or irrelevant), and
information about saving a page (yes or no), respectively. N values are placed
into cells with missing information (e.g a page stored without any evaluation).

The first step of the APS learning run is the FSEL algorithm, which selects a
block of recent observations, stored in the history since the previous processing
run. Then these facts are transformed by the HTRANS algorithm from the
initial schema: SH = {HKey, HT ime, T erm, Eval, Stored} into the schema:
S# = {HKey, HT ime, T erm(architecture), T erm(base), . . . , T erm(server),

Eval(relevant), Eval(irrelevant), Stored(yes), Stored(no)}.
All the attributes of the new schema can accept only two values: 1 (positive

assertion) and 0 (negative assertion), except for the first two special columns
HKey and HTime, which are left unchanged. In the next step of the APS run,
the new S# schema is filled with history facts by the HFILL algorithm (see
Figure 4). Following the APS cycle, N values are eliminated using the ENV
algorithm. Each row with unknown values is removed and instead new facts
are inserted into the history, which reflect all the possible worlds (Figure 4).
However, a row containing more N values than a presumed threshold ηc, is just
dropped without any replacement (this case is not shown in Figure 4).

The transformed and preprocessed history is now ready for association rule
mining, managed by the ARM algorithm. Lets assume that after analyzing 500
recent KBH facts, two new rules were found (the R set): r1 : term architecture∧
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Figure 4: The transformed history while removing N values (ENV algorithm).

term schema ⇒ eval relevant (sup = 0.15; con = 0.90; b = 500; tm = 2008/05/05
17:04) and r2 : term base ∧ term matrix ⇒ eval relevant (sup = 0.28; con =
0.85; b = 500; tm = 2008/05/05 17:04).

The newly discovered rules r1 and r2 need to be added to the KBR rule base,
which has contained two rules since the previous APS learning run (both based
on 3000 processed facts): p1 : term architecture∧term schema ⇒ eval relevant

(sup = 0.12; con = 0.73; b = 3000; tm = 2008/01/16 10:45) and p2 : term copy∧
term mechanism ⇒ stored yes (sup = 0.21; con = 0.69; b = 3000; tm =
2008/01/16 10:45). It appears that the rules r1 and p1 are syntactically equal
(see Definition 7), i.e. they have the same antecedents and consequents and only
values of their support and confidence are different. In the R rule set r2 is a new
rule, which has been just found in the recent learning run. On the other hand
the rule p2 in KBR has not been discovered lately, so we can expect its support
and confidence will be decreased during KBR update.

In the next stage, both rule sets R = {r1, r2} and KBR = {p1, p2} are
combined with each other by the RMAIN rule maintenance algorithm. Three
cases are considered while updating KBR: (i) the rules in both sets, which are
syntactically equal (r1 and p1 in our example) – steps 2–7 of the algorithm; (ii)
the rules, which exist only in R (rule r2) – steps 2, 8–12, and (iii) the rules,
which exist only in KBR and were not discovered during the recent mining run
(rule p2) – steps 15–20. For RMAIN calculations we assume the following input
parameters (see Definitions 9 and 11). The vector of current run parameters vc:
Xc = {Term}; Yc = {Eval, Stored}; bmax = 500; bc = 500; ηc = 0; σc = 0.06;
γc = 0.70; σ̂c = 0.03; γ̂c = 0.35; mx = 4; my = 1; trc = tnow = 2008/05/21
18:05; tmc = 2008/05/05 17:04; tsc = 2008/04/19 16:30; tec = 2008/05/21 17:38.
The vector of global parameters vg: bg = 3000; σg = 0.10; γg = 0.60; σ̂g = 0.05;
γ̂g = 0.30; tmg = 2008/01/16 10:45; tsg = 2007/10/15 7:24; teg = 2008/04/19
14:07; fT = 1. Then, after maintenance the KBR will contain the following three
rules: p1 : term architecture ∧ term schema ⇒ eval relevant (sup = 0.12; con

= 0.75; b = 3500; tm = 2008/02/01 01:22), p2 : term copy∧term mechanism ⇒
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Figure 5: APS processing (blocks i1, . . . , im) and batch mining (b1, . . . , bm).

stored yes (sup = 0.18; con = 0.67; b = 3500; tm = 2008/02/01 01:22), and
r2 : term base ∧ term matrix ⇒ eval relevant (sup = 0.08; con = 0.44; b =
3500; tm = 2008/02/01 01:22). The new values of the vg vector will be: bg =
3500; σg = 0.09; γg = 0.61; σ̂g = 0.05; γ̂g = 0.31; tmg = 2008/02/01 01:22. At the
end of the learning run all the analyzed KBH facts are permanently removed
from the history and the agent switches over from learning to performance mode.

5 Experimental results

The APS method was evaluated experimentally with respect to both quali-
tative and performance measures. For the experiments we used a synthetic
T10.I5.D20K dataset, corresponding to the WWW browsing agent scenario,
which was generated with the DataGen application [Dudek, 2005]. The dataset
has the following parameters [Agrawal et al. 1994]: number of transactions |D|
= 20000; mean transaction size |T | = 10; average size of maximal, potentially
frequent itemsets |I| = 5; number of binary attributes 307. No facts inside the
test dataset contain unknown values. While creating the data, the facts sup-
porting rules (e.g. adaptive∧ autonomous∧ learning ⇒ relevant∧ stored yes)
were distributed uniformly within a period from 1 January 2004, 00:27:45 until
10 April 2005, 23:32:57 as an activity log of a hypothetical Internet user, who
visited 20,000 pages in 465 days (about 15 months), which makes 43 pages daily
on average. Experiments were conducted in two series in order to compare in-
cremental and batch processing (see Figure 5). During every test run processing
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time of particular APS steps (algorithms) was registered and after the run had
been completed, the resulting rule base KBR was stored. Then we compared the
rules discovered in the incremental and batch series, using the proposed qual-
itative measures: ruleoverlap, supdiff and condiff , given below. The beneath
rule overlapping ratio is the percent share of rules with the same antecedents
and consequents in the compared rule sets (ignoring possible differences in rule
support or confidence).

ruleoverlap (R1, R2) =

∣∣KBO
R (R1, R2)

∣∣
|R1| + |R2| −

∣∣KBO
R (R1, R2)

∣∣ ,
where KBO

R(R1, R2) is an intersection of two compared rule sets R1 and R2

with respect to syntactical equity of rules (see Definition 7). While ruleoverlap

is used to evaluate general accuracy of incremental mining, deeper insight is
provided by the next two measures supdiff and condiff , which show how the
rules mined incrementally differ from rules in the reference batch-mined set,
regarding support and confidence.

supdiff (R1, R2) =
1
n

(
c∑

i=1

|sup(pi) − sup(ri)| + d

)
,

condiff (R1, R2) =
1
n

(
c∑

i=1

|con(pi) − con(ri)| + d

)
,

where n is the number of all rules in R1 and R2 with different antecedents and
consequents, c = KBO

R(R1, R2), d = n− c, and pi ∈ R1 has the same antecedent
and consequent as ri ∈ R2 for i ∈ {1, . . . , c}.

As the experimental testbed we used the APS Incremental Learning appli-
cation [Dudek et al. 2005, Dudek, 2005] running on an x86 machine with 892.50
MHz CPU, 752 MB SDRAM, 40 GB HDD, NTFS, under OS MS Windows 2000
Server. The program was implemented using MS Visual C++ .NET language and
the database management system MS SQL Server 2000 Enterprise Edition. In-
side the testbed environment we used the University of Helsinki implementation
of the Apriori algorithm [Agrawal et al. 1994], developed by [Goethals, 2003],
for mining association rules. The experiments were conducted with the following
settings: k = 1000; σ = 0.08; γ = 0.30; σ̂ = 0.04 and γ̂ = 0.15.

The qualitative results proved perfect accuracy of the APS incremental rule
discovery as compared to batch mining. The ruleoverlap measure attained 100%,
whereas supdiff and condiff were 0% for all examined runs. While this is what
we can expect from incremental processing of the synthetic, uniform dataset
T10.I5.D20K, less regular data (in real applications) is potentially a challenge
for the APS method and it is likely to yield less accurate results. Yet, stable
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Figure 6: Processing time: particular APS algorithms vs. Apriori batch mining.

rules (i.e. frequent, confident and appearing regularly) should be mined and
maintained correctly, regardless the overall irregularity of a data set.

In the performance evaluation we compared processing time of the APS incre-
mental learning (separating values for particular APS algorithms) to the time of
batch rule mining. Analyzing the results we can see the high 60% workload share
of rule base maintenance (the RMAIN algorithm), while sole association mining
makes only 17%, similarly to filling the history schema (the HFILL algorithm).
Other APS processing stages, such as selecting (FSEL), transforming the history
schema (HTRANS) and fact deletion together scarcely take about 6% of time.
While fact selection and deletion are indeed straightforward database operations,
which can be very efficiently performed by contemporary database management
systems, the HTRANS and ENV algorithms are more complex. Hence, the very
small processing time share of HTRANS and ENV, which was observed, can be
misleading in general. The former algorithm would certainly need more time, if
the initial history schema contained more attributes (in our experiments there
were only about 300). The ENV algorithm is even more complex O(n2m), so it
would work much longer for higher density of missing attribute values.

The overall APS processing time for subsequent fact blocks is quite stable,
oscillating around the average value, while batch mining time grows roughly pro-
portionally to the increasing number of analyzed facts (see Figure 6). The mo-
ment, when the APS outperforms batch mining (about 8000 for the T10.I5.D20K
dataset), depends on application domain and analyzed data. But in general the
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more APS learning runs are performed, the bigger profit in saving system re-
sources (CPU, memory and disc space) is plausible.

6 Related work

There is hardly any research directly covering the contribution of this paper, but
there are many works related to some parts and aspects of APS.

Firstly, there is a line of research exploring usage of data mining methods
inside agent systems, including the Agent Academy (AA) by Symeonidis and
his coworkers [Symeonidis et al. 2002]. AA uses data mining algorithms (such
as ID3, C4.5 and Apriori) for training agents, based on a common knowledge
repository. As compared to their system, the APS framework is an internal
learning procedure of an autonomous agent and not an external training process,
outside an agent.

Secondly, there are many works on web recommendation systems using var-
ious data mining techniques, such as: clustering, association rule mining, classi-
fiers and decision trees. Yao, Hamilton and Wang [Yao et al. 2002] proposed the
PagePrompter system, supporting web site administering by means of associa-
tion rules and clusters, which are discovered through web log mining. Wang and
Shao worked out a personalized recommendation method for e-learning students,
based on analysis of past navigation sessions using clustering and association
rules [Wang and Shao, 2004]. Within the same application domain, Chen, Hsieh
and Hsu [Chen et al. 2007] used the Apriori algorithm inside the agent-based,
personalized e-learning system (PELS) for mining association rules, which build
the human learner’s profile and help to identify common misconceptions during
the learning process. An interesting comparative study of sequential association
rules, based on web log mining and used for building web document prediction
models was done by Yang, Li and Wang [Yang et al. 2004]. In contrast to the
above works, the proposed APS method is not restricted to the web recommen-
dation domain (actually, it is only an example application), but it is a general
learning framework for software agents.

Finally, many alternative methods of incremental association mining have
been developed to date: FUP [Cheung et al. 1996], FUP2 [Cheung et al. 1997],
Borders [Aumann et al. 1999], MAAP [Zhou and Ezeife, 2001], SWF
[Lee et al. 2005] and EDUA [Zhang et al. 2007]. However, they differ from the
APS approach: (i) they use intermediate representation – frequent itemsets,
while the APS operates on final rules, which are much more suitable for agent
reasoning, (ii) they usually reduce, but do not eliminate reruns through analyzed
data, while our method provides approximate results without any database res-
canning (which allows reducing disc space usage); (iii) they mostly do not use any
time decaying heuristics, whereas we proposed the fT time depreciation function
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in the APS. Data stream mining research uses concepts, which are very closely
related to the idea of partial memory learning [Maloof and Michalski, 2004], de-
veloped in the APS. A good example is the estDec method of stream mining
[Chang and Lee, 2003]. However, as compared to estDec, the APS method allows
using a broader range of time decaying functions (not restricted to exponential
decay) and it covers management of the whole data mining process, not only
rule discovery and maintenance.

7 Conclusions

In this paper a novel APS method was proposed for incremental, statistical learn-
ing of software agents. The original contribution of this work is to incorporate
into an agent architecture a complete data mining process, including data accu-
mulation, selection and preprocessing, association rule mining, rule base main-
tenance and history flushing. The history transaction schema is transformed in
every learning run, making the proposed method highly flexible, because differ-
ent history attributes are allowed to appear in subsequent runs. The crucial part
of the APS method is the RMAIN rule maintenance algorithm, which incremen-
tally updates the agent’s rule base. RMAIN uses a time decaying function and it
operates on rules, unlike most other incremental mining methods, which process
only intermediate representation – frequent itemsets. Operating on rule level
extends potential applications of APS beyond single-agent learning and enables
fusing knowledge coming from the agent’s internal learning process with rules
shared by other agents. As the analyzed history facts are disposed in every run
of the learning cycle, in long-term perspective disk space and CPU time usage
is reduced as compared to batch mining approach. This makes APS suitable
for resource-bounded agents, which are supposed to work as tiny background
processes, not disturbing user’s normal activity. The proposed learning method
can be also beneficial, if an agent interlaces standard performance with stand-by
periods, when it does not work toward any goal, but awaits new tasks from a
user. Personal agents in the domain of web browsing, information retrieval and
filtering are good examples of possible applications.

We verified experimentally the APS method using a uniform, synthetic web
browsing scenario dataset. The tests proved perfect accuracy of the incremen-
tally mined rules as compared to the reference rule sets, which were discovered in
a batch mode. Based on these results we can conclude that the APS framework
ensures good quality of incremental association rule mining and maintenance,
provided that the fact data source is stable and does not change rapidly be-
tween subsequent learning runs. On the other hand, dynamic environments are
expected to challenge the rule maintenance procedure, which can deteriorate
qualitative results.
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The APS framework is intended to be implemented as a learning module
and integrated with existing agent architectures, which is an interesting issue
for further research.
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