
Composition and Run-time Adaptation of Mismatching

Behavioural Interfaces

Javier Cámara
(Department of Computer Science, University of Málaga, Málaga, Spain

jcamara@lcc.uma.es)

Gwen Salaün
(Department of Computer Science, University of Málaga, Málaga, Spain

salaun@lcc.uma.es)

Carlos Canal
(Department of Computer Science, University of Málaga, Málaga, Spain

canal@lcc.uma.es)

Abstract: Reuse of software entities such as components or Web services raise com-
position issues since, most of the time, they present mismatches in their interfaces.
These mismatches may appear at different interoperability levels: signature, behaviour,
quality of service and semantics. The behavioural level is crucial and behavioural mis-
matches must all be corrected, although this is a difficult task. So far, most adaptation
approaches which deal with behavioural mismatches work on a fixed description of com-
ponents where all ports involved in their interfaces are known at design-time. Here, we
focus on systems in which composition is affected by run-time behaviour of the system.
This is the case in pervasive systems where a client interacts with a specific service by
using new communication channels dynamically created. These are of special interest
to allow private interaction between several entities.

In this article, we define a behavioural model inspired by the π-calculus to specify be-
havioural interfaces of components. Our model is particularly suitable for creating new
channels dynamically, also taking concurrent behaviours into account. The dynamic
nature of the systems we are dealing with obliges to apply adaptation at run-time,
avoiding at the same time the costly generation of full descriptions of adaptors. The
main contribution of this article is an adaptation engine that allows the dynamic cre-
ation of channels and applies at run-time a composition specification built at design-
time. All the underlying formal foundations of our proposal have been implemented in
a prototype tool that has been applied to system designs. Aspect-Oriented Program-
ming has been studied as well, as a way to implement our engine for further application
to real software components.
Key Words: Components, Behavioural Interfaces, Transition Systems, Mismatch,
Composition, Run-Time Adaptation, Validation, Aspect-Oriented Programming.
Category: D.2, D.2.1, D.2.2, D.2.10, D.2.11, D.2.13

1 Introduction

Construction of software systems by reusing existing software entities1 is a widely
accepted process in the software engineering community. Thus, the design of an
1 We will use component as a general term in the remainder of this article, standing

for any kind of software entity (software component, Web service, agent, etc.)

Journal of Universal Computer Science, vol. 14, no. 13 (2008), 2182-2211
submitted: 31/10/07, accepted: 27/6/08, appeared: 1/7/08 © J.UCS

application is mainly concerned with the selection, composition and adaptation
of different pieces of software rather than with the programming of applications
from scratch. Components are accessed through their public interfaces that usu-
ally distinguish four interoperability levels [Canal et al. 2006a]. The signature
level provides operation names, type of arguments and return values, as well as
exception types. The behavioural level specifies the order in which the compo-
nent messages are exchanged with its environment. The service level groups other
sources of mismatch, usually related to non-functional properties like temporal
requirements, resources, security, etc. Finally, the semantic level is concerned
about component functional specifications (i.e., what they actually do).

Software components are seldom reusable as is because of mismatches that
may appear at these different levels. These mismatches have to be corrected with-
out modifying the component code due to its black-box nature. A very promising
approach in software composition, namely software adaptation, aims at generat-
ing, as automatically as possible, adaptor components which are used to solve
mismatches in a non-intrusive way [Yellin and Strom 1997, Canal et al. 2006a].
Adaptor generation approaches need an abstract specification (called mapping
or composition specification) of the interactions and adaptations to be applied
in order to make all the components work together correctly. Currently, indus-
trial platforms only provide some means to describe components at their signa-
ture level (e.g., CORBA’s Interface Definition Language). However, most of the
time mismatch occurs at the aforementioned behavioural level, due to an incom-
patibility in the order of the exchanged messages between components, which
can lead to deadlocks (situations in which the system is blocked indefinitely).
Similarly to several recent proposals in Component-Based Software Engineering
and Software Adaptation [Alfaro and Henzinger 2001, Allen and Garlan 1997,
Andrews et al. 2005, Arbab et al. 2002, Bracciali et al. 2005, Magee et al. 1999,
Yellin and Strom 1997], we focus on the behavioural interoperability level, ex-
tending interfaces with a protocol description and dealing with the different
compositional issues between them.

Many types of software systems are particularly characterized by structural
changes at run-time, requiring communication along channels which are dynam-
ically created. Such is the case of dynamic discovery and invocation of Web
services, where entities may engage in the execution of the system at any time.

Existing adaptation approaches [Yellin and Strom 1997, Canal et al. 2006b,
Schmidt and Reussner 2002, Inverardi and Tivoli 2003a, Bracciali et al. 2005]
rely exclusively on static system information available at design-time (i.e., a
fixed structure of connected components and interfaces). Thus, they are not
suitable to properly model and work out mismatch situations affected by run-
time behaviour of the system. In order to assess the impact of such behaviour,
we may consider a simple example based on the Universal Description, Discov-

2183Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

ery and Integration (UDDI) [UDDI 2000] standard used in Web services, where:
(i) a Web service requester searches an UDDI registry, finding the description
of a desired service, (ii) the UDDI registry delivers a Web service description
along with a reference to the Web service provider to the requester, and (iii) the
requester connects to the Web service provider using the obtained reference to
invoke the Web service.

The resolution of potential mismatch situations in such non-static systems
entails a number of issues currently unaddressed in the aforementioned proposals.
This work tackles these questions by making the following contributions:

– Formalisation of an adaptation model capable of handling the creation of
new channel names, as well as their passing through channels. The need
of such feature is put forward in our example by the fact that the Web
service requester first has to interact with the UDDI registry, but later has
to continue interaction with the service provider, unknown at design time,
requiring new channels for this purpose.

– Run-time adaptation engine which aims at making components work to-
gether, correcting existing mismatches by using a composition specifica-
tion. While adapting components dynamically, the execution of undesired
behaviours leading to deadlock situations should be avoided. In fact, al-
though a composition specification describes how to solve some mismatch
cases that correspond to deadlocks, it is only an abstract description of how
components work together, and therefore does not consider all the possible
execution scenarios of the system. These can still include additional deadlock
situations which are removed in approaches generating full descriptions of
the adaptor [Inverardi and Tivoli 2003a, Canal et al. 2006b]. Similarly, our
composition engine is capable of adapting a set of components at run-time
and detect branches unable to terminate. This avoids deadlocking execu-
tions, and at the same time it does not require the costly generation of an
adaptor for the whole system.

– New validation techniques to check that the composition specification makes
the involved components work correctly as expected by the designer. These
techniques are completely automated and based on our run-time adaptation
engine.

A preliminary version of this work was published in [Cámara et al. 2007b],
and is extended here in several aspects: (i) presentation of our proposal on an
extended version of the case study, (ii) more detailed proofs for our algorithms,
(iii) description of the Clint prototype tool, (iv) introduction of composition spec-
ification validation techniques,(v) implementation of our approach using Aspect-
Oriented Programming, and (vi) an updated review and comparison with related
work.

2184 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

This article is structured as follows: Section 2 introduces our component
model, and the case study we use throughout this article for illustration pur-
poses. Section 3 presents the composition language which is used as an abstract
description of how components interact, and how mismatches are worked out.
Section 4 describes the engine which applies at run-time a composition specifica-
tion. In Section 5, we present automated techniques to validate the composition
specification, and some insights in order to help the designer to correct it in
case this specification may induce erroneous executions. Section 6 describes the
Clint prototype tool that implements our proposal for composition and run-time
adaptation. In Section 7, we relate our proposal to programming languages and
platforms. Aspect-Oriented Programming is a good candidate because it makes
possible to dynamically intercept messages and apply adaptation as described
in the composition specification. Section 8 compares our approach with related
works. Section 9 ends the article with some concluding remarks.

2 Component Interfaces and Mismatch Detection

In this section, we introduce successively our component model based on Labelled
Transition Systems (LTSs), and a discussion about mismatch detection.

2.1 Behavioural Interfaces

We choose to specify behavioural interfaces using LTSs as notation. This is very
convenient for developing composition algorithms since they rely on the traver-
sal of the different states of the components, and the transition function of LTS
descriptions makes the access to the set of states and their connections straight-
forward. Messages involved in LTSs of components correspond to the operations
used in its signature.

In this work, we extend the notion of LTS with name passing, such as the one
found in the π-calculus. Thus, a component can receive as parameter of a message
a new name that will be further used as a channel in the protocol. Such a feature
is very useful since all channels are not always known at design-time, making
the creation of new channels at run-time and the design of private interactions
possible. Thus, a label is either an emission a!(x), or a reception a?(x) where x

is a parameter used for name passing (parameters are facultative).
Another extension concerns the encoding of parallel process composition as

a concurrent behaviour without communication since composition is expressed
in a separate way (presented in Section 3). This is achieved by introducing con-
current states. These states are identified by two or more labels, one for each
concurrent branch. They are similar to the fork/join states used in UML state
diagrams, where more than one outgoing/incoming transitions encode concur-
rently executing branches of a process.

2185Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

In the rest of this article, we refer to our extended LTS-based model as par-
LTS.

Definition 1 par-LTS. A par-LTS is a tuple (A, S, I, F, T) where: A is an al-
phabet which corresponds to the set of labels hold by transitions, S is a set of
states (either basic or concurrent), I ∈ S is the initial state, F ⊆ S are final
states, and T ⊆ S × A × S is the transition function.

In some cases, for conciseness reasons for example, a textual notation is
better than a graphical one. Thus, a process algebra could be used as a higher
level language to specify behavioural interfaces. A subset of the π-calculus (π-
calculus without spawn operator) is a good candidate for that since it has at
its disposal operators to express basic protocols but also concurrent behaviours
and name passing (this is not the case in other process calculi such as CCS,
CSP or LOTOS). Component par-LTSs can be automatically generated from
processed expressed in a subset of the π-calculus using the operational rules of
the process algebra (see [Milner 1999] for the Structural Operational Semantics
of the π-calculus).

Regarding our model choice, most automaton-based formalisms
such as Hierarchical Automata [Ramsokul and Sowmya 2006], I/O-
automata [Lynch and Tuttle 1989], or Symbolic Transition Systems
(STS) [Ingolfsdottir and Lin 2001] do not feature name passing, therefore
they are not suitable for our purpose. To the best of our knowledge, the
only automaton-based formalism available featuring name passing is History
Dependent Automata [Montanari and Pistore 1997]. Although HD-Automata
are adequate to represent the operational semantics of the π-calculus, we
preferred an alternative and more expressive communication model where
communication does not have to be given on the same channel names, and may
involve more than two processes (n-ary vs. binary interaction).

Example: Rate Finder Service. Our running example consists of a service
which finds the cheapest service rates (e.g., calls, Internet access, etc.) for smart
mobile phones from the different communication providers available, depending
on the phone’s location. Hence, when roaming, a mobile phone can connect to
the service, and once the cheapest available rate has been received, the user can
either request a connection to the provider or end its communication with the
service if the offered rate is not interesting. Figure 1 presents the behavioural
interfaces of the different components involved in this example.

The Client interface first requests the lowest rate to the service
(requestRate!), and after receiving it, it can either ask to be connected to the
cheapest provider’s network (in this case it receives a private session identifier
through session?(sid)), or else it can disconnect from the service (end!). If the

2186 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

CLIENT

requestRate!

lowestRate?

end!connect!

sid!(serv)

sid?(access)

sid!(quit)

open?(conn)

conn?(serv)

conn!(access)

request?

sendServ!(m)

m!(sendFare)

m?(end)m?(connect)

m!(conn)

SERVICE

PROVIDER

session?(sid)
conn!(fee)

conn?(pay)

Figure 1: Par-LTSs for the rate finder service

client decides to connect, it interacts with the service provider through the afore-
mentioned private session requesting a service, until it decides to exit from the
provider’s network.

The Service interface receives requests to find the provider with the lowest
rates. Once the service receives a request, it serves this request on a new private
communication channel m, which is returned to the client (sendServ!(m)). The
requested information is returned (m!(sendFare)), and then the service waits
for a connection request (m?(connect)), or else for the withdrawal from the
service (m?(end)). If the client decides to connect to the network provider, then
the service provides a private channel conn both to client and provider on which
they can interact. Last, it may receive a payment (conn?(pay)) from the provider
for which it has found a new client.

The Provider interface receives incoming client requests on a specific com-
munication channel conn (open?(conn)), and then it can concurrently receive
incoming service requests from the client, and pay a fee (conn!(fee)) to the
finder service which has found a new client for him.

2.2 Mismatch Detection

Most of the time, components cannot be reused as they are because interac-
tions among them would lead to an erroneous execution, namely a mismatch.
In practice, mismatch situations may be caused when message names do not

2187Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

correspond, the order of messages is not respected, a message in one component
has no counterpart, or a message matches with several messages.

More formally, cases of mismatch lead the whole system to deadlock states. A
deadlock state is a state which is not final and for which no outgoing transitions
exist. A system deadlocks when all its constituent components are blocked be-
cause at least one of them is in a deadlock state. Accordingly, mismatch detection
is figured out in two steps: (i) computing the full system using the par-LTS prod-
uct where (binary) communication is enforced on the same name of messages,
(ii) searching for deadlock states in the resulting par-LTS.

However, this method does not extract all the mismatch cases but only those
that can be reached assuming that the involved components can interact using
same names of messages. This test can then be used in a first step to start
the construction of the composition specification (see Section 3) that describes
how mismatch situations are solved. While building this specification, validation
techniques presented in Section 5 will help the designer in a second step to
build incrementally and correct the composition specification. To the best of our
knowledge, there are no techniques so far that allow to detect all the mismatches
between a set of components to be assembled. Accordingly, beyond the test
mentioned above that basically is reduced to indicate if protocols are compatible
or not, the only way to extract all the mismatches is (visual) analysis performed
by the designer.

Example. The composition of the different components in this example is sub-
ject to different mismatch situations:
(M1) Name mismatch can occur if a particular process is expecting a partic-
ular input event, and receives one with a different name (e.g., Client sends
requestRate! while Service is expecting request?).
(M2) Independent evolution is given if an event on a particular interface has
not an equivalent in its counterpart’s interface. If we take a closer look at the
Client and Service interfaces, it can be observed that while the client is ex-
pecting the lowest rate just after its request, the service is sending two messages
(sendServ!(m) and m!(sendFare)). While the latter actually sends the lowest
rate to the client, the former has no correspondence on the Client interface.
(M3) Broadcasting. It can be required by the nature of the composition to
synchronise more than one component on a single communication. In our case
study this can be observed when the service sends a private name (m!(conn)) to
the provider and the client, enabling them to connect directly. In this case, the
Provider interface receives an incoming connection (open?(conn)), although the
Client needs to be notified that it has been connected to the provider as well
(session?(sid)).
(M4) Private vs. non-private communication. New processes can be created in
order to serve particular requests from incoming clients through private com-

2188 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

munication channels. However, different components may be built with differ-
ent communication protocols. Particularly, in our case study we can observe
that while the Client interface is expecting non-private communication through
lowestRate? in order to receive the lowest available rate, the Service interface
creates instead a private communication channel which is going to be used to
send this information (m!(sendFare)), resulting in a mismatch.

3 Composition and Adaptation Language

In this section, we present our composition language that makes communication
between components explicit, and specifies how to work out mismatch situations.

To make communication explicit, we choose synchronisation (or syn-
chronous) vectors, which denote communication between several components,
where each event appearing in one vector is executed by one component and the
overall result corresponds to a synchronisation between all the involved compo-
nents. A vector may involve any number of components and does not require
interactions on the same names of events as it is the case in process algebra. Vec-
tors can describe expressive communication patterns, such as broadcast commu-
nication (one sender and several receivers), or synchronisation between several
senders and several receivers (in this case, emitted names appearing as parameter
have to match).

Definition 2 Vector. A vector for a set of components Ci, i ∈ {1, .., n}, is a
tuple 〈l1, . . . , ln〉 with li ∈ Ai ∪ {ε}, where Ai are the alphabets of components
Ci and ε means that a component does not participate in a synchronisation.

To identify component messages in a vector, their names are prefixed by the
component identifier, e.g., 〈c1 :comm!, c2 :ε, c3 :comm?〉.

We use as abstract notation for our composition language an LTS with vectors
on transitions. This LTS is used as a guide in the application order of interactions
denoted by vectors. This order between vectors is essential in some situations in
which mismatch can be avoided by applying some vectors in a specific order. If
only correpondences are necessary between components, the vector LTS may let
abstract the vector application order by including a single state with all vector
transitions looping on it.

Definition 3 Composition Language. A composition language for a set of
components Ci, i ∈ {1, .., n}, is a couple (V, Cce) where V is a set of vectors for
components Ci, and Cce is a vector LTS.

Reordering of messages is needed in some communication scenarios to ensure
a correct interaction when two communicating entities have messages which are
not ordered as required. In our proposal, such a reordering of messages can

2189Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

be specified making it explicit in the composition specification. Let us consider
two components C1 and C2 (written in CCS for conciseness), exchanging login
and request information, with messages that have to be reordered to make the
communication possible: C1 = log!.req!.0, C2 = query?.id?.0. Our approach
can reorder messages using the following vectors 〈c1 : log!, c2 : ε〉, 〈c1 : req!, c2 :
query?〉, and 〈c1 : ε, c2 : id?〉, in which we specify that the interaction on log
is desynchronised, temporarily memorised until its use for effective interaction
on id. This leads to an execution trace where components C1 and C2 execute
successively the following messages: c1 : log!, c1 :req!, c2 :query?, c2 : id?.

Example. Considering our running example, we propose a composition expres-
sion in order to solve the different mismatch situations described in the previous
section. This is specified by the following set of synchronisation vectors, and
the vector LTS depicted in Figure 2. The events in the vectors are prefixed
with c, s, and p, which stand for the Client, Service, and Provider compo-
nents, respectively. In addition, only formal channel names are used for private
communication, since actual channel names are not available until the different
components are being composed:

vreq = 〈c :requestRate!, s :request?, p :ε〉
vsserv = 〈c :ε, s :sendServ!(m), p :ε〉
vfar = 〈c : lowestRate?, s :m!(sendFare), p :ε〉
vconn = 〈c :connect!, s :m?(connect), p :ε〉
vsess = 〈c :session?(sid), s :m!(conn), p :open?(conn)〉
vend = 〈c :end!, s :m?(end), p :ε〉
vserv = 〈c :sid!(serv), s :ε, p :conn?(serv)〉
vnserv = 〈c :ε, s :ε, p :conn?(serv)〉
vacc = 〈c :sid?(access), s :ε, p :conn!(access)〉
vquit = 〈c :sid!(quit), s :ε, p :ε〉
vfee = 〈c :ε, s :conn?(pay), p :conn!(fee)〉
First, while vreq for instance deals with name mismatch (M1), vsserv and

vquit make events correspond to none, solving the different independent evolu-
tion situations (M2). Next, vsess broadcasts the emission of m!(conn) both to
Client and Provider components to establish a connection between them (M3).
Finally, vfar solves a private communication issue by making the client receive
on lowestRate? the fare sent by the service through channel m (M4).

The writing of the vector LTS for the composition specification (see Figure 2)
is simplified by keeping in some places non-determinism in the composition spec-
ification, for instance by leaving open different possible application orders of vreq,
vconn, vsserv, and vfar to let the composition process decide which order – if any
– is correct. On the contrary, the order of vector application may be enforced
to make the different evolutions of the system explicit. Note that in some cases,

2190 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

vreq

vfar

vsserv
vend

vconn

vsess vaccvserv

vnserv

vquit vacc

vfee

Figure 2: Case study vector LTS

this order is mandatory to make the system work as required and avoid unde-
sired behaviour. A classic example is when one component, a client for example,
works in connected mode (one connection and multiple access to the service)
whereas the server component requires a connection each time the service is
accessed [Canal et al. 2006b] (non-connected mode). In this case vnserv must be
explicitly applied after vserv and vacc in order to allow the client to receive sub-
sequent service access, otherwise the system would be able to evolve only if the
client quits the provider, receiving only a single service access.

4 Run-time Adaptation

Our run-time adaptation engine coordinates all the components involved in the
system with respect to a set of interactions defined in the composition specifi-
cation. Consequently, all the components are communicating through the en-
gine [Inverardi and Tivoli 2003b]. Imagine two components: C1 = on!.0 and
C2 = activate?.0 with vector 〈c1 : on!, c2 : activate?〉 as a solution to these
mismatching messages. The engine will communicate first with component C1

through on?, and then will interact with component C2 through activate!. The
engine synchronises with the components using the same name of messages but
using reversed directions, e.g., communication between on! in C1 and on? in the
engine. Furthermore, the engine always starts a set of interactions formalised in
a vector by the receptions (on?), and next handles the emissions (activate!): it
would be meaningless to send something that has not been received yet.

This section introduces successively two algorithms. The first one searches
for the existence of a final state for the global system using depth-first search.
The second one applies a composition specification at run-time resulting in the
dynamic execution of the involved components.

4.1 Existence of Global Final States

Although the composition specification aims at solving mismatch cases that
correspond to deadlocks, its application can still lead to remaining deadlocks.

2191Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

Indeed, the composition specification is an abstract description of how compo-
nents work together, and does not take into account all the possible execution
scenarios of the system. Removing these remaining spurious interactions is re-
quired to let the system reach a final state. Since the composition specifica-
tion is applied at run-time, it is not possible to apply the removal of deadlocks
as a pre-processing as it is the case in static coordination and adaptation ap-
proaches [Inverardi and Tivoli 2003a, Canal et al. 2006b]. Therefore, before ap-
plying a vector which belongs to the composition specification, we check that
after the application of this vector, there exists at least one global final state for
the whole system (i.e., all components and the composition specification are in
a final state). Thus, our adaptation engine will prevent the system to end up in
deadlocking situations. We will illustrate that on a specific situation which takes
place in our running example further in this section.

Algorithm 1 takes as input the component par-LTSs Ci, the composition
specification Cce, a vector v, and the current state of the system (i.e., the current
states of the components as well as the current state sce of the composition
specification). This algorithm relies on a depth-first search traversal, and stops
as soon as a final state for the whole system has been found. The main idea
is that vectors belonging to the composition specification are applied going in
depth until we reach either a final state (end of the algorithm), or a deadlock
state. In the latter case, we backtrack and try another path. We keep track of
the already traversed states to avoid endless execution of our algorithm.

Now, we define more formally the different functions used in Algorithm 1.
In order to check if all the components and the composition specification have
reached their final state, we define the function final as:

final(states, Fi, sce, Fce) =
f(states[1], F1) ∧ . . . ∧ f(states[n], Fn) ∧ sce ∈ Fce

f([s1, . . . , sm], F) = s1 ∈ F ∧ . . . ∧ sm ∈ F

Function applicable returns an interaction vector extracted from V . In case
several vectors can be applied, a single one is non-deterministically chosen.

applicable(states, Ci, sce, Cce) =⎧⎪⎪⎨
⎪⎪⎩

v if (sce, v, s′ce) ∈ Tce, (∀l ∈ v) l 	=ε, j∈{1, . . . , n}, sj =states[j],

run(sj , l, Tj) = s′j , and s′j 	= s⊥
v⊥ otherwise (no vector applicable)

The communication case in which vector v involves several emissions can
be handled enforcing in the function applicable that all the names sent in
the emissions are the same: par(l1) = . . . = par(lk) where {l1, . . . , lk} =
extract emissions(v), function extract emissions retrieves all the emissions
which belong to a specific vector: extract emissions(〈l1, . . . , ln〉) = {li | li =
e!(x)} and function par retrieves sent or received names: par(e!(x)) =
x, par(r?(x)) = x.

2192 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

Algorithm 1 exist final
tests if the application of a vector may lead to a final state for the system
inputs states, compo. Ci∈{1,...,n} = (Ai, Si, Ii, Fi, Ti), sce, Cce =
(Ace, Sce, Ice, Fce, Tce), and a vector v
output a boolean
1: visited := {} // set of visited states
2: current := sce // current state in the composition specification
3: path := [] // current path
4: cloop := true // loop condition
5: cypaths := {} // cyclic paths
6: while ¬final(states, Fi, sce, Fce) ∧ cloop do
7: states := next states(v, states, Ti)
8: current := next(current, v, Tce)
9: path := append(path, (current, states))

10: visited := visited ∪ {current}
11: while ¬final(states, Fi, sce, Fce) ∧ v=v⊥ ∧ path �=[] do
12: v := applicable(states,Ci, current, Cce)
13: states′ := next states(v, states, Ti)
14: current′ := next(current, v, Tce)
15: path′ := append(path, (current′, states′))
16: cond := next(current, v, Tce)∈visited ∧ stability(path′, cypaths)
17: if cond ∧ ¬isin(path, cypaths) then
18: cypaths := cypaths ∪ {path}
19: end if
20: if v = v⊥ ∨ cond then
21: current := left(last(path))
22: states := right(last(path))
23: path := remove last(path)
24: end if
25: end while
26: cloop := (v �= v⊥)
27: end while
28: return final(states, Fi, sce, Fce)

Function next states computes the next states of the involved components
from their current states and a vector:

next states(〈l1, . . . , ln〉, states, Ti) = [s′1, . . . , s
′
n]

where ∀i ∈ {1, . . . , n} run(states[i], li, Ti) = s′i
Function next computes the next state in the composition specification being

given a state s and a vector label v:
next(s, v, T) = s′ where (s, v, s′) ∈ T

In the inside while loop, we rely on a stability function (stability) that en-
ables the application of a vector even if it leads to an already traversed state
of the composition specification. This is necessary since in some cases, several
executions of a cycle in the vector LTS may make all the involved components
finally lead to a termination state. However, we have to control the exploration of
these paths to avoid non-terminating executions of our algorithm. Accordingly,
this stability function returns true (false otherwise) if a looping behaviour is
detected in the current path (repetition of same vectors and traversal of same

2193Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

states in component par-LTSs). Next, the algorithm backtracks to explore an
unvisited part of the system. Cyclic paths are easily detected by analysing the
path variable obtained after the application of a new vector, and several existing
algorithms can be used to find out these cycles. In this article, we chose the
Floyd’s cycle-finding algorithm [Knuth 1969]2. To avoid to traverse again these
cyclic paths, we store them in a variable cypaths, and function stability forbids
to explore them again.

stability(path, cypaths) ={
true if isin(path, cypaths)

find cycle(path) otherwise
where algorithm find cycle returns true if a cycle is detected in the current

path, or false otherwise.
Let us formalise the set of functions we apply on the path variable that

corresponds to a list of couples:
append([c1, . . . , cn], c) = [c1, . . . , cn, c]
last([c1, . . . , cn]) = cn

remove last([c1, . . . , cn−1, cn]) = [c1, . . . , cn−1]
Functions left and right apply to a couple and are defined as: left((cl, cr)) =

cl, right((cl, cr)) = cr. Last, function isin tests if a path appears as subpath in
the list of cyclic paths.

isin(p, {p1, . . . , pn}) = isin′(p, p1) ∨ . . . ∨ isin′(p, pn)
isin′([c1, . . . , cm], [c′1, . . . , c

′
k]) ={

c1[1] = c′1[1] ∧ . . . ∧ cm[1] = c′m[1] if m ≤ k

false otherwise

The complexity of Algorithm 1 is linear – O(|Sce|) – since, in the worst case,
the whole vector LTS standing for the composition specification is traversed,
the cycle-finding algorithm is applied during this traversal, and this algorithm
obliges to traverse again the vector LTS at most a constant number of times. For
each vector transition in the composition specification, component par-LTSs are
not traversed because we keep track in the states variable of the current state of
each component par-LTS, therefore, we can access directly their next states.

Theorem 4 Algorithm 1 Termination. Given n component par-LTSs Ci, a
composition specification Cce, the current state of the system (components and
composition specification), and a vector to be applied, the algorithm terminates.

Proof (intuition). The algorithm runs until (i) it has found a global final state,
or (ii) it has traversed the vector LTS completely without finding a final state.

2 The authors quote a Knuth’s reference because Floyd has never published his cycle-
finding algorithm. Knuth was the first to present it in the referenced book, and
acknowledged Floyd for the algorithm.

2194 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

First of all, let us comment more precisely conditions of both while loops.
The outer loop stops when the global state is a final state, or no vector is
applicable. The inner loop ends when an applicable vector has been encountered.
The stability function allows to apply a vector that can be run again although
all the states have already been visited. Indeed, in some cases, some part of
the system (components and composition specification) may loop several times
on same interactions before the whole system reaches a global final state. To
avoid endless executions, the stability function relies on a cycle-finding algorithm
which is used to detect repeated behaviours, and makes the algorithm terminate
when such cycles are found out during the traversal.

Thus, the first case (i) is ensured thanks to both loop conditions that rely
on the final predicate: as soon as a global final state is reached, both conditions
turn out to be false, and the algorithm terminates.

The second case (ii) is ensured by a joint use of the visited variable and the
stability function. The visited variable stores the set of already traversed states
and is used within the inner while loop to avoid the firing of a new vector that
would lead to an already visited state. However, some states must be traversed
several times and some vector transitions run again to reach some final states.
This is achieved using the stability function that permits such a repeated appli-
cation while applying a cycle-finding algorithm to detect looping behaviours. In
the latter case, these cyclic paths are stored in the cypaths variable not to treat
them again if they have already been traversed. �
Theorem 5 Algorithm 1 Correctness. Given n component par-LTSs Ci, a
composition specification Cce, the current state of the system (components and
composition specification), and a vector to be applied, the algorithm returns a
boolean indicating the existence (or not) of a global final state for the system.

Proof (intuition). We start pointing out that our algorithm is based on classic
graph traversal algorithm, but extended to deal with our precise problem (com-
position of components using several LTSs). This proof has to deal with two
cases. In the first case, if it exists a final global state, this state will be encoun-
tered, and the algorithm will stop returning true. In the second case, there is no
final state, and the algorithm returns false. The first case is the most relevant
since in the second case, the single important point is termination, and it was
already discussed in the proof presented above.

The first case relies on a depth-first search algorithm with backtracking in
case no vector is applicable in the current state of the overall system. Accordingly,
all the states of the system are visited. The stability function allows to traverse
again visited states if an applicable vector exists up to cycles that would make
the system loop forever. Finally, when a final state is encountered, conditions in
both loops make the algorithm terminate, and the result of predicate final is
returned, that is true in this case. �

2195Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

Example. We focus on a piece of our running example to illustrate how the final
state detection is used to avoid a deadlock situation. In Figure 3, we can observe
that the highlighted part of the client specification first requests a service, then
can access it as many times as needed, and at some point quits. On the other
hand, the provider waits for a request and provides a service.

CLIENT

requestRate!

lowestRate?

end!connect!

sid!(serv)

sid?(access)

sid!(quit)

open?(conn)

conn?(serv)

conn!(access)

request?

sendServ!(m)

m!(sendFare)

m?(end)m?(connect)

m!(conn)

SERVICE

PROVIDER

session?(sid)
conn!(fee)

conn?(pay)

vacc vnserv

vacc

vserv vquit

v
quit

s dead

Figure 3: Deadlocking application of vectors

Vectors vserv, vacc, vnserv, vquit in Figure 2 are those dedicated to this part of
the composition. We show in Figure 3 the transition system summarising all the
possible applications of these vectors with respect to the highlighted parts of the
interfaces. After the application of vnserv (state s), the client may evolve by vquit

(this would be a correct evolution of the client to its final state) which would
insert a deadlock in the system since the provider would be eventually blocked:
it can send an access conn!(access) but the composition expression has reached
a final state, and no vectors are fireable. Fortunately, our exist final algorithm
detects that the application of vquit in state s would lead to a deadlock (no future
correct final state), and therefore the only vector which can be run is vacc.

2196 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

4.2 Run-time Adaptation Engine

This section presents our adaptation engine which applies a composition specifi-
cation at run-time since new channel names are created dynamically and cannot
be known beforehand. The right substitutions of channel names are dynam-
ically performed by the algorithm. We will illustrate how these substitutions
are essential to make the communications between the engine and the involved
components work.

Algorithm 2 manages the composition between several component par-LTSs
with respect to a given composition specification. We propose a composition
which respects the sequential interactions described within vectors of the com-
position specification, that is, events belonging to two different vector transitions
of the composition specification are never interleaved. Such an interleaving may
happen in some cases in which components involved in two subsequent vectors
are completely unrelated.

The composition algorithm applies successively vectors that can be fired with
respect to the current state of the system. For each vector, first receptions in the
adaptation engine are executed (corresponding to emissions in the components),
and then emissions (corresponding to receptions in the components). The algo-
rithm keeps track on the current state of the vector LTS (sce) as well as on the
current states of the components (states). The algorithm ends when the global
system has reached a final state. Since the selection of an applicable vector also
relies on the final state existence algorithm presented in Section 4.1, we engage
the first time in the while loop only if there exists a global final state for the
system (v 	= v⊥), otherwise the composition is not launched. Notice the abstract
loop condition introduced in order to control iterative behaviours within the
system at hand. This condition can be adjusted to make the algorithm continue
the composition beyond a global termination state an arbitrary number of times
(if there are applicable vectors available). We use a substitution environment
E for each of the participating components, defined as a function where each
formal name is associated to one actual name. Such an environment is useful to
replace formal names used in the vectors by real ones that are generated by the
components during their execution.

Let us define the functions used in the composition algorithm. Function se-
lect vector bases on the applicable and exist final functions, and is in charge of
selecting a vector that applies and ensures the existence of a future final state:

select vector(states, Ci, sce, Cce, Ei) =⎧⎪⎪⎨
⎪⎪⎩

v if v = applicable(states, Ci, sce, Cce, Ei),

v 	= v⊥, exist final(states, Ci, sce, Cce, v)

v⊥ otherwise (no vector applicable)
We define emissions and receptions which return the set of emissions and

receptions respectively, of any given synchronisation vector. These functions also

2197Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

Algorithm 2 run-time composition
composes at run-time a set of components wrt. a composition specification
inputs components Ci∈{1,...,n} = (Ai, Si, Ii, Fi, Ti), compo. Cce =
(Ace, Sce, Ice, Fce, Tce)

1: states := [[I1], . . . , [In]] // current states in Ci

2: E1 := ∅, . . . , En := ∅ // substitution environments
3: sce := Ice // current state in the composition specification
4: v := select vector (states,Ci, sce, Cce, Ei)
5: while v �= v⊥ ∧ (¬final(states, Fi, sce, Fce) ∨ loop) do
6: Rec := emissions(v, Ei)
7: Em := receptions(v, Ei)
8: x := generateVar ()
9: repeat // effective receptions

10: r?(x) | r ∈ Rec, j∈{1, . . . , n}, sj =states[j],
l ∈ Aj , run(sj , l, Tj)=s′j, r=obs(l,Ej)

11: Rec := Rec\{r}
12: states[j] := s′j
13: until Rec = ∅
14: repeat // effective emissions
15: e!(x) | e ∈ Em, j∈{1, . . . , n}, sj =states[j],

l ∈ Aj , run(sj , l, Tj)=s′j, e=obs(l,Ej)
16: Em := Em\{e}
17: states[j] := s′j
18: Ej := Ej ∪ {(par(l) �→ $x)} // $x is the value of var. x
19: until Em = ∅
20: sce := next(sce, v, Tce)
21: v := select vector (states,Ci, sce, Cce, E)
22: end while

substitute formal names used in the vectors by the actual ones appearing in the
environment E:

emissions(〈l1, . . . , ln〉, Ei) = em(l1, E1) ∪ . . . ∪ em(ln, En)

em(l, E) =

{
{subn(e, E)} if l = e!(x)

∅ if l = r?(x) ∨ l = ε

receptions(〈l1, . . . , ln〉, Ei) = rec(l1, E1) ∪ . . . ∪ rec(ln, En)

rec(l, E) =

{
{subn(r, E)} if l = r?(x)

∅ if l = e!(x) ∨ l = ε

where

subn(e, E) =

{
E(e) if e ∈ dom(E)

e otherwise
The observational part of an event l is defined as: obs(e!(x), E) = subn(e, E),

obs(r?(x), E) = subn(r, E). The \ operator denotes the set difference defined as:
E1\E2 = {x | x ∈ E1 ∧ x 	∈ E2 }. The abstract function generateV ar derives
new variables when required.

The complexity of Algorithm 2 is polynomial – O(|Sce|2). For each composi-
tion step, we know the current state of the whole system, therefore the extrac-

2198 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

tion of applicable vectors with respect to the current state of the whole system is
straightforward. However, for each vector, the function exist final is called, and
in the worst case, the vector LTS is traversed a constant number of times (see
complexity of exist final algorithm in Section 4.1).

Theorem 6 Algorithm 2 Correctness. Given n component par-LTSs Ci,
and a composition specification Cce, the algorithm makes all of them (Ci and
Cce) terminate in their respective final states.

For this algorithm, correcteness ensures also termination, consequently we
present a single proof.
Proof (intuition). In a first case, the algorithm does not start any interaction
since there is no reachable global final state, and the while loop is never entered.
In such a case, all the components do not evolve and they end in their initial
states. We have assumed initial states being final in behavioural interfaces of
components to ensure the correctness of the composition. Composition being
a process which is dependent of the composition specification, the process may
yield a system in which no interactions are possible in case of having an incorrect
or under-specified composition specification. Tagging all initial states as final
ensures correctness.

In the second case, the algorithm makes all the components terminate in one
of their final states as well as the composition specification. This second situation
corresponds to the firing of the while loop at least once. In this case, it means that
it exists at least one final state for the global system. The successive selection
of vectors that can be applied will avoid all the possible deadlock situations
(thanks to the exist final algorithm), and therefore the algorithm will make all
the components converge to one of these final states. The while loop ends when
one global final state is reached. �
Example. Figure 4 gives a possible execution scenario that is obtained running
the adaptation engine on our example. The figure shows interactions that occur
in the system, vectors that are executed, and extensions of the environments.
Although this figure corresponds to a specific scenario, we have added in dashed
lines some other possible evolutions of the system. Similarly, the execution might
have stopped at the mid-bottom state of the figure without any interaction
between the client and the provider (because in this state, all the components
are in final states, and the composition expression as well), or the execution
might have continued after the top left final state in case the client would have
required another service to the provider component.

As far as the firing of events is concerned, we recall that the adaptation
engine is coordinating the whole system, therefore all the messages are canalised
through it. As an example, when the first vector is run, it corresponds to two

2199Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

c:requestRate? s:request! s:sendServ?(x1)

s:m?(x2)

c:lowestRate!

c:connect?

vend

s:m!(x3)

s:m?(x4)c:session!(x4)
{sid→conn}∪Ec

p:open!(x4)

c:conn?(x5)p:conn!(x5)
{serv→serv}∪Ep

vnserv

p:conn?(x6)

c:conn!(x6)
{access→access}∪Ec

c:conn?(x7)

vfar

vconn

vreq vsserv

vquit

vacc

vserv vsess

c:session!(x4)

p:open!(x4)
{conn→conn}∪Ep

Figure 4: Run-time composition in action

interactions, the first one (requestRate) between the client and the engine, and
another one (request) between the engine and the server.

During execution, the different environments (Ec, Es, and Ep) for the Client,
Service, and Provider components may be updated. For instance, focusing on
the reception of x4 coming with message m from the service component (firing
of vector vsess in the mid-bottom of Figure 4), it can be observed that environ-
ments Ec and Ep are extended associating their formal names (sid and conn,
respectively) which appear in their interfaces and in the vector by the actual one
which is received in x4, namely conn. Environments are also necessary to make
interactions between the engine and the components work correctly. For exam-
ple, while applying vector vserv, the formal name sid in sid!(serv) is replaced
using the actual name conn. This correspondence is achieved using the couple
(sid, conn) in Ec, assigned while executing vsess.

In some cases, the engine receives a value, without forwarding it (see vector
vsserv in the top part of Figure 4). Likewise, a vector may express a correspon-
dence between a message without parameter, and a message with one (e.g.,
vconn). In this case, the engine receives no value, and emits an empty value x3

(see the right hand part of the figure). Finally, as regards the 3-party commu-
nication involved in vector vsess (bottom of Figure 4), we show in dashed lines
that since the engine is sending two messages, both orders are possible.

2200 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

5 Validation of Composition Specifications

A composition specification may induce erroneous executions of the system.
Indeed, this specification has to be manually written by a designer who
can introduce errors while making explicit interactions between the differ-
ent components at hand. This specification task is error-prone also because
of the complexity of the system that the designer has to deal with. To
help the designer in this task recent proposals aimed at building adaptors,
and therefore adaptation specifications, incrementally [Poizat and Salaün 2007].
Other works [Ben Mokhtar et al. 2005, Brogi et al. 2006a] focus on semantic ap-
proaches to automatically build such compositions. However, these latter ap-
proaches assume specific descriptions of component interfaces, and in particular
that a semantic description of components or (Web) services is provided.

In this section, we propose some new validation techniques to check that the
composition specification makes the involved components work correctly and as
expected by the designer. These techniques are completely automated, and are
based on the composition engine we have presented in Section 4. The basic idea is
to generate many execution traces using our engine that we will use in a second
step to evaluate the composition specification. In order to obtain all possible
execution traces, and above all the erroneous ones, the final state existence test
is turned off. From such a set of traces, we extract the following information that
can be used by the designer to refine and if necessary correct the composition
specification:

– Unreachable states allow the designer to identify which states of the com-
position cannot be visited. This is specially interesting in the case of final
states.

– Unreachable transitions identify the transitions which cannot ever be fired,
preventing access in some cases to a specific state or branch of the composi-
tion specification.

– Deadlock traces are particular sequences of applied vectors that lead to a
deadlock situation. This information is not obvious at all and the potential
number of vector sequences to apply is usually huge. In non-trivial cases, it
is impossible for the engineer to check all these potential deadlock situations
manually.

6 Tool Support and Applications

The approach for run-time composition and adaptation that we have presented in
this article has been implemented in a prototype tool, called Clint (Composition
Language Interpreter). Clint implements the algorithms that simulate run-time

2201Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

adapted interaction on a set of components with respect to a composition speci-
fication given as a set of vectors and a vector LTS. Clint is capable of generating a
graphical representation of the different inputs (behavioural interfaces and com-
position specification), and help the user to explore the composition through an
interactive simulation by visualising the evolution of the system step-by-step. In
addition, the user has the possibility of validating the composition specification,
visualising errors which are highlighted on the graphical representation of the
vector LTS.

In order to perform the interactive simulation of the composition, the tool of-
fers the set of applicable vectors to the user at each step of the composition (listed
on the Applicable Vectors Panel, located at the upper-left corner of Figure 5).
Then, the user selects a vector which is fired, updating the state of the system,
both in the Simulation Trace Panel, which outputs a textual representation of
the simulation trace (bottom-left corner), and the graphical representation of
the interfaces and vector LTS. There are two different modes for interactive
simulation:

– Safe mode (default). The tool offers the user only safe vectors for selection
(i.e., vectors which do not lead to a deadlock state of the system).

– Unsafe mode. The interface offers all applicable vectors to the user. Although
this allows the application of vectors leading to deadlock states, this possi-
bility may be interesting in order to observe and understand potential flaws
in the current composition specification.

The tool is also able to perform validation on the composition specification
wrt. a set of component par-LTSs. In order to achieve this, many random exe-
cution traces are automatically generated using the composition engine (unsafe
mode). From such a set of traces, states and transitions are labelled with the
overall number of times they are traversed. These traces are also used to identify
unreachable states or transitions which are never traversed in the composition
specification. Clint colours the composition specification, highlighting such un-
reachable states and transitions in the graphical representation. Moreover, traces
leading to deadlock situations can be identified by the tool. When a non-final
state in the vector LTS is reached, and no further vectors can be applied, the
tool classifies the sequence of vectors which has led to the current situation as a
deadlock trace.

Specifically, Figure 5 features a modified version of the composition specifica-
tion used for our rate finder service. We can observe that instead of a transition
on vacc going from R3 to R4, we have inserted a transition on vfee. The appli-
cation of vfee before reaching R4 prevents the firing of that same vector once
the composition has reached state R4. Hence, the transition of vfee in R4 is
highlighted in red on the graphical representation since it cannot ever be fired.

2202 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

Figure 5: Validation of the rate finder service using Clint

Likewise, the tool is able to identify traces leading to deadlock situations. Par-
ticularly, we can observe in Figure 5 that all traces which involve a bad order in
the application of vectors (as described in Section 4.1) are displayed on the user
interface of the tool.

Clint has been implemented in Python, using the wxWidgets toolkit technology
for the development of the user interface and the Object Graphics Library (OGL)
to visualise the different inputs of the tool. Interfaces are described using the
.aut textual format [Garavel et al. 2007], whereas the composition specification
is written in an XML-based format specific to the tool.

Clint has been validated on about 200 examples, which range from small
ones to experiment boundary cases, to real-world examples such as a travel
agency, push-out advertisements, multi-device service, rate finder service, on-line
computer material store, Video-on-demand, music player, disk manager, library

2203Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

management systems, a SQL server and several other client/server systems. In
our validation base, we distinguished two sets of examples. The first set (approx.
120) concerns systems that do not involve name passing. These examples were
very useful to experiment our run-time composition algorithms, and the global
final state search. The second set (approx. 80) focuses on systems that require
name passing and concurrent behaviours.

We use three examples of different sizes from our validation base in order to
measure the time consumed for the validation of their composition specifications
(i.e., unreachable state and transition search and deadlock trace extraction). As
it can be observed in Table 13, the time elapsed for the validation of the exam-
ples experiences a linear growth with the number of traces generated, therefore
scalability of the tool and the algorithms is satisfactory. Indeed, in the worst
case, the validation of our biggest example using 20000 traces takes about 2
minutes, which is a reasonable amount of time.

Size Execution Time (s) vs.
Name Number VLTS Comps. Number Traces generated

of Comps. States Tran States Tran 5000 10000 15000 20000
rate-finder-v1 3 5 12 21 19 4.8 9.9 14.8 19.4
broadcast-v12 3 14 21 186 555 26.3 53.5 79.9 106.2
mcomp-v1 6 23 37 393 1073 33.3 66.6 99.8 132.9

Table 1: Time elapsed for the validation of 3 examples using Clint

In this article, we have illustrated our approach on a rate finder service. Some
other case studies, namely a travel agency and a push-out advertisement service,
are available on the Clint webpage [CLINT 2007].

7 Run-time Adaptation in Practice using AOP

Aspect-Oriented Programming (AOP) is based on the idea that systems are bet-
ter programmed by separately specifying the different concerns (areas of interest)
of a system in aspects and a description of their relations, relying on mechanisms
to weave or compose them into a working system. This weaving process can be
performed at different stages of the development, ranging from compile-time to
run-time (dynamic weaving) [Popovici et al. 2003]. The dynamic approach (Dy-
namic AOP or d-AOP) implies that the virtual machine or interpreter running

3 The experiments were conducted on an Intel Centrino Duo T2300 running at
1.66GHz with 2GB of RAM installed.

2204 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

the code must be aware of aspects and control the weaving process. This repre-
sents a remarkable advantage over static AOP approaches, considering that as-
pects can be applied and removed at run-time, modifying application behaviour
during the execution of the system in a transparent way.

In addition, with conventional programming techniques, programmers have
to explicitly call other components’ methods in order to access their functionality,
whereas the AOP approach offers implicit invocation mechanisms for invoking
behaviour in code whose writers were unaware of the additional concerns (oblivi-
ousness). This implicit invocation is achieved by means of join points. These are
regions in the dynamic control flow of an application (method calls or executions,
exception handling, field setting, etc.) which can be picked up or intercepted by
an AOP program by using pointcuts (expressions which allow the quantifica-
tion of join points) to match on them. Once a join point has been matched, the
AOP program can run the code corresponding to the new behaviour (advices)
typically before, after, instead of, or around (before and after) the matched join
point. Since join points are dynamic, it is possible to access run-time information
such as the caller or callee of a method from a join point.

In order to implement our approach in full, we aim at modifying component
communication through d-AOP by wrapping components with aspects able to
capture all incoming/outgoing messages by means of pointcuts, and modify or
substitute them conveniently through the application of advices. Specifically,
Dynamic AOP enables us to tailor the adaptation engine with aspects able
to: (i) intercept communication (i.e., service invocations) between components;
(ii) apply the algorithms described in this proposal in order to make the right
message substitutions; (iii) forward the substituted messages to their recipients
transparently.

First of all, as a prerequisite for run-time adaptation, we must incorporate
our protocol par-LTS decriptions as metadata in components. Java annotations
are readable at run-time through reflection. Specifically, custom-defined, multi-
value type Java annotations, which have multiple data members, permit the
inclusion of protocol information in components [Cámara et al. 2007a].

As regards the implementation of the adaptation engine, we have chosen
PROSE 4 (PROgrammable extenSions of sErvices), which enables the modifica-
tion of Java programs at run-time by applying and removing aspects at any time
during execution. This is particularly interesting since our adaptation engine can
take advantage of information which is only available at run-time. Aspects in
PROSE extend the DefaultAspect base class, and may contain one or more
crosscut objects. A crosscut object defines an advice method, and a pointcut
method which defines a set of join-points where the advice should be executed.

Our adaptation engine needs to keep track of the state of the different com-
4 http://prose.ethz.ch/

2205Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

ponents during the interaction. In order to achieve this, we can implement a
tracking aspect in the engine using a method exit advice. In such a way, each
time a method is intercepted, the state of the component is updated in the
adaptation engine just after the execution of the method.

In order to replace the communication protocol of the different components,
the MethodRedefineCut class, similar to the around advice construct in As-

pectJ [Kiczales et al. 2001], permits the redefinition of a particular method. Us-
ing method redefinitions enables us to define an interception aspect in order
to intercept and substitute method invocations with the ones specified by the
algorithms.

Finally, the main body of the adaptation engine consists of a set of regular
(i.e., non aspectual) Java classes implementing the different algorithms described
in this proposal. These classes are aided by the aforementioned aspects which
provide the means to supply information about the state of components and
the messages which are being exchanged among them. While receptions in the
adaptation engine are delegated to the interception aspect, emissions can be
performed making use of the method invocation facility included in the Java
Reflection API.

8 Related Work

In this section, we will compare our approach with related works in software
adaptation, especially those which enable run-time adaptation, and verification
of systems under adaptation.

Software adaptation is a promising topic in software composition. In-
deed, composition assumes that components will successfully interact when
combined, whereas most of the components reused out of their origi-
nal context cannot be integrated as is, requiring some degree of adapta-
tion. Many proposals [Schmidt and Reussner 2002, Inverardi and Tivoli 2003a,
Bracciali et al. 2005, Brogi et al. 2006b, Canal et al. 2006b] in this area fo-
cus on the behavioural interoperability level, and advocate abstract nota-
tions (e.g., correspondences between messages, vector regular expressions, or
LTL formulae) and state-of-art algorithms to derive adaptor protocols. As
an example, an interesting proposal in this field is that of Inverardi and
Tivoli (IT) [Inverardi and Tivoli 2003a]. Certain aspects of their work go be-
yond [Bracciali et al. 2005, Brogi et al. 2006b] by addressing the enforcement of
some behavioural properties (namely liveness and safety properties expressed as
specific processes) out of a set of already implemented behaviours. Starting from
the specification with Message Sequence Charts of the components to be assem-
bled and of the properties that the resulting system should satisfy, they automat-
ically derive the adaptor glue code for the set of components in order to obtain a

2206 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

property-compliant system. In order to do that, they follow the so-called restric-
tive approach5. The IT proposal was extended in [Inverardi and Tivoli 2003b]
with the use of temporal logic; coordination policies are expressed as LTL prop-
erties, and then translated into Büchi automata. Recent outcomes of this research
line take into account time and other QoS issues [Tivoli et al. 2007].

To reduce the complexity involved in the generation of full adaptors,
recent works aim at distributing the adaptation process [Autili et al. 2006]
or at building adaptors incrementally [Poizat and Salaün 2007]. For instance,
in [Poizat and Salaün 2007] the authors present a description of open compo-
nent systems. Thus, software components distinguish in their description in-
ternal and external bindings, the latter ones being used for further connec-
tions with components or services to be added in the future. Moreover, they
propose an incremental process for the integration and adaptation of open
software components, enabling the construction of systems step-by-step (by
adding or removing components), and to reconfigure them if necessary. Both ap-
proaches [Autili et al. 2006, Poizat and Salaün 2007] rely on algorithms which
generate global adaptors. Hence, although this makes the complexity of the
adaptor computation exponential, this boundary is purely theoretical and sel-
dom reached in practice. Compared to these proposals, we also base our adap-
tation proposal on an expressive yet simple notation (vector LTS) and efficient
algorithms, but we completely avoid the full generation of the static adaptor by
applying the composition specification at run-time, adapting interaction when-
ever required.

Other works have promoted the use of models inspired by the π-
calculus as behavioural descriptions of components, such as [Brogi et al. 2002,
Bracciali et al. 2005]. In these papers, the authors use a π-calculus formal-
ism although in a restricted way, keeping only value passing (hence discard-
ing name passing). In our proposal, we chose to avoid system infiniteness is-
sues coming from the use of the spawn operator which also has to be tackled
in [Bracciali et al. 2005], and to deal with name creation and passing. This en-
ables us to deal with run-time adaptation, and to implement prototyping tools
(a lack of the work described in [Bracciali et al. 2005]).

As regards adaptation at run-time, most works deal with static ar-
chitectures, reducing software systems to fixed structures of processes
or components known at design time, whose interactions are described
by using finite-state grammars [Yellin and Strom 1997], process algebras
such as CCS [Inverardi and Tivoli 2003b], or non-recursive interaction pat-

5 Restrictive approaches simply try to solve the problem by cutting off the behaviour
that may lead to mismatch, thus restricting the functionality of the involved com-
ponents. On the contrary, generative approaches try to accommodate the protocols
without restricting the behaviour of the components, by generating adaptors that
act as mediators, remembering and reordering events and data when necessary.

2207Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

terns [Bracciali et al. 2005], to mention a few examples. In contrast, our ap-
proach adresses systems where the structure of the system is not fixed, since
name passing allows the use of channels created at run-time, facilitating issues
such as (private) communication between components which were not initially
acquainted with each other.

Although most of the approaches adapting interacting components ensure
correctness by construction, they need assessment techniques. Indeed, these
adaptation approaches rely on an abstract description (a mapping) of how mis-
matches can be solved, and this mapping may be error-prone because it has to be
designed by a human architect. In [Poizat and Salaün 2007], the authors focus
on an incremental building of a system, and advocate for the use of alphabet
comparison to compare both systems before and after the addition or suppres-
sion of a component. Furthermore, one may use model-checking techniques to
check that the system behaves as required at each stage of the system’s con-
struction. Here, we want to avoid the generation of the full adaptor. Therefore,
we prefer to generate traces using our prototype tool, and reason on the set of
generated traces. Our verification techniques are completely automated (not the
case in [Poizat and Salaün 2007] which requires to write out temporal formu-
las), and supported by graphical visualisation which makes easier the designer’s
understanding, helping to debug the composition specification.

To sum up, our proposal for run-time adaptation is innovative since it jointly
gathers (i) efficient adaptation means, based on a simple yet expressive notation
for the composition, as well as efficient algorithms to solve mismatch situations;
(ii) a composition technique able to deal with systems where new channels are
created and used at run-time; (iii) application of a composition specification at
run-time, which avoids the costly generation of adaptors. We have also validated
our techniques for composition and run-time adaptation through a prototype
tool (a lack of most of the works mentioned above). Finally, we have shown how
our proposal can be implemented in practice using Dynamic-AOP platforms.

9 Concluding Remarks

In this article, we have tackled compositional issues raised when building systems
by reusing of existing components. Indeed, most components cannot be directly
reused because of mismatches which have to be corrected. In addition, we have
focused on systems where protocols are not entirely known at design-time due
to the possible dynamic creation of channels. This is a realistic assumption that
most works dedicated to adaptation discard. We have proposed an approach
where our engine relies on a composition specification, applies it at run-time
adapting interaction whenever required, and is able to handle channel instances
created dynamically. We have implemented a prototype tool to try out our com-
position engine, and we have applied it on a large number of case studies. Last,

2208 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

we have showed how our formal proposal can be put in practice on real software
components by using Dynamic AOP.

As regards future work, we will focus on two main perspectives. The first one
aims at extending our Clint prototype to support the incremental construction
of the composition specification. Indeed, the writing of this specification by a
designer may be pretty hard and error-prone. On the other hand, approaches
dedicated to the automatic generation of compositions are not mature enough.
We are convinced that an assisted approach is a very good trade-off between
complete automation and manual writing of the composition specification. Clint

will be extended to accept a partial specification of the composition, point out
composition issues (such as deadlocks in components), and propose possible so-
lutions or further message correspondences to complete this specification. Our
second perspective will focus on the implementation of our whole proposal in a
middleware using Dynamic AOP following the ideas presented in Section 7.

Acknowledgements

The authors would like to thank Ernesto Pimentel and Pascal Poizat for in-
teresting discussions and comments on this work. They are also grateful to the
anonymous referees who helped to improve the contents and quality of this ar-
ticle.

References

[Andrews et al. 2005] T. Andrews et al. Business Process Execution Language for Web
Services (WSBPEL). BEA Systems, IBM, Microsoft, SAP AG, and Siebel Systems,
Feb. 2005.

[Arbab et al. 2002] F. Arbab., F. S. de Boer, M. M. Bonsangue, and J. V.
Guillen Scholten. A Channel-based Coordination Model for Components. In
Proc. of FOCLASA’02, volume 68(3) of ENTCS, 2002.

[Autili et al. 2006] M. Autili, M. Flammini, P. Inverardi, A. Navarra, and M. Tivoli.
Synthesis of Concurrent and Distributed Adaptors for Component-based Systems.
In Proc. of EWSA’06, volume 4344 of LNCS. Springer, 2006.

[Allen and Garlan 1997] A. Allen and D. Garlan. A Formal Basis for Architec-
tural Connection. ACM Transactions on Software Engineering and Methodology,
6(3):213–249, 1997.

[Alfaro and Henzinger 2001] L. Alfaro and T.A. Henzinger. Interface Automata. In
Proc. of ESEC/FSE’01, pages 109–120. ACM Press, 2001.

[Brogi et al. 2002] A. Bracciali, A. Brogi, and C. Canal. Dynamically Adapting the
Behaviour of Software Components. In Proc. of COORDINATION’02, volume 2315
of LNCS. Springer, 2002.

[Bracciali et al. 2005] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to
Component Adaptation. Journal of Systems and Software, 74(1), 2005.

[Brogi et al. 2006a] A. Brogi, S. Corfini, J. F. Aldana, and I. N. Delgado. Automated
Discovery of Compositions of Services Described with Separate Ontologies. In Proc.
of ICSOC’06, volume 4294 of LNCS. Springer, 2006.

2209Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

[Brogi et al. 2006b] A. Brogi, C. Canal, and E. Pimentel. Component Adaptation
Through Flexible Subservicing. Science of Computer Programming, 2006. To ap-
pear.

[Ben Mokhtar et al. 2005] S. Ben Mokhtar, N. Georgantas, and V. Issarny. Ad Hoc
Composition of User Tasks in Pervasive Computing Environments. In Proc. of
SC’05, volume 3628 of LNCS. Springer, 2005.

[Cámara et al. 2007a] J. Cámara, C. Canal, J. Cubo, and J. M. Murillo. An Aspect-
Oriented Adaptation Framework for Dynamic Component Evolution. In Proc. of
WCAT’06, volume 189 of ENTCS. Elsevier, 2007.

[Cámara et al. 2007b] J. Cámara, G. Salaün, and C. Canal. Run-time Composition
and Adaptation of Mismatching Behavioural Transactions. In Proc. of SEFM’07,
IEEE, 2007.

[CLINT 2007] Clint v01/September 2007 distribution (LGPL licence). http://serv-
linux.lcc.uma.es/clint/, 2007.

[Canal et al. 2006a] C. Canal, J. M. Murillo, and P. Poizat. Software Adaptation: an
Introduction. L’Objet, 12(1), 2006.

[Canal et al. 2006b] C. Canal, P. Poizat, and G. Salaün. Synchronizing Behavioural
Mismatch in Software Composition. In Proc. of FMOODS’06, volume 4037 of
LNCS. Springer, 2006.

[Garavel et al. 2007] H. Garavel, R. Mateescu, F. Lang, and W. Serwe. CADP 2006:
A Toolbox for the Construction and Analysis of Distributed Processes. In Proc. of
CAV’07, volume 4590 of LNCS. Springer, 2007.

[Ingolfsdottir and Lin 2001] A. Ingolfsdottir and H. Lin. A Symbolic Approach to
Value-passing Processes. Handbook of Process Algebra. Elsevier, 2001.

[Inverardi and Tivoli 2003a] P. Inverardi and M. Tivoli. Deadlock Free Software Ar-
chitectures for COM/DCOM Applications. Journal of Systems and Software, 65(3),
2003.

[Inverardi and Tivoli 2003b] P. Inverardi and M. Tivoli. Software Architecture for
Correct Components Assembly. In Formal Methods for Software Architectures, vol-
ume 2804 of LNCS. Springer, 2003.

[Kiczales et al. 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An Overview of AspectJ. In Proc. of ECOOP’01, volume 2072 of
LNCS, 2001.

[Knuth 1969] D. E. Knuth. The Art of Computer Programming, Volume II: Seminu-
merical Algorithms. Addison-Wesley, 1969.

[Lynch and Tuttle 1989] N. A. Lynch and M. R. Tuttle. An Introduction to In-
put/Output Automata. CWI Quarterly, 2(3):219–246, 1989.

[Milner 1999] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, 1999.

[Magee et al. 1999] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour Analysis
of Software Architectures, pages 35–49. Kluwer Academic Publishers, 1999.

[Montanari and Pistore 1997] U. Montanari and M. Pistore. An Introduction to His-
tory Dependent Automata. In Proc. of HOOTS II, volume 10 of ENTCS. Elsevier,
1997.

[Popovici et al. 2003] A. Popovici, A. Frei, and G. Alonso. A Proactive Middleware
Platform for Mobile Computing. In Proc. of Middleware’03, volume 2672 of LNCS.
Springer, 2003.

[Poizat and Salaün 2007] P. Poizat and G. Salaün. Adaptation of Open Component-
based Systems. In Proc. of FMOODS’07, volume 4468 of LNCS. Springer, 2007.

[Ramsokul and Sowmya 2006] P. Ramsokul and A. Sowmya. ASEHA: A Framework
for Modelling and Verification of Web Services Protocols. In Proc. of SEFM’06.
IEEE Computer Society, 2006.

[Schmidt and Reussner 2002] H. W. Schmidt and R. H. Reussner. Generating
Adapters for Concurrent Component Protocol Synchronization. In Proc. of
FMOODS’02. Kluwer, 2002.

2210 Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

[Tivoli et al. 2007] M. Tivoli, P. Fradet, A. Girault, and G. Goessler. Adaptor Syn-
thesis for Real-Rime Components. In Proc. of TACAS’07, volume 4424 of LNCS.
Springer, 2007.

[UDDI 2000] UDDI Consortium. UDDI Technical White Paper, September 2000.
[Yellin and Strom 1997] D. M. Yellin and R. E. Strom. Protocol Specifications and

Components Adaptors. ACM Transactions on Programming Languages and Sys-
tems, 19(2), 1997.

2211Camara J., Salaun G., Canal C.: Composition and Run-time Adaptation ...

