
Adapting Web 1.0 User Interfaces to Web 2.0 Multidevice
User Interfaces using RUX-Method

Juan Carlos Preciado
(Quercus Software Engineering Group, Universidad de Extremadura

Escuela Politécnica, Cáceres, Spain
jcpreciado@unex.es)

Marino Linaje

(Quercus Software Engineering Group, Universidad de Extremadura
Escuela Politécnica, Cáceres, Spain

mlinaje@unex.es)

Fernando Sanchez-Figueroa
(Quercus Software Engineering Group, Universidad de Extremadura

Escuela Politécnica, Cáceres, Spain
fernando@unex.es)

Abstract: The development of Web applications, both functionality and Web User Interfaces
(UIs), has been facilitated over the last few years using Web models and methodologies.
However, new requirements that overcome traditional HTML-based Web 1.0 User Interfaces
limits have arisen. Developers and tool vendors have answered these limits introducing Rich
Internet Applications (RIAs). RIA technologies provide Web 2.0 UI capabilities such as high
interactivity and native multimedia support among others. Currently, numerous developers are
adapting many of their legacy Web 1.0 applications to Web 2.0 introducing Web 2.0 UI
capacities while maintaining the business logic. Nevertheless, there is a lack of methodologies
to support this adaptation process. In this paper we show how to use a model driven method
called RUX-Method for the systematic adaptation of existing Web 1.0 UIs to Web 2.0
multidevice UIs. This method focuses on new UI capabilities provided by RIAs while taking
advantage of functionality already provided by existing Web models. The proposal follows a
common UI design for all the devices and an ad-hoc design approach for each device attending
to its specific features.

Keywords: Adaptation Techniques, Web Engineering
Categories: H.3.5, H.5.2, H.5.4

1 Introduction

The growth of the Internet is a reality and its impact on society continues to increase
in business, education, industry, etc. The Web has become a common platform for
providing access to information in many different formats and its distributed
architecture has inherited benefits such as low maintenance costs, decentralization and
resource sharing among others.

Over the past few years, the expansion of the Internet has been supported by Web
1.0 HTML-based applications and the Web Engineering community has proposed

Journal of Universal Computer Science, vol. 14, no. 13 (2008), 2239-2254
submitted: 31/10/07, accepted: 27/6/08, appeared: 1/7/08 © J.UCS

methodologies to support the design, development, and maintenance of these Web 1.0
applications. The abstract specification of these applications is supported by some
methodologies offering Web models (e.g. WebML, OOHDM, UWE, OO-H among
others [Preciado, 05]) and some of these are also able to provide automatic code
generation offering associated CASE tools.

With the appearance of Web 2.0, the complexity of tasks performed via Web
applications User Interfaces (UIs) has been increasing, in particular when high levels of
interaction, client-side processing, and multimedia capacities have to be performed. In
this context traditional HTTP-HTML-based Web (Web 1.0) applications are showing
their limits and developers are building the future of the Web using Web 2.0 UI
technologies such as Rich Internet Applications (RIAs), also known as Rich Web
Applications [Brent, 07]. RIAs combine the benefits of the Web distribution
architecture with the interface interactivity and multimedia support available in
desktop applications. For this reason, more and more developers are trying to adapt
their applications by replacing the old UI with a new one using RIAs.

Several authors have highlighted that the UI development is one of the most
resource-consuming stages of application development, especially when Web
applications are developed [Daniel, 07]. However, currently there is a lack of models
and methodologies to support the RIA UI design [Preciado, 05]. Although there are
some research projects trying to incorporate RIA features in their methodologies
[Bozzon, 06] [Urbieta, 07] they do not cover the majority of RIA features. Moreover,
they do not support the systematic adaptation from Web 1.0 UIs to Web 2.0 UIs.

This provides researchers an open issue because it is not only important to have
methodologies to develop Web 2.0 applications from scratch, but it is also important
to adapt existing Web 1.0 applications to Web 2.0 following a methodology. For
example, YouTube, Amazon and Yahoo have all recently introduced Adobe Flash in
the form of RIA widgets with dynamic content into their main web pages to improve
user experience. Because of this, there is a real need for systematic methods and tools
to perform this necessary adaptation in order to preserve consistency and improve
reusability.

Figure 1: Adaptation of UI: from Web 1.0 to Web 2.0

The contribution of this paper is to present the adaptation (Figure 1) of legacy
model-based Web 1.0 applications to multidevice Web 2.0 UIs through RUX-Method
(Rich User eXperience Method) [Linaje, 07]. RUX-Method uses existing data and
business logic offered by the Web application being adapted, providing a UI
abstraction which is then transformed until the desired RIA UI is reached. The
proposal follows a common UI design for devices such as PDAs, smartphones, etc.
and RIA development platforms such as FLEX, AJAX, etc. In this sense, a change in

2240 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

the UI requirements of the application must only be done once. Notwithstanding, in
order to achieve a better user experience for the different RIA capable devices, RUX-
Method supports the UI ad-hoc design for each device according to its features (e.g.
screen size or supported rendering technologies). This is mandatory because RUX
needs a full understanding of the legacy Web application, and the best way to do this
is by means of models.

Following [Canal, 06] the proposed technique is Static Time Adaptation which
can be performed both manual and automatic according to the categorization
proposed. However, dynamic adaptation is taken into account for adapting the UI in
ubiquitous and mobile computing scenarios. According to [Yahiaoui, 04] it is a
technical adaptation.

RUX-Method is accompanied by a tool (RUX-Tool) that supports full automatic
code generation. The method shown in this document has been validated by several
case studies using RUX-Tool. The CASE tool and some video demos are available
online in the RUX-Project homepage at http://www.ruxproject.org/.

The rest of the paper is as follows. Section 2 presents an overview of Rich
Internet Applications by means of an example. Then, in section 3 RUX-Method will
be briefly introduced. Section 4 shows the adaptation method in RUX-Tool while
section 5 applies this process to the example shown in section 2. Finally, conclusions
and future work are shown in section 6.

2 RIA overview and motivating example

Web Interactive Applications [Suh, 05] are defined as Web applications where a
client program uses the Web infrastructure in order to reach end-users through Web
based GUI (usually requires a plug-in installation on the client-browser). RIAs fit well
into this category. While RIAs include functionality inherited from multimedia
desktop applications (native multimedia support and so on), they also offer new
features that have not been presented together inside Web 1.0 applications before.
RIA concepts can be implemented over multiple development platform technologies
such as Adobe Flex or OpenLaszlo [Brent, 07].

The concept of richness in RIA extends the four main aspects (data, business
logic, presentation and communication) of Web 1.0 applications [Preciado, 07].
Business logic design is commonly achieved by Web models through the combination
formed by hypertext, navigation and process design. These four extensions involve
both, client and server sides. In order to understand the need for the adaptation
process, next we show these extensions through a simple example. The selected
example is a hotel booking Web application. First we will show the problems of Web
1.0 UIs and then the advantages of Web 2.0 UIs.

2.1 Web 1.0 UI for the hotel booking example

A typical solution using a Web 1.0 UI is shown in Figure 2. It has been extracted from
a real running application1 and follows the usual booking steps which go as follows:

• Step 1: selection of check-in and check-out dates (Figure 2.1)

1 http://www.booking.com

2241Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

• Step 2: room type selection (Figure 2.2)
• Step 3: payment and personal information (Figure 2.3)
• Step 4: summary and confirmation form (not depicted in the Figure)

 1) Selecting the check in and out dates

 2) Selecting the room type 3) Filling-in payment information

Figure 2: Different steps in the hotel booking example Web 1.0 application

This is shown as general example of multi-step tasks which normally require an
HTML page for each step. The main problems regarding the four main aspects are the
following:

Data. The way in which the contents are distributed between clients and server is
quite limited. While the storage of persistent and volatile content on the server is
possible, the storage of content on the client is quite limited [Bozzon, 06]. In the
booking example, it would be better to have the possibility of storing volatile data at
the client side (e.g., date selections and number of rooms). This would minimize the
bandwidth usage and improve user experience. However, this is not possible with
Web 1.0 UIs.

Business Logic. Processes are executed only on the server: the client performs a
request and the server builds a new page that is sent to the client as a response. In the
booking example, this could be improved by performing some complex operations at
the client side (e.g., available date validation). Once again this would minimize the
bandwidth usage again and decrease server process loading. However, this is not
possible with Web 1.0 UIs.

Presentation. In Web 1.0 applications the presentation capabilities are quite
limited. Web 1.0 application renderers are not able to provide multimedia native support
and they need plug-ins in order to be able to play video and audio at the client side (e.g.,
www.youtube.com). Another limitation is that they do not support rich interactions and
UI animations. Furthermore, the presentation to the user could be undesirably
heterogeneous due to the different rendering engines of the browsers. To obtain these
features expensive JavaScript and CSS browser-dependent code needs to be written
without a guarantee that the code will deal with future browsers updates. The booking
example can also be improved by performing richer interactions. However, this is not
possible with Web 1.0 UIs.

2242 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

Communications. Web 1.0 applications allow only synchronous connections and
the communications are always originated at the client side. In the booking example, it
could be improved by having asynchronous communications allowing partial
refreshments of the UI and once again minimizing the bandwidth usage. However, this
is not possible with Web 1.0 UIs.

2.2 Web 2.0 UI for the booking example using RIA

Let us consider now the same example but with an application developed using RIA
technologies. The example has been taken from www.ihotelier.com. Figure 3 shows a
snapshot of the Web 2.0 UI from the booking process2. The main difference is that
now a single-page paradigm [Mesbah, 06] is followed. So, all the steps of the task can
be performed in a single Web page.

Figure 3: RIA with a single page for the booking task

The main advantages of Web 2.0 approach are the following:
Data. Through RIAs, client’s memory is available to be used by the application;

the amount of client storage capacity depends on the selected RIA technology and the
user’s preferences. In a RIA it is common to store persistent and volatile content on
the client (e.g., a shopping cart or a calendar of appointments which can be stored
locally on the client), to manipulate it (e.g. filtering, adding, deleting or modifying
ordered items or appointments) and to send the manipulated content to the server once
the whole operation has been completed.

Business Logic. RIAs have a different navigation structure from Web 1.0
applications. They operate as single page applications, where the nested pages are able
to be processed either by the client or by the server. Due to the augmented process

2 https://reservations.ihotelier.com/onescreen.cfm?hotelid=6193&languageid=1

2243Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

capability of the client, in RIA both the client and the server can carry out complex
operations (e.g., data filtering or numeric operations for the booking example).

Presentation. RIAs offer new functionalities that improve presentation and user
interactions (e.g. native multimedia support for showing rooms in other booking
applications, etc). RIAs avoid unnecessary full UI refreshments and allow progressive
presentation loading when needed. This would improve the bandwidth usage while
maintaining homogeneous presentation in the booking example.

Communication. RIAs allow both synchronous and asynchronous
communications. Distribution of data and functionality across client and server broadens
the features of the produced events as they can originate, be detected, notified, and
processed in a variety of ways. In this sense, pulling and pushing communication
capabilities are available and developers may use them depending on the Web
application nature. For the booking example it would then be possible to obtain partial
refreshments of the UI.

Summarizing, by using the single page application paradigm RIA is able to
overcome the limitations of the Web 1.0 that we have shown in this section. Once the
main benefits of using RIA for developing Web 2.0 have been introduced, next we
present a method for the systematic adaptation of existing Web 1.0 UIs to Web 2.0
UIs.

3 RUX-Method Overview

RUX-Method overview is depicted in Figure 4. Here we only give an overview with
the aim of understanding the adaptation phases. The reader is referred to [Linaje, 07]
for details. Due to it being a multidisciplinary proposal and in order to decrease cross-
cutting concepts, the UI specification is divided into levels. According to [Limbourg,
07] a UI can be broken down into four levels, Concepts and Tasks, Abstract Interface,
Concrete Interface and Final Interface.

Following this approach RUX-Method method takes Concepts and Tasks (i.e.
data and business logic) from the underlying legacy Web model while the rest of the
Interface levels are mainly based on RUX-Method Interface components. Thus, RUX-
Method Interface levels are mainly made up of Abstract Interface Components,
Concrete Interface Components and Final Interface Components.

In RUX-Method the Abstract Interface provides a UI representation common to
all RIA devices and development platforms, without any kind of spatial, look&feel or
behaviour dependencies, so any device that runs RIAs has the same Abstract
Interface. The components of the Abstract Interface are independent from specific
devices and rendering technologies. Here, we talk about different abstract
components: containers (e.g. views), contains (e.g. text, video, images, etc.) and
connectors (the connection with the business logic of the underlying Web model).

Then, in the Concrete Interface we are able to specify the Abstract Interface for a
specific device or group of devices. This Interface level allows achieving better user
experiences at run-time optimizing the UI through an ad-hoc design approach.
Concrete Interface is divided into three Presentation levels: Spatial, Temporal and
Interaction Presentation. The Spatial Presentation allows the specification of the
spatial arrangement of the UI as well as the look&feel of the Interface components.
The Temporal Presentation allows the specification of behaviours which require a

2244 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

temporal synchronization (e.g. animations). The Interaction Presentation allows the
specification of the user’s behaviour with the RIA UI.

RUX-Method ends with the Final Interface which is specific for a device or a
group of devices and for a RIA development platform. From a practical point of view,
RUX-Tool provides the code generation of the modelled application. This code is
then ready to be deployed.

Figure 4: RUX-Method architecture overview

4 Adaptation phases in RUX-Method

There are two kinds of adaptation phases in the RUX-Method according to the
Interface levels defined above. Firstly, the adaptation phase that catches and adapts
Web 1.0 data, contents and navigation to RUX-Method Abstract Interface is called
Connection Rules. Secondly, the adaptation phase that adapts this Abstract Interface
to one or more particular devices and grants access to the business logic is called
Transformation Rules 1.

Closely related to the Transformation Rules 1, is the Component Library (see
Figure 4). Each RUX-Method Interface level is composed by Interface Components
whose specifications are stored in the Library. The Library also stores how the
transformations among components of different levels are carried out.

Finally, there is an additional transformation phase that is not an adaptation one.
This phase completes the MDA life-cycle of RUX-Method supporting and ensuring
the right code generation (Transformation Rules 2). In order to provide the most
complete vision for the reader of the adaptation method and the adaptation phases,
Transformation Rules 2 will be treated also in this section.

4.1 First adaptation phase: Connection Rules

The first adaptation phase, marked CR in Figure 4, extracts all the relevant
information (data model and business logic) from the adapted Web model to
automatically build a first version of the Abstract Interface. This process is performed
automatically because Connection Rules establishes the way the matching takes place

2245Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

among the previous Web model elements and the Abstract Interface components.
Notwithstanding, the designer can refine this automatic version of Abstract Interface
to suit their needs (e.g. content grouping).

Usually, Web models have graphic (based on E-R or UML) and textual (using
XML based syntax) notations to represent their concepts intuitively. The connection
mechanism graphically expresses the set of relationships between each element in the
Web model (e.g. container, unit) and the potential target component in the Abstract
Interface of RUX-Method (e.g. view, media).

The connection process starts selecting the set of Connection Rules to be used.
This selection depends on the Web Model used for the development of the application
to be adapted. A set of Connection Rules exists for each potential Web Model being
considered (e.g. WebML, OOHDM, UWE, OO-H, among others).

The way in which the Connection Rules algorithm works depends on the Web
model used and it is reusable in any other project using the same Web model. The
following information is extracted from the previous Web model:

• The connections between pages, which allow us to know content grouping
and to remain this grouping information context.

• The data used by the Web application and its relationships.
• The existing hypertext element groupings.
This information will also grant the Concrete Interface access to the “operation

chains” or “operation points”, which represent the operational links in the hypertext
navigation models.

After the Connection Rules are applied, we obtain an Abstract Interface with
components which are independent from the platform and the final rendering device.

4.2 Component Library

In order to understand the way in which the Transformation Rules are applied in the
second and third steps (marked TR1 and TR2 in Figure 4), we need to know the role
played by the Component Library.

The Components Library is responsible for: 1) storing the component
specification (name, methods, properties and events), 2) specifying the
transformation/mapping capabilities for each component from an Interface level into
other components in the following Interface level and 3) keeping the hierarchy among
components at each Interface level independently from other levels. The set of
Interface components defined in this library can be increased or modified by the
designer according to the specifications of the project. In addition, the set of available
transformations/adaptations for each Component can be increased or updated
according to the Interface Components included in the Library. For a given
component several transformations can be defined depending on the target platform.

The Components Library is partially based on XICL (eXtensible user Interface
components Language) [Sousa, 04]. XICL is an extensible XML-based mark-up
language for the development of UI components in Web applications. However,
RUX-Method extends XICL to define Interface components (properties, methods and
so on) and to establish mapping options among Interface components of adjacent
Interface levels. Figure 5 illustrates the Entity-Relationship diagram for the
Component Library.

2246 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

Figure 5: Component Library E-R description

4.3 Second Adaptation phase: TR1

In the second adaptation phase, marked as TR1 in Figure 4 a draft version of the
Concrete Interface is obtained from the Abstract Interface. This is done automatically
due to TR1 establishing the matching between Abstract Interface components and
Concrete Interface components. This version can be refined by the designer to suit
their needs (e.g. changing the spatial arrangement, adding temporal behaviours).

TR1 establishes the correspondences which are allowed among Abstract Interface
Components and Concrete Interface Components. The set of different components
which can form the Abstract Interface is fixed and limited by a number of elements
set by RUX-Method as native. However, the set can be conceptually increased by
extending the Component Library. The size of Concrete Interface Components set is
variable and depends on the number of RIA elements to be defined dynamically in the
Component Library. Following these criteria, the set of Transformation Rules 1 is
also dynamic, so if the designer includes or modifies a Concrete Interface
Component, the necessary changes in TR1 must be done. Any other way, RUX-
Method skips that Component which will not be available at modelling time.

4.4 Transformation phase: TR2

Finally, in the last phase, TR2 (Transformation Rules 2), the Final Interface is
automatically obtained depending on the chosen RIA rendering technology [Brent,
07] (e.g. Laszlo, Flex, AJAX, XAML). This process is performed automatically
because TR2 establishes the way the matching takes place among Concrete Interface
components and Final Interface components.

This case is different from the previous one. In TR2, both the set of origin
Components (Concrete Interface) and the set of target Components (Final Interface)
can be dynamically changed in the Component Library. On the one hand, a Concrete
Interface Component is defined only once in the Library. On the other hand, there can
be many specifications of each Final Interface Component in the Library according to
the quantity of available rendering platforms. As an example, there is only one
“window” Concrete Interface specification, while there is one “window” Final
Interface specification for AJAX, another one for FLEX and so on (see Figure 5). In

2247Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

this sense, the Concrete Interface is a DSL (Domain Specific Language) for the RIA
domain, independently of the technology specification.

As in the previous adaptation phase, the mapping of methods, events and
properties is done individually. The set of Transformation Rules depends on the
specification of the Concrete and the Final Interface Components, so updating a
Component in one of these Interface levels requires updating the Transformation
Rules 2 according to the target platforms where we want to deploy the Final Interface.

5 Motivating example revisited

In this section we show how to use RUX-Method to adapt a Web 1.0 UI to a new
Web 2.0 multidevice UI. For this purpose the motivating example shown in Section 2
will be used.

First of all, the Web 1.0 application depicted in Figure 2 must be modelled using
a Web Model. The selected Web Model is WebML [Ceri, 02] which has been used in
the past with RUX-Method [Preciado, 07]. The modelled application is our start point.
Then, the second step is the adaptation of Web 1.0 UI.

It is not the objective of this paper to give a full overview of WebML. We will
only give the necessary details to understand the adaptation method.

5.1 The hotel booking example with WebML

There are several proposals for conceptual modelling of Web applications. These
proposals allow reasoning at a high level of abstraction without committing to
detailed architectural and implementation issues. WebML is one of these proposals
and its distinguishing feature is an extensive use of diagrams which provide a very
intuitive design to the designer.

According to the WebML approach, Web applications are mainly composed by
two orthogonal concepts: the data model which describes the schema of data
resources according to the ER model and the hypertext model which describes how
data resources are assembled into information units and pages, and how such units
and pages interconnect to constitute a hypertext.

WebML provides modelling abstractions and its CASE tool called WebRatio can
transform these abstractions into specific pages. Figure 6 depicts part of the data
model and part of the hypertext model of the booking example in order to detail the
way the application goes. The E-R diagram needs no description since it is well-
known and frequently used in many Software Engineering disciplines. The business
process goes as follows:

The user enters into the Web application through its homepage (Date selection
page) where he or she fills in the dates form. When the form is sent to the server, the
Web application selects those rooms which follow the criterion of not being booked
on the selected dates (Available room’s selector unit). This data selection is used by
the user to choose the room type. Only those types where there is at least one free
room are shown (Room selection index unit). When the user selects a room type the
server then calculates the total amount to charge (MathUnit1). This is passed as result
to a form where the user enters his personal and payment information (payment form).
When the user sends this information to the server, a summary page including a form

2248 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

to confirm all the booking details (Conformation form) is sent from the server.
Finally, the user must confirm the booking and a transaction is triggered to create a
guest and a booking (Data insert). Using the WebML CASE tool, designers can
generate the application shown in Figure 2 after some styling specifications.

Figure 6: Motivating example using WebML: top) data; bottom) hypertext model

5.2 Adapting the hotel booking example toward Web 2.0 UI

The first phase of RUX-Method is applying the Connection Rules. Figure 7 depicts
how this adaption is carried out for the WebML specific case.

The Connection Rules for WebML filter the information offered by WebRatio,
obtaining only the information needed to be used for building Abstract, Concrete and
Final Interface. This information refers mainly to the <Structure> and <Navigation>
elements, avoiding the remaining information regarding Presentation, Mapping and
Localization among others.

2249Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

Figure 7: Connection Rules for the WebML specific case

The WebML to RUX-Method connection process is performed surfing top-down
the WebML hierarchy, matching each element according to the relation pattern
established by the RUX-Method Connection Rules. The main idea is to recognize the
WebML concepts and to classify the potential correspondences with the RUX-
Method Abstract Interface elements.

Figure 8: RUX-Method Abstract Interface for the booking example.

2250 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

Figure 8 represents a RUX-Tool screenshot and shows the RUX-Method Abstract
Interface automatically obtained once the Connection Rules have been applied over
the legacy Web 1.0 application design. The black colour in the background belongs to
the tool. The abstract interface consists of the different boxes and arrows.

The designer can refine this Abstract Interface using RUX-Tool (on-line
application also shown in Figure 8) when necessary. Once the Abstract Interface has
been obtained, the designer can apply the Transformation Rules 1 constraining the
Interface design process through the selection of many features available in the RIA
capable devices (type of multimedia files support, screen size restrictions...)

Figure 9: top) RUX-Method Transformation Rules 1 for the motivating example.
 bottom) RUX-Method Concrete Interface for the motivating example.

2251Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

After the target device(s) selection for the application, the designer automatically
obtains the Concrete Interface. The type of the Concrete Interface components
obtained and the availability of the rest of the components defined in the Component
Library is constrained by the chosen device(s) (i.e. it is not the same menu for a PC
than for a smartphone). This Interface must be refined to obtain an application similar
to Figure 3, but without any kind of rendering technology dependency. Figure 9 (top)
depicts the Transformation Rules 1 schema for the motivating example. In this
schema we focus on the origin (Abstract Interface components), the destination
(Concrete Interface components) and the mapping relationships among them.
Through the application of these rules, the Concrete Interface is obtained and after a
manual refinement designers can achieve their goal as depicted in Figure 9 (bottom).

The final phase of the RUX-Method adaptation method is the application of
Transformation Rules 2. Applying this set of rules, the designer obtains the Final
Interface level which ends with the code generation when using the RUX-Tool. In this
way an application is obtained like that shown in Figure 3. These Transformation
Rules allow the designer to choose the final rendering platform. Figure 10 extends
Figure 1. The reader can see how the old UI of the Web application can be adapted to
a new Web 2.0 multidevice UI. In Figure 10, the Abstract Interface is transformed
into two Concrete Interfaces, one with a special arrangement customized for PCs and
the other for a group of mobile devices. One Concrete Interface is transformed into
two Final Interfaces for a PC using different rendering technologies and the other
Concrete Interface into two Final Interfaces for different devices with the same
rendering technology. This is the way in which multidevice UI design capabilities are
obtained while UIs remain highly customizable for each device taking full advantage
of the devices’ capabilities (e.g. screen size).

Figure 10: Multidevice adaptation

6 Conclusions and future work

This paper introduces RUX-Method, a Model Driven Method for the systematic
design of RIA UIs adapting existing HTML-based Web Applications to provide them
with multimedia support, offering more effective, interactive and intuitive user
experiences.

2252 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

To our knowledge this is the only Web Engineering approach able to adapt
existing Web 1.0 applications based on models to new Web 2.0 “rich” UIs. This
adaption is performed with no changes in the business logic already modelled.

Conceptually, RUX-Method can be used on several Web development models.
The use of Web models is mandatory because RUX needs a full understanding of the
legacy Web application, and the best way to do this is by means of models. At the
implementation level, RUX-Tool has a series of prerequisites regarding the models
that can be used in order to automatically extract from them all the information stored
by these models (mainly a declarative representation of the model).

Currently, RUX-Tool works together with WebML (using WebRatio, the
WebML CASE tool), but there are works in progress with UWE [Koch, 02] and OO-
HDM [Urbieta, 07].

Acknowledgements

This work was partially funded by PDT06A042 and TIN2005-09405-C02-02.

References

[Bozzon, 06] Bozzon, A., Comai, S., Fraternali, P., Toffetti, G.: Conceptual Modeling and
Code Generation for Rich Internet Applications, International Conference on Web Engineering
(ICWE), Springer, 353-360, 2006

[Brent, 07] Brent, S.: XULRunner: A New Approach for Developing Rich Internet
Applications, Journal on Internet Computing, IEEE, vol.11, iss. 3, 67 - 73, 2007

[Canal, 06] Canal, C., Murillo, J.M., Poizat, P.: Software Adaptation, Coordination and
Adaptation Techniques, L'Object, vol. 12, iss. 1, 2006

[Ceri, 02] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications, Morgan Kauffmann, 2002

[Daniel, 07] Daniel, F., Yu, J., Benatallah B., Casati, F., Matera M., Saint-Paul, R.:
Understanding UI Integration: A Survey of Problems, Technologies and Opportunities, Journal
on Internet Computing, IEEE, vol. 11 iss. 3, 59-66, 2007

[Koch, 02] Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering, Int.
Wsh. Web-Oriented Software Technology (IWWOST), 105-119, 2002

[Limbourg, 07] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.:
UsiXML: a Language Supporting Multi-Path Development of User Interfaces, 9th IFIP
Working Conference on Engineering for HCI, LNCS Springer-Verlag, vol. 3425, 207-228,
2005

[Linaje, 07] Linaje, M., Preciado, J.C., Sánchez-Figueroa, F.: Engineering Rich Internet
Application User Interfaces over Legacy Web Models. Internet Computing Magazine, IEEE,
vol.11, no.6, pp.53-59 (2007)

[Mesbah, 06] Mesbah, A., van Deursen, A.: Migrating Multi-page Web Applications to Single
page Ajax Interfaces, Delft University of Technology SERG, TUD-SERG-2006-018, 2006

[Preciado, 05] Preciado, J.C., Linaje, M., Sánchez, F., Comai, S.: Necessity of methodologies
to model Rich Internet Applications, IEEE, Internet Symposium on Web Site Evolution (WSE),
pp. 7-13, 2005

2253Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

[Preciado, 07] Preciado, J.C., Linaje, M., Comai, S., Sánchez, F.: Designing Rich Internet
Applications with Web Engineering Methodologies, IEEE, International Symposium on Web
Site Evolution (WSE), pp. 23-30, 2007

[Sousa, 04] de Sousa, G., Leite, J.C.: XICL - an extensible markup language for developing
user interface and components, International Conference on Computer-Aided Design of User
Interface, vol. 1, 2004

[Suh, 05] Suh, W.: Web Engineering: Principles and Techniques, IGI Publishing,
Christodoulou at al.’s chapter, 31-75, 2005

[Urbieta 07] Urbieta, M., Rossi, G., Ginzburg, J., Schwabe, D.: Designing the Interface of Rich
Internet Applications, In Almeida, V., Baeza-Yates, R. (eds.) Proceedings of the 5th Latin
American Web Congress, pp.144-153, IEEE (2007)

[Yahiaoui, 04] Yahiaoui, N., Traverson, B., Levy, N.: Classification and Comparison of
Adaptable Platforms, I WCAT Workshop, Available at http://wcat04.unex.es/, 55-61, 2004

2254 Preciado J.C., Linaje M., Sanchez-Figueroa F.: Adapting Web 1.0 ...

