
Tabu Search on GPU

Adam Janiak
(Institute of Computer Engineering Control and Robotics

Wroclaw University of Technology, Poland
adam.janiak@pwr.wroc.pl)

W�ladys�law Janiak
(Institute of Industrial Engineering and Management

Wroclaw University of Technology, Poland
wladyslaw.janiak@interia.pl)

Maciej Lichtenstein
(Institute of Computer Engineering Control and Robotics

Wroclaw University of Technology, Poland
maciej.lichtenstein@pwr.wroc.pl)

Abstract: Nowadays Personal Computers (PCs) are often equipped with powerful,
multi-core CPU. However, the processing power of the modern PC does not depend
only of the processing power of the CPU and can be increased by proper use of the
GPGPU, i.e. General-Purpose Computation Using Graphics Hardware. Modern graph-
ics hardware, initially developed for computer graphics generation, appeared to be
flexible enough for general-purpose computations. In this paper we present the imple-
mentation of two optimization algorithms based on the tabu search technique, namely
for the traveling salsesman problem and the flow shop scheduling problem. Both algo-
rithms are implemented in two versions and utilize, respectively, multi-core CPU, and
GPU. The extensive numerical experiments confirm the high computation power of
GPU and show that tabu search algorithm run on modern GPU can be even 16 times
faster than run on modern CPU.

Key Words: graphics hardware, tabu search, traveling salesman, flow shop

Category: I.3.6, I.3.m

1 Introduction

Increasing demands of products quality and increasing costs of production re-
quires intelligent systems that are used for decision support in production man-
agement to deliver good decisions in a fast manner. Those systems, however, are
faced with the optimization problems that are difficult to solve (NP-hard). More-
over, those problems are usually of discrete nature, and thus, cannot be solved
optimally in reasonable time. On the other hand, they can be solved by various
heuristics, but obtaining good solution (close to the optimal one) requires much
computational effort and significant amount of time. An example of the method
that is applied for optimization, and delivers good solutions is tabu search.

Journal of Universal Computer Science, vol. 14, no. 14 (2008), 2416-2427
submitted: 30/9/07, accepted: 30/4/08, appeared: 28/7/08 © J.UCS



On the other hand the computational power of modern personal computers
increases rapidly due to increasing demands of their users. This computational
power follows not only from faster Central Processing Unit (CPU), or multicore
CPUs, but also from the Graphics Processing Unit (GPU). The evolution of
GPUs over several recent years turned them from simple text-mode screen gen-
erators to powerful, programable units intended for movie-like real-time graphics
generation. Evolution of those chips was even more rapid than CPUs and their
computational power is theoretically greater. Moreover, the introduction of pro-
gramable vector units (called shaders) into GPUs allowed them to be used not
only for graphic generation, but also for other, not graphics-related, purposes.

In this paper, we present some results regarding tabu search implementa-
tion using GPU. We propose two tabu search algorithms that utilize graphics
hardware: for the traveling salesman problem, and for the flow shop scheduling
problem. Performed computational experiments show that the usage of GPU
in the tabu search algorithm can decrease its running time almost 16 times in
comparison to single core CPU.

The remainder of the paper is organized as follows. The next section is de-
voted to some basic information of GPGPU (General-Purpose Computation Us-
ing Graphics Hardware). We present the methodology of GPGPU and its advan-
tages and disadvantages. Next, in Section 3, we describe the idea of tabu search
algorithm and its GPGPU implementation for the well known traveling sales-
man problem and flow shop scheduling problem. Section 4 presents the results
of performed computational experiments that compare in terms of the running
time the CPU and GPU implementations of tabu search for above mentioned
problems. We conclude the paper by pointing out some directions for future
research.

2 General-Purpose Computation Using Graphics Hardware

The General-Purpose Computation Using Graphics Hardware is a quite new
programming technique, that utilizes graphics hardware for the computations
that are not related to real-time graphics generation. Such computations are
possible, since the modern GPUs are usually equipped with some number of
programmable units called shaders. The programming of early GPUs equipped
with shaders was very restrictive (limited number of instructions, small set of
instructions, etc.), however, its high potential was noted by the programmers and
caused fast evolution to modern unified shader units. Those unified shader units
may function either as vertex shaders, as well as pixel shaders (or geometry
shaders, which were introduced recently together with shader model 4.0) and
its function may change dynamically according to application demands. The
processing pipeline of graphics hardware (limited to the scope of this paper) is
depicted in Figure 1.

2417Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



Application

Vertex Shader

Rasterizer/Interpolater

Pixel Shader

Render target

V
e
rte

x

stre
a
m

D
a
ta

fo
r

p
ixe

l

s
h
a
d

e
r

In
te

rp
o

la
te

d

d
a
ta

C
o
lo

r,
D

e
p
th

T
e
x
tu

re
s

a
n
d

c
o
n

s
ta

n
ts

Figure 1: The pipeline of the graphics hardware (limited for the purpose of this
paper)

2418 Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



As it can be seen, the vertex stream from application (each vertex is described
by the set that can contain its position, normal vector, texture coordinates, etc.)
is processed by the vertex shader. The output from the vertex shader contains
the data for pixel shader (position, texture coordinates, etc.) and are interpo-
lated across the drawn primitive (triangle) by rasterizer/interpolater. Data from
rasterizer/interpolater are processed by pixel shader which outputs the color of
the pixel to draw (and optionally the depth in the z-buffer) on the render target.
The render target can be either computer screen, as well as the texture in the
GPU memory. The application also sends to the GPU textures and some con-
stants that are used by vertex and pixel shader programs, however, those data
cannot be changed during the processing of a single vertex stream.

The general idea of GPGPU is to partition the computations into mutually
independent (preferably small) programs for shaders (usually pixel shader) called
kernels. Since kernels are mutually independent, and there is more than one
shader units working in parallel, each of them can process some part of the
vertex stream. The goal of the GPGPU is to develop the kernels in such a way,
that they will process the data stored in the vertex stream according to our
purpose, and store the results in the render target (usually texture), and since
we deal with several shader units working in parallel we should be able to perform
the computations faster than on a single CPU.

As it can be seen from the description above, the idea of the GPGPU is
quite simple, and should speed-up the application significantly (modern GPUs
are equipped with 240 shader units), however, the programmers are faced with
some limitations. First limitation is the lack of dynamic data structures in kernel
programs (even dynamic arrays). This limitation can be overcome by using tex-
tures instead of arrays. Those textures, however, have to be prepared separately
and may lead to significant data-preparation overhead. Similarly, the only type
of data that can be handled by kernels are 32-bit floating point numbers (modern
GPUs can handle 64-bit floats). Other restriction is that the number of nested
loops in the kernel program may be limited. Finally, the number of instructions
per kernel is limited. All those limitations may be overcome in some way. On
the other hand, the possible complexity of shader programs allowed to develop
high-level programming languages for shader programming, such as NVidia Cg
[Fernando and Kilgard 2003] or Microsoft HLSL [St-Laurent 2005].

This brief description of the GPGPU is only an introduction for the purpose
of this paper. We refer the reader interested in more details of GPGPU, to
the website: http://www.gpgpu.org. Moreover, to the best of our knowledge,
there are no publications that combine the GPGPU and optimization, so the
reader interested in other applications of GPGPU is referred to the survey paper
[Owens et. al. 2005].

In the following we present some details of tabu search algorithm for well

2419Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



known traveling salesman problem and flow shop scheduling problem. Both al-
gorithms, were implemented in two versions:

– version that utilizes only CPU,

– version that utilizes either CPU, as well as GPU.

Then, both version of the algorithms are compared to each other in terms of the
running time, showing that the GPGPU can bring its significant shortage.

3 Tabu search

The tabu search (TS) procedure, originally proposed by F.Glover, [Glover 1989,
Glover 1990], is a neghbourhood-based search method with deterministic mech-
anism of avoiding local minima. The general idea of TS is to start from some
initial solution, and iteratively move among neighbouring solutions. At each
iteration, a move to the best solution in the neighbourgood of the current
one is performed. To avoid local minima, the memory of already visited so-
lutions is introduced. Most frequently used type of that memory is the tabu
list. The tabu list stores some number of already visited solutions, its attributes,
or moves leading to them. During the search process, the move that leads to
the solution that is stored in the tabu list is forbidden. Many implementa-
tions of tabu search method for various optimization problems (see, for exam-
ple: [Taillard 1983, Nowicki and Smutnicki 1998, Oguz et. al. 2004]) shows, that
tabu search can deliver optimal or near-optimal solutions for NP-hard problems
in reasonable time. The efficiency of TS method is strongly dependent on the
proper selection of its attributes, i.e:

1. initial solution,

2. neighbourhood,

3. tabu list,

4. stoping condition.

In the following two sections we present some details of our implementation
of tabu search for traveling salesman problem, and for flow shop scheduling
problem, respectively. Moreover, we present how we ported these methods to
take advantage of GPGPU.

3.1 Tabu search for traveling salesman problem

The traveling salesman problem can be defined as follows. There is a given set
N = {1, ..., n} of n cities. The distance from city i to city j is denoted by dij

2420 Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



and is given for each i ∈ N , j ∈ N , j �= i. Note that in, general dij �= dji. A
salesman route can be defined by a permutation π = (π(1), π(2), ..., π(n)) of the
set N , where π(j) is the number of the city visited as jth. The problem is to find
such permutation π∗ that minimizes the total route length D(π∗), where D(π)
is defined as follows:

D(π) =
n−1∑

j=1

dπ(j)π(j+1) + dπ(n)π(1).

Our tabu search method for the TS problem was a straightforward imple-
mentation. In the following we present some details.

As a initial solution random permutation of cities was chosen.
The neighbourhood was defined by swap moves, i.e., a neighbouring permuta-

tions were generated by swapping positions of two cities in the base permutation.
More precisely, a swap move is defined by two parameters i ∈ N , and k ∈ N ,
i �= k, and exchange the positions of elements π(i) and π(k) in permutation π.

The tabu list stores the parameters of moves (pairs < π(k), π(i) >) and
forbids all the solutions π in which element π(k) is before the element π(i).
The length (number of stored move parameters) of the tabu list is constant and
equals 7.

Our tabu search implementation stops after 1000 iterations.
It can be easy observed, that over 90% of tabu search running time is occupied

by neighbourhood evaluation (i.e., computing the salesman route length for each
solution in the neighbourhood). On the other hand this part of the algorithm
can be easy parallelized.

In our GPGPU implementation of tabu search method, we prepare two tex-
tures that are send to the GPU only once at the beginning of the algorithm.
One of these textures (data texture) is square of n× n pixels, and in each pixel
at coordinates (i, j) the distance dij is stored. The texture has R32F format,
i.e., each pixel is a 32-bit floating point number that represents the only the R
(red) component of the color. The second texture (neighbourhood texture) is
also n × n pixels square, however, in this texture the neighbourhood is stored.
More precisely, each pixel stores a single swap move. Texture has R16G16 format
(i.e., stores only R and G components of the color, each on 16 bits) and stores
the values of parameters i and k of the move, on R and G color components,
respectively. Beside these two textures, at each iteration the texture in R16G16
format of n × 1 pixels is prepared, and send to the GPU. This texture (permu-
tation texture) represents the current permutation π (only R color component
is used).

After sending the permutation texture, the GPU is programmed to draw a
quad (a square composed of two triangles) of n× n pixels, however, as a render
target additional texture in R32F format is used. The vertex shader program is a

2421Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



very simple and only passes the vertex data to pixel shader, whose contains only
the neighbourhood texture coordinates (its corners). Those data are interpolated
by resterizer/interpolater so entire neighbourhood texture is nicely covered. The
pixel shader calculates the route length for each solution in the neighbourhood,
by sampling neighbourhood texture, permutation texture, and data texture and
stores this value in output render target.

Thus, the briefly explained above program evaluates the neighbourghood of
the current solution and stores all the route lengths in the output render target
texture. Then, then this texture is fetch from the GPU memory, and the best,
non-tabu, neighbour is selected (this part is computed on CPU). After updating
tabu list, and permutation texture, all the computations are repeated. This stops
after 1000 repetitions.

It is easy to notice, that output texture is symmetrical (i.e, the value of the
pixel at (i, j) coordinates is the same as at (j, i) coordinates. This is caused by
the fact that swapping the element i with the element k in π leads to the same
permutation as swapping the element k with the element i. So, it is enough to
draw not the entire quad, but only the upper, or lower triangle. However, the
textures that are sent to the GPU have to be rectangular.

3.2 Tabu search for flow shop scheduling problem

The flow shop scheduling problem (FS) can be defined as follows. There is a given
set J = {1, ..., n} of n jobs to be processed on m processors. Each job j ∈ J is
comprised of m operations. The ith operation of the job j has to be processed on
ith processor and requires pij time units, moreover, it cannot be started before
operation (i − 1) completes. We deal with the permutation flow shop, in which
the sequence of operations at each processors is the same. The schedule for the
FS can be precisely defined by the permutation of jobs σ = (σ(1), ..., σ(n)),
where σ(j) is the number of job processed as jth.

Denote by Cij(σ) the completion time of the ith operation of job j in the
schedule defined by σ. For a given σ we can determine the completion times of
each operation from the following formulae calculated for i = 1, .., m, j = 1, ..., n

Cij(σ) = piσ(j) + max{C(i−1)σ(j)(σ), Ciσ(j−1)(σ)},

where C0j(σ) = 0 for j = 1, ..., n, Ci0(σ) = 0 for i = 1, ..., m, and σ(0) = 0.
The problem is to find such a schedule σ∗ that minimizes the makespan (total

schedule length) Cmax(σ∗), where makespan is defined as

Cmax(σ) = max
j∈J

{Cmj(σ)}.

The general idea of the tabu search for flow shop problem is the same as for
the traveling salesman problem. There are only two differences. First the length

2422 Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



of tabu list is extended to store 10 last moves. Second is that the neighbourhood
is based in insertion-type moves not swap-type moves. The insertion-type move is
also defined by two parameters i and k, however, the change in the permutation
σ is different. The move removes the element from position i (σ(i)) and inserts
it into position k. Thus, the move with parameters (i, k) in general produces
different permutation than move with parameters (k, i). This results in non-
symmetrical output texture, so the entire quad (two triangles) has to be drawn.

We do not present the source code of the pixel shaders of our methods because
it is quite long and not self explaining. The reader interested in implementation
details is asked to send an e-mail to one of the authors and we send back the
full source code of our algorithms.

4 Experimental results

In the following two sections we compare the running time of the tabu search
that utilizes CPU only, and that utilizes CPU an GPU as well, separately for
the traveling salesman problem, and the flow shop scheduling problem. The
algorithms that utilize CPU only were implemented in C#. The algorithms that
utilizes both CPU and GPU were implemented in C# using Microsoft XNA
framework (see http://www.xna.com) and the HLSL for shaders programming
(see [St-Laurent 2005]). We used two testing platforms. The first platform was
based on Intel Celeron 2.9 GHz CPU, and 1.5 GB of DDR2 RAM. We used two
following graphics hardware on the first platform:

G8: GeForce 7300 GT (8 pixel shader units, 4 vertex shader units)

G32: GeForce 8600 GT (32 unified shader units).

The second platform was based on four core Intel Xeon X3220 2,4 GHz CPU,
4GB DDR2 RAM and was equipped with GeForce 8800 GT graphics hardware
(112 unified shader units), denoted by G112 in the following .

The CPU versions of the TS algorithm for FS problem run on second platform
was implemented is such a way, to take advantage of all the CPU processing
power, i.e., at each iteration of TS the neighbourhood was partitioned into 4
parts, and each part was evaluated by separate thread to utilize all four cores of
the CPU.

4.1 Results for traveling salesman problem

The tabu search algorithm for traveling salesman problem was tested on the
first platform equipped with G32 graphics hardware. In the test instances the
distances dij were uniformly distributed in the range [1,1000]. For each number
of cities 10 instances were generated and average running time was considered.

2423Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



The results of comparison of algorithms (1000 iterations) run on CPU and GPU
are summarized in Table 1. From the presented results it can be easy observed

Table 1: The comparison of average running time (in seconds) of tabu search
for traveling salesman problem run on CPU and on G32 GPU, where n is the
number of cities.

n 5 10 20 30 40 50 60 70 80 90 100
CPU 0.019 0.116 0.652 2.400 4.847 9.803 14.979 21.044 37.104 45.570 78.970
G32 6.759 6.886 6.698 7.422 8.734 10.570 13.491 18.510 21.581 30.597 69.312

that the advantage of GPGPU in this case is not high (12% maximum for 100
cities). This is caused by the large overhead of data preparation which can be
seen for small instance size. Moreover, the amount of computations transferred
to the GPU is not high, and those computation are not very demanding for the
CPU (single loop of n iterations). On the other hand, even in this simple case
the computation power of the GPU can be seen, since the relative shortage of
the running time increases with the increase of the problem instance size.

4.2 Results for flow shop scheduling problem

The tabu search algorithm for the flow shop scheduling problem was tested on
all the platforms indicated in the beginning of the Section 4. Test instances
were randomly generated, with operations processing times, pij , uniformly dis-
tributed from the range [1,100]. For each combination of the number of jobs
n ∈ {10, 40, 60, 100, 120} and the number of processors m ∈ {5, 10, 15} ten in-
stances were generated and average running time was considered. The results
for the first and the second testing platform are summarized in Table 2.

First observation that follows from the presented results is that the G8 GPU
is not capable to overcome the CPU. However, G32 and G112 GPUs overcome the
CPU 2, and 4 times, respectively. This results hold for large problem instances
(m = 15 processors), and the ratio (GPU time)/(CPU time) is depicted in
Figure 2. For smaller problem instances the overhead in data preparation is still
so significant, that the GPU utilization is meaningless. Note that the increase of
the ratio depicted in Figure 2 is not linear. This is caused by limited number of
shader units and it seams that it has expected stepwise shape.

Note that the implementation for the second testing platform was multi-
threaded, so the G112 is expected to be up to 16 times faster than single core
CPU.

2424 Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



Table 2: The comparison of average running time (in seconds) of tabu search
for flow shop scheduling problem run on the first and second testing platform
(CPU1, and CPU2) and G8, G32, and G112 GPU, where n is the number of
jobs and m is the number of processors.

n m CPU1 G8 G32 CPU2 G112
10 5 0.107 7.379 7.842 0.069 3.032
40 5 4.326 10.006 11.051 2.972 4.523
60 5 13.024 21.267 18.239 9.703 7.974
100 5 56.540 102.662 77.284 42.430 33.866
120 5 106.593 163.957 99.139 70.578 45.945
10 10 0.148 7.377 7.695 0.109 3.008
40 10 7.181 12.643 11.165 5.739 4.546
60 10 23.603 30.926 19.583 18.935 8.504
100 10 100.558 154.646 87.120 76.946 36.396
120 10 185.793 248.394 110.650 141.637 47.955
10 15 0.196 7.225 7.658 0.149 3.025
40 15 10.541 15.072 11.633 8.496 4.657
60 15 33.466 38.959 21.459 27.012 9.210
100 15 148.513 201.023 97.471 118.326 38.401
120 15 262.274 324.112 124.568 208.990 53.483

5 Conclusions

In this paper we presented some results regarding application of GPGPU to
tabu search optimization method. To the best of our knowledge the presented
results are the first ones that combine the GPGPU and discrete optimization.
Performed computational experiments indicate that the modern Graphics Pro-
cessing Unit is more powerful than modern multicore Central Processing Unit.
However, there are many difficulties in porting the optimization methods into
GPGPU. Those difficulties follows from the fact that the splitting the computa-
tions into mutually independent kernels to be processed in parallel by GPU may
be difficult or even impossible. Moreover, the limitations of shader programming
may cause the impossibility of porting some methods to GPGPU. On the other
hand, optimization methods that can be easily parallelized can be implemented
according to GPGPU principle and utilize all the power of modern PCs. The
demanding market of GPUs (especially market of video games) causes the rapid
evolution of the GPUs, so mentioned above limitations in shader programming
may not exist in the near future.

2425Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



2,5

3,0

3,5

4,0

0,0

0,5

1,0

1,5

2,0

10 20 30 40 50 60 70 80 90 100 110 120

Figure 2: The (GPU time)/(CPU time) ratio for m = 15 processors. Values
greater than 1 indicate that GPU implementation is faster than CPU imple-
mentation. G8 – dotted line, G32 – dashed line, G112 - solid line

References

[Fernando and Kilgard 2003] Fernando, R., Kilgard, M. J.: “The Cg Tutorial: The
Definitive Guide to Programmable Real-Time Graphics”; Addison-Wesley, 2003

[Glover 1989] Glover, F.: “Tabu search. Part I”; ORSA Journal on Computing, 1
(1989), 190-206

[Glover 1990] Glover, F.: “Tabu search. Part II”; ORSA Journal on Computing, 2
(1990), 4-32

[Nowicki and Smutnicki 1998] Nowicki, E., Smutnicki, C.:“The flow shop with parallel
machines: A tabu search approach”; European Journal of Opemtional Research, 106
(1998), 226253

[Oguz et. al. 2004] Oguz, C., Zinder, Y., Do, V. H., Janiak, A., and Lichtenstein,
M.:“Hybrid flow-shop scheduling problems with multiprocessor task systems” ;Eu-
ropean Journal of Operational Research, 152 (2004), 115131

[Owens et. al. 2005] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krger, J.,
Lefohn, A. E., and Purcell, T. J: “A Survey of General-Purpose Computation on
Graphics Hardware”, In Eurographics 2005, State of the Art Reports, August 2005,
21-51.

[St-Laurent 2005] St-Laurent, S.: “The COMPLETE Effect and HLSL Guide ”; Para-
doxal press, 2005

2426 Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU



[Taillard 1983] Taillard, E.: “Some efficient heuristic methods for the flow shop se-
quencing problem”; European Journal of Operational Research, 47 (1983), 6474

2427Janiak A., Janiak W., Lichtenstein M.: Tabu Search on GPU


