
An Adaptation Logic Framework for Java-based

Component Systems

Enrico Oliva, Antonio Natali, Alessandro Ricci, Mirko Viroli
(Alma Mater Studiorum–Università di Bologna, Cesena, Italy

{enrico.oliva,antonio.natali,a.ricci,mirko.viroli}@unibo.it)

Abstract: This paper describes a Java-based framework for developing component-
based software systems supporting adaptation with logic laws and considering compo-
nent interactions as a first-class aspect.

On the one side, the framework makes it possible to specify the logic of interaction
at the component-level, in terms of input and output interfaces, the events generated
and observed by a component, and related information about the management of the
control flow. On the other side, it is possible to specify the logic of interaction at the
inter-component level, providing a modelling and linguistic support for designing and
(dynamically) programming the glue among the components, enabling general forms
of adaptation, observation and construction of the interaction space.

As a result, the framework supports the adaptation of components at different levels:
from interoperability among heterogeneous and unknown components, to the support
for dynamic introduction, removal and update of components, to general coordination
patterns, such as workflow.

The framework uses first-order logic as the reference computational model for describ-
ing and defining the logic of interaction: the modalities adopted by components to
interact, the adaptation laws gluing the components and the interaction events oc-
curring in the system are expressed as facts and rules. They compose the (evolving)
logic theories describing and defining the interaction at the system level, and can be
observed and controlled at runtime to allow dynamic re-configurability.

Key Words: software adaptation, software component, logic programming

Category: D.2.11, D.2.2, D.1.6, D.1.5

1 Introduction

Nowadays component-based technologies and frameworks (often referred to as
componentware) can be considered mainstream approaches for designing and
developing complex software systems [Szyperski et al., 2002]. Examples of most
used frameworks include EJB (Enterprise Java beans) as part of the J2EE ar-
chitecture, CCM (CORBA Component Model) as part of CORBA middleware,
and DCOM/COM+ [Szyperski et al., 2002]. Also some service-oriented frame-
works, such as OSGi [OSGi, 1999] and .NET, can be considered essentially as
component-based frameworks, where components are called services.

Generally speaking, existing mainstream approaches are all essentially based
on a sort of “LEGO -like” vision of software systems: the focus is on the notion of
component as a basic brick to compose systems, both at design and runtime. The

Journal of Universal Computer Science, vol. 14, no. 13 (2008), 2158-2181
submitted: 31/10/07, accepted: 27/6/08, appeared: 1/7/08 © J.UCS

composition is made possible essentially by explicitly declaring the interfaces that
a component provides for exploiting its services and requires for being able to
realise its services. Interfaces act as the formal description of the dependencies
which connect together the components — as the joints for (LEGO) bricks.
Accordingly, this leads software engineers to reason on application design and
development in terms of structural composition of entities.

Actually, such an approach can be considered quite weak when dealing with
the engineering of modern software systems, where component interactions and
related dynamics are essential elements. Current mainstream approaches do not
provide first-class support for specifying and managing interactions among com-
ponents: most of the support concerns solving static dependencies where com-
ponents are (dynamically) introduced or removed from the system. Back to the
LEGO-metaphor, it is not sufficient to have bricks which are composed and
linked together for asserting that the overall brick construction works from a dy-
namic point of view: some kind of dynamics and interaction can lead the overall
system to break down, even if the bricks are (statically) connected in a right
way.

In this work we present a framework for supporting component-based systems
on top of object-oriented mainstream technologies such as Java, which provides
a first-class support for representing, enacting and controlling the interactions
inside the system. The approach does not consider the individual component as
the center of the design and development of a component-based systems: this
role is instead played by the the logic of interaction, which glues components
together, according to a notion of interaction richer than the one that can be
specified e.g. with standard object-oriented interfaces. In particular, the frame-
work makes it possible to characterise the logic of interaction at two different
levels: at the component level, specifying the interactive capabilities of individual
components; and at the system level, specifying the laws that define and gov-
ern interactions which do not concern a specific component of the system, but
characterise the overall ensemble of the components together—in a way similar
e.g. to [Murillo et al., 1999]. In particular, through the logic of interaction it is
possible to express the adaptation behaviour among the components: that is,
the laws specify some adaptation “policies”. Observing interactions and prop-
erly re-acting to them is what closes the feedback loop of control, enabling the
adaptation behaviour.

In the overall, the framework makes it possible to design and de-
velop component-systems adopting mainstream technologies — including other
component-based framework such as OSGi and EJB — but providing a sup-
port for managing interactions at a higher level of abstraction, focussing on the
logic of interaction. As a main application case for this framework, we show that
it can support component adaptation as defined e.g. in [Bracciali et al., 2005];

2159Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

Figure 1: Architectural view of components and kernel

namely, given a theory of adapation computing the proper glue process that can
adapt the behavioural interface of existing components, our framework provides
a simple means to implement such adaptation using an expressive logic-based
specification.

The remainder of this article is organised as follows: Section 2 presents the
principles grounding the framework, Section 3 describes how the framework is
realised on top of the Java platform, Section 4 focuses on a concrete instance of
kernel based on first-order logic, Section 5 exemplifies the approach describing
how adaptation policies can be supported, and finally Section 6 discusses related
works.

2 The Framework: Vision

The framework introduces two first-class abstractions to represent the compo-
nents and the environment where they are immersed, so as to better support
both the micro (component) and macro (system) levels: actors1 and kernels (see
Figure 1).

Actors play the role of components of a system, as the basic unit of deploy-
ment, embedding some kind of business logic. They are meant to execute some
kind of task such as the provision of a service, triggered by the reception of
1 In spite of the name, the notion of actor is not directly linked to the actor abstrac-

tion as introduced by Carl Hewitt, but it rather refers to a component capable of
interacting, as explained in the following

2160 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

some form of stimuli. As components, actors can be introduced and removed
dynamically into / from the kernel.

Kernels explicitly represent component environments, providing actors with
specific services for supporting their interaction. A system then is composed
by a kernel and a dynamic set of actors, linked and connected through the
same kernel. To some extent, the kernel abstraction is similar to the notion of
container as found in current component frameworks, extended toward the idea
of configurable and programmable coordination medium [Denti et al., 1997]. As
happens for the actors, also kernels can be dynamically extended and replaced.

2.1 Interaction Signals and Interaction Primitives

From the interaction viewpoint, actors can be conceived as normal objects with
the capability of generating and perceiving interaction signals. In particular, they
provide their service by reacting to the reception of some interaction signals, and
trigger the execution of services by generating signals.

Interaction signals are the basic bricks of the vocabulary of interaction, and
are used to define the logic of interaction characterising the component-system.
In this framework such a notion is represented in the simplest way, as a couple (n,
v), where n identifies the name of the signal and v the information content. Each
component is characterised by the set of interaction signals that it can eventually
generate (output interface) and the set of interaction signals that it can receive
(input interface) during its life. Such sets must be explicitly defined for each
component and are declared / published in the environment when the component
is introduced in the system. So, interaction signals are meant to specify a form
of interaction among actors minimising the (static) dependencies among them:
the components do not interact directly with other components directly knowing
their references and invoking methods, but indirectly generating and perceiving
shared set of signals; components are indirectly connected so as to minimise
dependencies, which is a key point for enabling adaptation behaviour based over
the kernel abstraction.

Concerning the output interface, the kernel provides actors with a basic set of
interaction primitives, which actors can use to generate interaction signals. Such
primitives are actually important for characterising some basic aspect of the
interaction semantics, in particular the attitude or intention of the act and what
is expected from that act. Currently the basic set accounts for three primitives:

– notify - This is used to emit an interaction signal to make some kind of
information related to the state or the behaviour of the component observ-
able to all the components that are interested in it — namely, those that
declared the signal in the input interface. The actor emitter is not interested
in receiving any kind of information as a result of the operation.

2161Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

– inform - This is used to emit an interaction signal to inform its environment
of some information, in order to trigger some kind of activity or to answer
to a request received in the past. The primitive succeeds if (and when) the
information has been completely delivered into the environment (all the in-
terested components have been informed), otherwise an InformException is
generated; note no reply is actually expected from an inform.

– invoke - This is used to emit an interaction signal to execute a service
and receive the corresponding result. The primitive works then as a tra-
ditional RPC or method invocation, looking for one available component
(non-deterministically), with the result provided as the return parameter
of the call. The primitive generates an exception InvokeException if the
service cannot be delivered.

It is worth noting that all the primitives are meant to generate a signal without
specifying the target actor: the component or set of components that will receive
the signal depend on the specific logic of interaction defined for the system and
enacted by the kernel, as shown in next subsection.

Generally speaking the set of primitives defines and constraints the expres-
siveness of the interaction support provided by a kernel. The objective here is
to factorise the interaction needs that are most frequently found when building
component-based systems, abstracting away from how interaction takes place
(e.g. either through message passing or shared memory, either local or dis-
tributed) and which technology is used (RMI, Web Services, Plain Java Objects,
CORBA, and the like), focussing exclusively on the logics of the interaction.
Accordingly, the same primitives — with the same semantics — could be sup-
ported at the deployment stage by different kinds of kernel, adopting different
kind of implementation strategies and technologies, depending on the computa-
tional and hardware environment.

Dually to the set of interaction primitives to emit signals, each actor must
provide an interface with a doAction operation, which is used — from the envi-
ronment point of view — to obtain the services that the actor is able to deliver.
In particular, doAction specifies the behaviour of the actor reacting to the re-
ception of any interaction signal that the actor declared among its input signals.
The operation can directly return some result — representing the return value of
the service invoked, and can generate a DoActionException to represent some
kind of runtime error related to the execution of the service, for instance a (se-
mantic) violation of the contract due to wrong arguments. The execution of
the service can result also in the generation of output signals (using notify /
inform / invoke primitives), for instance for notifying some kind of event or for
executing some other services.

2162 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

Figure 2: Kernel default behaviour for notify, inform and invoke primitives

2.2 Kernel mediation and Interaction Laws

The role of the kernel is then to act as the glue which enables, mediates and
controls the generation of output interaction signals of some components which
can become input interaction signals for other components. In other words, from
a logical point of view, the kernel plays the role of an adapter, factorising services
for managing component dependencies and dynamic interactions.

The default behaviour of a kernel is to enable interactions based on the name
of interaction signals that actors declared to generate or to perceive. In particular
(see 2 for a graphical description):

– a signal generated by an actor with a notify causes the execution of the
doAction operation — with the interaction signal as a parameter — of all
the actors that listed the signal among the input ones. The emitter actor
is not interested in knowing any information about the effects of the invo-
cation, so the kernel could e.g. to do its best in order to realise the call as
asynchronously as possible;

– a signal generated with an inform causes the execution of a doAction on
all the actors that listed the signal among the input ones. The primitive
succeeds if the kernel is able to deliver the signal to everyone, i.e. to exe-
cute the doAction on all the actors, in spite of the possible generation of a
DoActionException by each actor.

– a signal generated with an invoke causes the execution of doAction on one

2163Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

actor chosen (in principle non-deterministically) among all the actors that
listed the signal among the input ones. The return value of the invoke prim-
itive is directly the result provided by the doAction operation. In particular,
the kernel provides an adaptation behaviour finding an actor that executes
the action without failures. So, if the execution of the operation on the cho-
sen actor fails (with the generation of a DoActionException), another actor
is to be selected from the remaining ones and the operation doAction is to
be executed again on it. If no actor is found providing the services without
exceptions, then the invoke fails by generating an InvokeException.

Besides these basic interaction primitives, the kernel can actually be extended
to provides services for defining interaction laws in order to directly support
some basic patterns of interaction, beyond the basic gluing behaviour. These
laws can be specified during the (re-)configuration stage of the system, which
can take place anytime during the execution of the applications. The patterns
currently supported in the framework for adaptation are actually some of the
most frequently used ones in mainstream component-based systems, such as
Enterprise Java Beans, but working here at a higher level of abstraction:

– event-listening – the kernel provides a support for allowing a dynamic set of
listener / reacting actors to observe a specific interaction signal generated
by a specific emitter actor;

– interaction-vetoing – the kernel provides a support for realising vetoed inter-
actions, i.e. interactions which actually take place only if no registered actor
issues a veto. More precisely, the kernel service makes it possible to specify
that a specific input signal for a specific receiver actor could be vetoed by
a certain vetoer actor; dynamically, an interaction signal directed to the re-
ceiver is actually dispatched to the component only if none actors specified
as vetoers disagree.

More complex laws can be obtained by composing the specification of multiple
simple reactions and veto rules. Others are currently investigated to realise more
adaptation-oriented interaction patterns, enriching the basic support provided by
the kernel. Examples include the ability to specify constraints such as the order
in which listeners are to be informed, or atomicity/consistency as in transaction-
like scenarios.

It is worth noting that enriching the description of interaction aspects with
semantic information improves the support for the principle of local development
of components, and — more generally — for engineering open and extensible
systems. Components are typically designed and developed without an a-priori
knowledge of the specific environments where they will be deployed to; the avail-
ability of information concerning the semantics of the interaction of a component

2164 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

Figure 3: Architectural view of elements in the framework

— beyond the pure syntactic aspects — simplifies their integration and dynamic
gluing by the kernel: for instance, this is achieved by applying some kind of
adaptation rules to enable interoperability among components in spite of syntax
and semantics mismatches among the interactions signals generated / perceived.

2.3 Wired and In-The-Space Interaction Modalities

The kernel realises its mediation role by injecting into the actors the logics
necessary to realise interactions. In particular, this can take place according to
two basic different modalities, called in-the-space and wired, which can basically
be seen as different implementation approaches for the kernel. In the former,
the kernel is actually a logical and runtime entity, shared and accessed any time
a component is generating signals or is stimulated with signals; in this case
the logics injected into the components simply provides for basic interaction
acts towards the kernel. In the latter, all the peer-to-peer logics of interaction
is injected in the components, without any runtime centralising entity. In other
words, in the wired case the kernel is completely distributed and injected directly
in the components; the component system at runtime becomes an interaction
network, with actors playing the roles of the nodes, logically immersed in a
shared environment, but actually wired in order to have direct, non-mediated
interaction.

3 Specification and Implementation Issues

In this section we describe the main aspects of the current design of this frame-
work, including specification of architecture and implementation details. In Fig-
ure 3, the elements that compose the framework are represented. On the one
hand, an actor component should provide the interface IActor — namely by
implementing it —, defining the operations that it makes available to the other

2165Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

actors and to the kernel. These include the methods to configure the actor itself,
as well as the method implementing the services realised by the actor, used to
receive signals. On the other hand, the actor component should require the in-
terface IKernel — namely, the kernel referenced by the actor should implement
the IKernel interface. This interface includes the methods to register an actor
to the kernel, to declare its input and output signals, and to invoke kernel inter-
action primitives (to emit signals). It should be noted that by this design choice
we exclude the ability of legacy components to be used in our framework: the
only solution to this problem is to wrap them into Java objects that properly
provide IActor interface and require IKernel interface.

Table 1 shows a possible way to classify these operations. The IActor in-
terface is used at configuration-time to inject the kernel into the actor instance,
and by the kernel at interaction-time to invoke services. Dually, the IKernel

interface is used at configuration-time to register an actor and its signals, and
by the actors at interaction-time to invoke interaction primitives.

Operations IActor IKernel

IActorSpecification IActionBase

Configuration
time

Injecting and configur-
ing the kernel

Registering and declar-
ing signals to the ker-
nel

Interaction
time

Requesting ex-
ecution of ac-
tions/services

Invoking the interac-
tion primitives

Table 1: Interfaces structure

3.1 IActor

In the actual incarnation of our framework an actor is expressed as a Java class,
which has to implement the standard interface IActor:

interface IActor extends IActionBase, IActorSpecification {}

This interface simply extends IActionBase and IActorSpecification, re-
spectively describing interaction-time and configuration-time functionality. The
former simply provides method doAction — which has the semantics described
in previous section — used to execute a service realised by the actor. In particu-
lar, this is invoked by the kernel as a response of a request coming from another
actor, achieving both the execution of a service and the return of a result. One

2166 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

such invocation can also fail for a number of reasons — wrong arguments, fail-
ures in accessing back-end services, and so on — in which case the execution
throws an exception.

interface IActionBase {
Object doAction(String actionName,Object arg)

throws DoActionException;
}

The argument actionName represents the name of the service requested,
the argument arg the input information provided for describing details of the
requested service; the output result is given type Object for generality.

The interface IActorSpecification provides all the operations used at
configuration-time, by which the presence of the actor in the system can be
configured.

public interface IActorSpecification {
public String getName();
public String [] getInputSignals();
public String [] getOutputSignalsInform();
public String [] getOutputSignalsNotify();
public String [] getOutputSignalsInvoke();
public void setKernel(IKernel kernel);
public IKernel getKernel();
public boolean isActive();

}

The method getName returns the name of the Actor — unique in the
running application. The method getInputSignals is used by the ker-
nel to retrieve all the input signals that the actor is able to process,
namely, the actionName it is willing to accept by a doAction. The methods
getOutputSignalsNotify/Inform/Invoke return the output signals that the
actor can generate, namely the list of actionName for the services it can re-
quest — either through a notify, inform, or invoke. The methods setKernel
and getKernel store and retrieve the reference to the kernel where the actor
is connected to: hence, our framework injects the referenced kernel into the ref-
erencing actor through the setter method. In this way, the kernel itself gets
aware of the existence of components, and can perform the proper checks like
name uniqueness. In the current version of the framework the actors implement
other interfaces that allow to inject in the actor also some basic support of the
JavaBeans component framework.

3.2 IKernel

IKernel is the standard interface which any kernel has to implement, providing
those methods that each actor has access to — in order to either interact with
others or to register its input and output signals.

2167Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

interface IKernel {
void notify(IActor emitter,String signalName,Object args);
void inform(IActor emitter,String signalName,Object args)

throws InformException;
Object invoke(IActor emitter,String signalName,Object args)

throws InvokeException;

void declareNode(String name, Class clazz, Object obj);
void declareInputSignals(IActor receiver, String[] signals);
void declareOutputSignalsNotify(IActor emitter, String[] signals);
void declareOutputSignalsInform(IActor emitter, String[] signals);
void declareOutputSignalsInvoke(IActor emitter, String[] signals);

}

As an actor can invoke a service in three different styles, this interface pro-
vides the three corresponding methods notify, inform, and invoke. Method
notify is used to send a signal to interested actors without actually caring
about any reply result or either any acknowledgment, hence it throws no ex-
ception. Method inform is used to send a signal to interested actors: no result
is returned, but the end of the operation means that all the interested actors
processed the signal. Finally, method invoke is used to request a service to one
agent that can execute it, correspondingly receiving a reply. In all cases, the
kernel has the burden to retrieve actors (one or more) able to execute a service
with the specified name, invoke their doAction name, and properly providing
acknowledgment/reply to the emitting actor.

The other methods are used by the actor to register information about
its interface — in the component-based acceptation of the term. Methods
declareNode, declareInputSignal and declareOutputSignals, respectively
register the presence of the actor in the system, its input signals (the services it
realises), and its output signals (the services it invokes on other actors).

3.3 Interaction Laws

Other than providing a basic interaction support, conceptually linking input and
output signals and guaranteeing the three different semantics of service requests,
a kernel can be implemented so as to support interaction laws. These are used in
all those cases where a more advanced adaptation ability is to be charged upon
the kernel. As explained in previous section, examples of such laws include those
supporting event-listening and vetoer semantics.

Each such law is associated with a proper interface that the kernel class has
to implement. This interface provides the method (or methods) used to config-
ure the interaction law, thus extending the underlying semantics of subsequent
calls to methods IKernel.notify, IKernel.inform, and IKernel.invoke. This
mechanism is thus used to change the default semantics of a kernel, where signals
are associated to output signals solely based on the matching of their names.

2168 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

For the event-listener interaction law, we have for instance the interface:

public interface IReactInteraction {
public void reactInteraction(

IActor reactor, IActor emitter, String signalName);
}

Method reactInteraction is to be implemented to realise the pattern publish-
subscribe: this is used to register the reactor to receive invocations of the sig-
nal with name signalName executed by the actor emitter — namely reactor

will observe actions signalName of the emitter. One such law constrains the
space of interaction and limit the notify method of an actor for a deter-
mined signal and only to the actor indicated in reactInteraction. Actually
reactInteraction can be exploited in the framework also for supporting the
wired modality as described in previous section. In particular, by calling a set
of reactInteraction(O,E,S) we fix the set of specific observers {O} that can
observe the signal S emitted by E. By doing so, at configuration time the kernel
(in the reactInteraction) can inject in the emitter actor a support for sending
the signal directly to the specified observers, without the mediation of the kernel
itself.

Similarly, the vetoing functionality is supported by interface:

public interface IVetoInteraction {
public void vetoInteraction(

IActor vetoer, IActor receiver, String signalName);
}

By calling method vetoInteraction, the kernel is configured so that actor
vetoer can negatively reply to an output signal signalName produced by actor
receiver.

These laws are just a subset of those a kernel can implement: further laws
can be realised by adding new interfaces.

4 A Logic-based Kernel

While developing our framework, we experimented various implementations for
the kernel, providing different ways to represent and manage interactions based
on different kinds of lower-level technologies.

Among the others, we found the logic programming paradigm quite useful.
The corresponding kernel, called Logic Kernel, adopts first-order logic for de-
scribing and enacting the logic of interaction, including both the interaction
capabilities of individual actors, and the adaptation laws which define how the
interactions are globally managed. In other words, the kernel handles as logic
theories both the configuration of the system — actors immersed in the envi-
ronment, their set of input / output interaction signals, and the laws governing

2169Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

interactions — and the interaction events that dynamically occur. The mediation
and adaptation activities of this kernel are then realised by exploiting a logic
engine (based on Prolog), properly handling the occurring interactions based on
the interaction laws and the actors configuration.

4.1 Implementation

This kernel is realised following the “in the space” modality, namely, as a run-
time abstraction where interaction signals are reified and properly managed. It
is implemented through a class LogicKernel implementing interface IKernel —
namely, a component providing the IKernel interface. Moreover, it also imple-
ments the interface IContextLocal that provides functionality to load, save and
execute a logic theory, configuring and modifying the kernel at run-time. The
implementation of this class is based on the tuProlog open source project we
developed [Denti et al., 2005] (http://tuprolog.sourceforge.net). This is a
lightweight Prolog engine and API written in Java which provides smooth inte-
gration of Prolog and Java programming, allowing to either represent and invoke
Prolog goals from Java, as well as calling Java libraries within Prolog theories.

public interface IContextLocal {
public alice.tuprolog.Prolog getPrologEngine();
public void register(String term, Object obj);
public boolean loadTheory(String absPath);
public boolean saveTheory(String absPath);
public String standardQuery(String queryS);
public String query(String queryS);
public String nextSolution();
public alice.tuprolog.SolveInfo solve(String queryS);

}

Basically, this interface provides a wrapper to the API of tuProlog, with methods
to handle basic Prolog primitives to load and save theories, execute queries and
retrieve solutions, and so on.

By exploiting these functions, the LogicKernel has to realise the methods
provided by the IKernel interface. The methods supporting configuration sim-
ply cause a fact — also called here a tuple — containing information on the
arguments to be reified in the knowledge base as follows:

declareNode — This method is used to register an actor in the kernel; an
invocation is represented by the tuple node(NodeName,Class).

declareInputSignals — This method is used to register the input signals
an actor is interested in receiving; an invocation is represented by a tuple
reacts(Reactor,ActionName) for each signal specified in the input array.

2170 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

declareOutputSignalsNotify/Inform/Invoke — These three meth-
ods are used to register the output notify/inform/invoke

signals an actor may receive; an invocation is repre-
sented by a tuple declaresNotify(Emitter,ActionName),
declaresInvoke(Emitter,ActionName), or
declaresInform(Emitter,ActionName), for each signal specified in
the input array.

These tuples are then actually seen as Prolog predicates reacts/2,
declaresNotify/2, declareInvoke/2, declareInform/2 and node/2, inserted
dynamically in the knowledge based at configuration time.

Other than configuration details, also the occurrence of interactions between
actors are inserted in the knowledge base dynamically. A method trace in class
LogicKernel writes in the knowledge base a fact of the kind out(Emitter,

ActionName, Arg), where Emitter is the agent responsible for the interaction,
ActionName is the signal name, and Arg is the signal argument.

When a method notify, inform, or invoke is called on the kernel, a cor-
responding prolog predicate notifyInTheSpace/3, informInTheSpace/3, and
invokeInTheSpace/4 is called, which is in charge of allowing the proper ac-
tors to perceive the signal, supporting the precise semantics of each of the three
primitives.

The implementation of predicate invokeInTheSpace/4 is as follows:

invokeInTheSpace(Emitter,ActionName,Arg,Res):-

reacts(Reactor,ActionName),

node(Reactor,Class),

declaresInvoke(Emitter,ActionName),

Reactor <- doAction(ActionName,Cmd) returns Res,

!.

While the first three arguments are as usual, the last is an output, providing
invocation result. The predicate orderly (i) retrieves a Reactor willing to accept
the signal, (ii) checks whether it is registered as a node, (iii) checks whether the
emitter declared the output signal, and finally (iv) invokes method doAction,
returning result Res. Note that in tuProlog, binary infix predicate <- is used to
invoke the method specified on the right-side over the Java object identified by
the reference specified on the left-side — with the optional final part returns

specifying the result. If such an invocation fails for some reason, predicate <-

fails: for the backtracking semantics of Prolog this causes predicate reacts to
find another solution, namely another Reactor. If the invocation is instead suc-
cessful, the cut predicate ! completes the execution. In the end, this preserves
the semantics of invoke primitive: the kernel will keep looking for one (and
precisely one) actor that successfully executes the service requested.

2171Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

The implementation of predicate notifyInTheSpace/3 is as follows:

notifyInTheSpace(Emitter,ActionName,Arg):-

reacts(Reactor,ActionName),

node(Reactor,Class),

declaresNotify(Emitter,ActionName),

Reactor <- doAction(ActionName,Arg),

fail.

notifyInTheSpace(Emitter,ActionName,Arg).

Differently from the previous case, this predicate does not provide replies, but
simply returns when its task is over. As a proper actor is found and its doAction
method is invoked, meta-predicate fail causes the Prolog engine to backtrack
and find another actor by predicate reacts. When no more such actors exist, the
second clause positively terminates the invocation. Note that if some invocation
of doAction would fail, this does not interfere at all with the engine execution.
This behaviour preserves the semantics of notify primitive: the kernel should
find all actors interested in the notification — the emitting actor being not
interested about some registered actor not perceiving the notification.

Finally, the implementation of predicate informInTheSpace/3 is as follows:

informInTheSpace(Emitter,ActionName,Arg):-

assert(proceed(Emitter,ActionName)),

reacts(Reactor,ActionName),

proceed(Emitter,ActionName),

node(Reactor,Class),

declaresInform(Emitter,ActionName),

retract(proceed(Emitter,ActionName)),

Reactor <- doAction(ActionName,Arg),

assert(proceed(Emitter,ActionName)),

fail.

informInTheSpace(Emitter,ActionName,Arg):-

proceed(Emitter,ActionName),

retract(proceed(Emitter,ActionName)).

This is similar to predicate notifyInTheSpace. The main difference is that
a fact proceed is reified in the space at the beginning and is dropped if some
doAction fails. As it is dropped the execution terminates negatively, otherwise
when all actors have been informed without exceptions the execution returns
positively. This behaviour preserves the semantics of inform primitive: the kernel
should find all actors interested in being informed — the emitting actor being
interested in whether all registered actors correctly perceived the signal.

2172 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

5 Application to Software Adaptation

In this section we provide two examples cases for our framework. The first ex-
ample is introductory, and shows how a simple connection between components
can be realised using our framework. The second example aims at showing how
a formal model of adaptation can be supported by the framework, by translating
an adaptation process into a proper logic-based specification for the kernel.

5.1 The Ping-Pong System

To give a flavour of framework classes and behaviour, here we consider a very
simple system, referred to as Ping-Pong, made by two components which must
be adapted by a simple rule. The source code of the Java classes implementing
this example is reported in Figure 4. The components are represented by the
classes PingActor and PongActor, referred here as respectively the ping actor
and the pong actor. The behaviour of the components is very simple: they react
to the reception of a specific input signal (ping for the ping actor, pong for the
pong actor), and after doing their job (just sleeping in our implementation) they
emit a specific output signal (pong for the ping actor and ping for the pong
actor). Actors share the same interaction signals: the signal generated by an
actor triggers the execution of the service by the other actor.

The simple adaptation rule that we want to realise accounts for stopping
the interaction between the actors after N stages, i.e. after N generations of the
ping - pong couple of signals. The rule must be specified and enforced without
changing the behaviour of the individual actors. For this purpose, we define a
vetoing interaction law, with a new actor acting as vetoer of the input signals
notified to the ping actor. The vetoer essentially counts the number of times a
ping signal is notified to the actor and gives its consensus for the delivery of the
signal to the ping actor only if the number of signals is less than the N value.

Finally, in the main class the various parts of the system are created and
configured, including the kernel, the actors and the vetoing interaction law mak-
ing the vetoActor a vetoer for the input signal of pingActor. A ping signal is
generated in order to trigger the activities of the components.

A main advantage of the logic kernel approach is that it allows for easily
tracking the occurrence of interactions and their management, namely, the true
run-time behaviour of the application. Figure 5 shows some screenshots of the
Inspector tool of the framework, used to display all the relevant information
about state and evolution of the logic kernel. The inspector tool can be used to
debug application and to possibly modify the laws of interaction at run time,
to see and experiment different system evolutions. So, typically the logic ker-
nel is used in prototyping and debugging stages: when the logic of interaction
has proven correct a more efficient version of the system can be obtained by

2173Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

public class PingActor extends AbstractActor {
public PingActor(String logo) {

super(logo);
}
public void doAction(String actionName, Object args) throws DoActionException{

try{
Thread.sleep(1000);
kernel.notify("ping","noArg");

} catch(Exception ex){ throw new DoActionException(); }
}
public String[] getInputSignals() { return new String[] {"pong"}; }
public String[] getOutputSignalsNotify() { return new String[] {"ping"}; }

}

public class PongActor extends AbstractActor {
public PongActor(String logo) {

super(logo);
}
public void doAction(String actionName, Object args) throws DoActionException{

try{
Thread.sleep(2000);
kernel.notify("pong","noArg");

} catch(Exception ex){ throw new DoActionException(); }
}
public String[] getInputSignals() { return new String[]{"ping"}; }
public String[] getOutputSignalsNotify() { return new String[]{"pong"}; }

}

public class VetoActor extends AbstractActor {
private int count;
private int max;
public VetoActor(String logo) {

super(logo);
count = 0;

}
public VetoActor(String logo, int max) {

super(logo);
count = 0;
this.max = max;

}
public Object doAction(String actionName, Object args) throws DoActionException {

return (count++ >= max);
}
public String[] getInputSignals() { return new String[]{"pong"}; }
}

}

public class TestPingPong {
public static void main (String [] args) {

kernel = new LogicKernel();

ping = new PingActor("pingActor");
ping.setKernel(kernel); //injection of the kernel
pong = new PongActor("pongActor");
pong.setKernel(kernel); //injection of the kernel

veto = new VetoActor ("vetoActor",4);
veto.setKernel(kernel); //injection of the kernel

kernel.vetoInteraction(veto,ping,ping.getInputSignals()[0]);

kernel.notify("ping","noArgs");
}

}

Figure 4: Code for the Ping-Pong Example

2174 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

(a) Initial State (b) Show Theory

(c) Self Describe (d) Show Interaction

Figure 5: Inspector tool

wiring the interactions by means of the reactInteraction kernel primitive. In
particular, in the Logic-kernel such a primitive wires the emitter and observers
actors using the Java event-listener pattern. Figure 5(a) shows the initial screen-
shot of a system run, where the kernel shows a counter for the two actors that
represents the number of signal emitted; the actors are stopped at fourth inter-
action by the vetoer. Three buttons are available in the inspector tool: button
showTheory is used to visualise the internal Prolog theory for adaptation, as
shown in Figure 5(b); button selfDescribe produces the actor configurations
(input/output declared signals, and the like) such as reacts(pongActor,ping),
as shown in Figure 5(c) and button showInteractions shows the messages ex-
changed between the ping pong actors at execution time, by labeling them as
out(pongActor,pong,noArg), as shown in Figure 5(d).

2175Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

5.2 Supporting an adaptation model

In literature there exist several model-based approaches to provide pro-
tocol adaptation, e.g. [Bracciali et al., 2005, Inverardi and Tivoli, 2003]. In
[Bracciali et al., 2005] a formal approach is presented to define an adaptation
process for components whose signature and behaviour are represented in terms
of an algebraic approach. The result of the adapter derivation process is a formal
specification of the adapter behaviour which is guarantee to be deadlock-free. In
this section, we show how this model can be put into practice, since the results of
adapter derivation could be implemented easily in our logic kernel by specifying
adaptation in a declarative style.

As concrete example of adapter implementation, we refer to the FTP trans-
mission system presented in [Bracciali et al., 2005] (Section 5). Briefly, the prob-
lem is to adapt the behaviour of a client and server during the exchange of files—
for more details, the reader should refer to [Bracciali et al., 2005]. The behaviour
of the client is expressed by the sequence of output actions

behaviour: (login!(usr).pass!(pin).

getfile!(file).logout!().0)

representing indication of username, password, a file to be received, and finally
a logout signal. The behaviour of the server is instead defined by the process:

behaviour: (open?(ctl).user?(name,pwd,ctl).(

put?(fn,ctl).close?(ctl).0

+ get?(fn,ctl).close?(ctl).0

+ close?(ctl).0

))

First, the server receives a session identifier ctl, then receives name and pass-
word of the client, then either a put/get action followed by a close, or directly a
close action. In [Bracciali et al., 2005] it is shown how an adaptor specification
can be realised that provides mappings MA between sub-processes of client and
server, and then a true adaptation process AA, as follows:

MA = { login!(usr), pass!(pin) <> open?(ctl),user?(usr,pin,ctl);

getfile!(file) <> get?(file,ctl);

logout!() <> close?(ctl); }

AA = login?(usr).pass?(pin).(ctl)open!(ctl).user!(usr,pin,ctl).

getfile?(file).get!(file,ctl).

logout?().close!(crtl).0

The adapter AA specification, first consumes login and pass actions of the client,
and correspondingly executes open and user of the server—a new session identi-
fier ctl is generated within the adapter. Then, getFile of the client is mapped

2176 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

count(0).
generate(N):-retract(count(N)),N1 is N+1,assert(count(N1)).

invokeInTheSpace(Emitter,’login’,Cmd):-
assert(mem(Emitter,’login’,Cmd)),!.

invokeInTheSpace(Emitter,’pass’,Cmd):-
retract(Emitter,’login’,Cmd1),!.
generate(N),
assert(id(Emitter,N)),
reacts(Reactor,’user’),
node(Reactor,Class),
declaresInvoke(Emitter,’pass’),
Reactor <- doAction(’user’,[Cmd,Cmd1,id(N)]) returns Res,!.

invokeInTheSpace(Emitter,’getFile’,Cmd):-
id(Emitter,N),
reacts(Reactor,’get’),
node(Reactor,Class),
declaresInvoke(Emitter,’getFile’),
Reactor <- doAction(’get’,Cmd) returns Res,!.

invokeInTheSpace(Emitter,’logout’,Cmd):-
reacts(Reactor,’close’),
node(Reactor,Class),
declaresInvoke(Emitter,’logout’),
Reactor <- doAction(’close’,Cmd) returns Res,!.

Figure 6: Logic Kernel FTP Transmission Adapter

to a get in the server. Finally, logout of the client is mapped to a close in the
server.

To implement the adaptor AA with our kernel we exploit the invoke primi-
tive, used to realise 1-to-1 connections: components rely on the invoke primitive
to execute output actions, while input actions are realised by the kernel which
automatically calls the doAction method of the receiving components. In Figure
6 a specification of the adapter for the kernel is shown, which is realised by simply
turning AA process into a logic-based specification. First of all, a generate pred-
icate is implemented that yields an increasing new number each time, modelling
the generation of a new session identifier for the client-server interaction. Then,
the specification provides a rule to manage each possible output action (login,
pass, getFile, logout), by intercepting calls to the invoke primitive and prop-
erly managing them according to the adapter specification. Action login simply
causes a mem fact to be asserted in the theory; this is receovered when later a
pass action is executed, in which case a new identifier N is generated, a fact link-
ing the client and the identifier is stored, the reference to the server is retrieved
by reacts declaration of user signal, the check of actor registration to the ker-
nel is made by node predicate, the control of pass signal consistency with the
emitter declaration is made by declareInform predicate, the doAction method
of reacting actor is called with a list of three parameters: user name, password
and channel. Action getFile and logout respectively cause two server reactions

2177Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

to the signal get and close.
The client and server components must declare to the kernel their reference

and their input and output signals. Currently it is out of the purpose of our
framework, but an interesting future work, to realise inside the logic kernel the
formal algorithm to automatically create the adapter and its implementation
out of the behavioural interface of components.

6 Related Works and Discussion

In Component-Based Software Engineering (CBSE), component adaptation is a
problem that is receiving increasing attention in the last few years. The concept
of adapter and software component adaptation in CBSE environment is well
introduced and explained in [Becker et al., 2006]. In our work, we provide a
component system based on Java where a “logic kernel” is introduced as the
mediator of interaction, and as the place where component adaptation can be
implemented. In particular, our kernel can be see as an adapter, where the
adaptation process is expressed in a declarative style.

Authors of [Becker et al., 2006] also introduce a useful classification of com-
ponent interface with the consequent taxonomy of component mismatches: tech-
nical, signatures, protocols and quality attributes. Our kernel could be considered
as realisation of the pattern adapter for component systems, providing a solution
to most cases of mismatches: signatures, protocols and quality attributes.

There are several ways to put adaptation theories in to practice: in
[McKinley et al., 2004b] and with more detail in [McKinley et al., 2004a] a tax-
onomy of several compositional adaptation approaches is presented, such as
Aspect Oriented Programming (AOP), Computational Reflection, Component-
Based Design and Middleware.

AOP approach enables separation of crosscutting concerns, to be imple-
mented outside the components of the system. The adaptation involves in par-
ticular the quality of service and the ability to dynamically replace one concern
with another. In our framework we roughly follow the AOP approach in that
the possibility to substitute the logic kernel specification on-the-fly is enabled:
in this sense, the adaption policy can be seen as a crosscutting concern of the
application. This feature could also be useful in order to provide the kernel with
different technological support and enabling adaptation between different plat-
forms, since e.g. client and server could be built in different technologies—one as
a web server, the other as RMI object. A somewhat similar approach on main-
stream technologies is given by Composition-Filters, where declarative rules are
superimposed for intercepting, filtering, re-routing, and changing the message
traffic among objects to support certain inter- and intra-class cross-cutting con-
cerns [Bergmans and Aksit, 2001]. Differently from composition filter we provide

2178 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

a framework where the filter adaptation is explicitly represented in our kernel
instead of internally to each object and thus more easily modifiable.

Computational reflection enables a system to change its behaviour without
compromising portability. An adaptative system uses reflection to observe and
change its inner behaviour. In our framework we do not exploit reflection inside
the components but implicitly in the logic kernel, since Prolog-based specifica-
tions are intrinsically meta-programmable: they could inspect themselves and
change accordingly, due e.g. to unpredictable situations like failure of compo-
nents.

From the system point of view dynamical refactoring features are provided
by the mainstream approach of object-oriented design and recently component-
based design. In a component based framework it is possible to reconfigure the
application at run-time, for instance adding or removing components. In our
framework Actors could be considered as components that are independent units
with a common interface. The interaction and late binding between components
is provided by the kernel introducing a level of indirection that enables the
compositional adaptation.

The Middleware approach is based on a layer of services between operating
system and user application. Recently, research on adaptative software focussed
on this approach: in the survey by Sadjadi [Sadjadi, 2003] the role of middle-
ware is discussed in the context of complex software architectures, and it is
shown how software technologies (AOP, Computational Reflection, Design Pat-
tern) are used to support adaptation. The existing middlewares can implement
several adaptation types that could be classified in two main categories: static
adaptation vs. dynamic adaptation. Our logic kernel is a dynamic middleware
where it is possible at run time to tune and change component configuration
and rules of adaptation. These features are realised by exploiting a declarative
language to express adaptation and interpreting at runtime the adaptation rules.
The main advantages of using a Prolog-based specification is that its declarative
style well fits the typical rule-based semantics associated to interaction protocols,
and hence, to adaptation processes. Moreover, its meta-programming capabilities
and its logical character can allow those forms of introspection and intelligent
reasoning that might evolve the framework towards a full featuring adaptive and
self-healing middleware—though this is a subject of future research.

7 Conclusions

The framework presented in this paper takes as a reference context component-
based technologies and frameworks that are currently used in the mainstream,
in particular based on object-oriented languages such as Java. The objective
is to inject in such contexts some of the principles and visions that typically

2179Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

characterise most of the approaches found in the research, such as the focus on
interaction and adaptation as a main engineering dimension, and the introduc-
tion of first-class abstractions (media) for their specification and management
(exogenous coordination).

The framework is an investigation of first-order logic to specify and repre-
senting the logic of interaction and the interaction / adaptation laws gluing
the components and the interaction events actually happening at runtime. The
mediated form of interaction realised by the logic kernel enables a centralised
form of adaptation instead of a more classical approach of an adapter for each
components.

Several research lines will be explored in future works. Among the others, we
plan to: enhance the basic set of interaction / adaptation laws directly supported
by the kernel; exploit of the logic-based kernel for the engineering of self-healing
systems; define a formal model for the framework in order to specify and un-
derstand more rigorously the behaviour of component-based system built on top
it; and finally, apply the framework to real-world examples of component-based
systems.

References

[Becker et al., 2006] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and
M. Tivoli. Towards an Engineering Approach to Component Adaptation. 2006.

[Bergmans and Aksit, 2001] L. Bergmans and M. Aksit. Composing crosscutting con-
cerns using composition filters. Communications of the ACM, 44(10):51–57, oct 2001.

[Bracciali et al., 2005] A. Bracciali, A. Brogi, and C. Canal. A formal approach to
component adaptation. J. Syst. Softw., 74(1):45 – 54, 2005.

[Denti et al., 1997] E. Denti, A. Natali, and A. Omicini. Programmable coordination
media. In David Garlan and Daniel Le Métayer, editors, Coordination Languages and
Models – Proceedings of the 2nd International Conference (COORDINATION’97),
volume 1282 of LNCS, pages 274–288, Berlin (D), 1–3 September 1997. Springer-
Verlag.

[Denti et al., 2005] E. Denti, A. Omicini, and A. Ricci. Multi-paradigm Java-Prolog
integration in tuProlog. Science of Computer Programming, 2005. In press. Available
at http://dx.doi.org/10.1016/j.scico.2005.02.001.

[Inverardi and Tivoli, 2003] P. Inverardi and M. Tivoli. Deadlock-free software archi-
tectures for COM/DCOM applications. J. Syst. Softw., 65(3):173 – 183, 2003.

[McKinley et al., 2004a] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. A Taxonomy of Compositional Adaptation. Technical Report MSU-CSE-04-
17, Department of Computer Science, Michigan State University, Michigan, 2004.

[McKinley et al., 2004b] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. Composing Adaptive Software. Computer, 37(7):56 – 64, 2004.

[Murillo et al., 1999] J. M. Murillo, J. Hernández Núñez, F. Sánchez, and L. A.

Álvarez. Coordinated roles: Promoting re-usability of coordinated active objects us-
ing event notification protocols. In Paolo Ciancarini and Alexander L. Wolf, editors,
Coordination Languages and Models, Third International Conference, COORDINA-
TION ’99, Amsterdam, The Netherlands, April 26-28, 1999, Proceedings, volume
1594 of Lecture Notes in Computer Science, pages 53–68. Springer, 1999.

[OSGi, 1999] OSGi. Osgi service platform. http://www.osgi.org, 1999.

2180 Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

[Sadjadi, 2003] S. M. Sadjadi. A survey of adaptive middleware. Technical report,
Software Engineering and Network Systems Laboratory, Department of Computer
Science and EngineeringMichigan State University, 2003.

[Szyperski et al., 2002] C. Szyperski, D. Gruntz, and S. Murer. Components Software:
Beyond Object-Oriented Programming. Addison-Wesley, 2002.

2181Oliva E., Natali A., Ricci A., Viroli M.: An Adaptation Logic Framework ...

