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Abstract: As soon as major protocol flaws were discovered empirically — a good luck
that is not older than the early 1990s — this title question came up to the world. It
was soon realised that some notion of formal correctness was necessary to substantiate
the confidence derived from informal analyses. But protocol correctness was born in a
decade when security in general was only beginning to ferment.

Security protocols aim at a large variety of goals. This is partly due to the increasing
domains where the protocols are finding an application, such as secure access to local-
area network services, secure e-mail, e-commerce, public-key registration at certification
authorities and so on. Also, several interpretations are possible about each goal.

Clearly, it is impossible to study protocol correctness profitably without a universal
and unambiguous interpretation of its goals. What may be typical of security problems
is that it is at least as important to state a detailed and appropriate model of threats
that a secure system is meant to withstand. This has been a second and significant
source of perhaps useless debates around many protocols.

These are certain to be some of the reasons why dozens of papers appeared about one,
now popular, protocol attack in just a few years of the second half of the last decade.
One of the protocol designers firmly refused those ”findings” because his protocol had
been conceived within a different threat model — and perhaps for different goals —
from the one that the publications had been constructed upon.

It seems obvious that an ant may survive under a single sheet of paper but certainly will
not under a hard-back bulky book. It should be clarified what an ant and a bulky book
precisely are. With particular attention to similar issues, this position paper discusses
some findings of the author’s in the area of protocol formal analysis. Their significance
mostly is methodical rather than specific for particular protocols. The paper then
outlines the author’s favourite tool, the Inductive Method, and concludes with a few
open problems.
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1 Premise: Security and Security Protocols

It has become easier and easier to introduce the main notions of computer secu-
rity to anyone. Even computer illiterates such as my old uncle and auntie have
the feeling that it is somewhat related to people’s capitals and interests in gen-
eral. This reality supports the claim that computer security currently has vast
social impact, and is therefore worth of attention. However, gone are the 1980s,
when the US Department of Defense issued the Orange Book, a set of criteria
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for evaluating the security of computer systems. It is still very relevant though
constrained to stand-alone computers: ours is an era of computer networks.

The Orange Book prescribes that a secure system cannot exist without a
clear security policy specifying who can or cannot do what in a system. Ever
since 1960, the Compatible Time Sharing System developed at MIT introduced
a password file storing each login and related password. By security policy, that
file must not have been readable by anyone except the administrator. The policy
is then to be implemented as a reliable access-control mechanism. The access-
control list bundled with each file in a Unix system is an instance of this concept.

It is understood that a user-authentication mechanism is also fundamental,
and passwords have been surpassed by smart-tokens and biometric authentica-
tion. The Orange Book also requires auditing. At present, it is widely acknowl-
edged that security is impossible without a full audit trail that logs all significant
events occurred in a system, such as system calls, accesses to restricted memory
areas and so on. Moreover, all of these measures must be continuously in place
and well documented.

In a networked world, the threats have only increased. Some attempts ex-
ist to overcome the intrinsical limitations of the Orange Book and provide a
complete description of computer security in the new setting. However, I feel
that none of them has encountered sufficient acceptance, perhaps because it has
become impossible to define the complete toolbox indicating security. To say
it with Anderson [Anderson and Needham(1995)], security rather is a complex
CNF formula than a simple boolean predicate. And the real length of that for-
mula seems to remain an open problem as more and more applications demand
security.

An example of the growing call for security can be easily found in an aca-
demic context. At present, my Department manages student exams and final
dissertations electronically. Each lecturer has been provided with a smartcard
containing his private key, which he uses to digitally sign exams. All web pages
are only HTTPS accessible, meaning that the SSL protocol is securing each
transaction. The system now rests on all available security measures thanks to
the efforts of local researchers and technicians, but it has been through various
insecure stages. For example, a dedicated server, called the Uniweb server, man-
aged the final dissertations for some time. Lecturers’ authentication was done via
passwords specific for Uniweb, but password reminders were managed insecurely.
Anyone could open up the URL of Uniweb’s interface, enter a valid e-mail ad-
dress and have a new password sent to that e-mail. Not only could an attacker
mount a denial-of-service attack (DoS) on any lecturer by causing continuous
password reminders, but he could also attempt to sniff the new password and
then impersonate the lecturer. This was perfectly realistic because the Uniweb
server spoke with the e-mail server in the clear. Obviously, when pen and paper
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were used a couple of years ago, none of these computer security issues existed.

Larger-scale examples are just as easy to derive. The mentioned SSL pro-
tocol is most popular. All it does is to distribute session keys to its peers. It
has been used for e-commerce with the result of massive frauds being mounted
against merchants a few years ago. The attackers impersonated legal cardhold-
ers by sending over SSL well-formed credit card fake numbers to the merchants,
who were content with just the well-formedness of the sixteen digits and deliv-
ered the goods. Nothing in SSL guarantees to a merchant that a credit card
number corresponds to a wealthy account and a guaranteed payment. The pro-
tocol leaves it to the merchant to fetch such a validation “out of band”. Se-
cure Electronic Transactions, SET, is a protocol developed by a credit card
consortium on the basis that secure e-commerce is much more than session
key confidentiality. E-commerce demands delicate security goals such as con-
firmation of all transaction details from and to all parties, including a bank or
its representative. Forms of partial sharing are also important: the cardholder
has to share his payment details (how he is paying) with the bank but may
want to keep them from the merchant, who, however, must confirm them to
the bank. Dually, the cardholder may accept to share the order information
(what he is buying) with the merchant but not with the bank, who, however,
must confirm that that order is covered by appropriate payment. SET reaches
these complex goals [Bella et al.(2006)Bella, Massacci and Paulson]. The card-
holder is protected because the merchant can confirm the payment details to the
bank without seeing them. Likewise, the bank can confirm the order information
(relative to a payment) to the merchant without seeing it.

These examples are also useful to highlight that a number of measures for
network security are necessary at present. No-one forgets the Orange Book, but
no-one considers a network reliable without techniques to thwart malicious soft-
ware, such as antiviruses and antispammers. Measures to detect and handle po-
tential intruder processes, such as intrusion detection and management systems,
are also indispensable. And no network will survive without the perimetrical
protection provided by a properly configured firewall.

Even with all these measures in good order, a computer network runs the
risks deriving from its own definition: the information that is sent across between
nodes. As mentioned, sensitive information such as a password traversing the
network in the clear essentially vanishes everything. Whoever exhibits a password
can impersonate the password’s legal owner, and traffic sniffers that capture the
network packets are freely available. This brings us on to the necessity of security
protocols: any network traffic must be regulated by specific protocols conceived
to accomplish certain security goals. It is known that these protocols typically
make use of cryptography, so that a ciphertext only is intelligible to whoever has
access to the key that was used to encrypt it. For example, SSL and SET make
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an intelligent use of cryptographic primitives to reach their aims.

2 Security Protocol Analysis

Security protocols are well-known to be highly prone to errors. Sometimes, the
international community had been convinced for more than a decade that a
protocol was essentially OK when it was found to hide subtle attacks. The work
of Burrows et al. [Burrows et al.(1989], best known as BAN logic, pioneers these
problems in 1989. A variety of attacks are published in the 1990s, such as those
by Syverson [Syverson(1994)] and by Lowe [Lowe(1996b)] to just cite a couple.

An attack found to a protocol denounces that the protocol is incorrect,
namely it fails to live up to the promises that its designers made about it.
But what makes security protocols so difficult to get right, so predisposed to
incorrectness? A protocol is a distributed program executed concurrently by a
virtually infinite population of agents. In practice, that population is extremely
large and impossible to delimit. For example, it is unknown how many are ex-
ecuting SSL this very moment. The concurrent nature implies that any agent
can open up any number of protocol sessions with anyone at the same time.
Sessions can be broken because of network troubles or be quit purposely. They
can even be delayed, so that an agent may want to execute a full session with a
peer during the lapse between two steps of another session with another agent.
This form of session interleaving has often turned out problematic for security.

The formal method community has profoundly contributed to develop this
area. The citations I made above pertain to abstract, logical reasoning per-
formed by pen and paper [Burrows et al.(1989, Syverson(1994)], and to process
calculi equipped with state-enumeration techniques [Lowe(1996a)]. Up to our
days, the majority of formal method experts have somewhat tried out their
favourite methods at protocol analysis with alternate results. These years’ pro-
ceedings of international conferences focusing on security do not reach their
ends without some advance in protocol verification [Abadi and Blanchet(2003)],
[Armando and Compagna(2005)], [Basin et al.(2005)], [Cohen(2003)],
[Cremers(2006)], [Guttman et al.(2004)].

All these contributions assume that encryption is totally reliable, namely that
a ciphertext cannot be opened anyhow without its encrypting key. With this as-
sumption, often known as black-box cryptography, researchers neglect all cryp-
tographic details and concentrate on a variety of security goals. Another group of
contributions, pioneered by Bellare and Rogaway [Bellare and Rogaway(1995)]
and developed till now [Abdalla et al.(2006) Abdalla, Fouque and Pointcheval],
relaxes this assumption by a probabilistic assessment of the robustness of the
cryptographic algorithms. The analysis typically concentrates on the confiden-
tiality goal, which is reduced to the negligible probability that an attacker breaks
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the cryptographic scheme. Both groups have guided significant advances, so that
it is impossible to state that one is more important. It often appears that their
findings complement each other. However, it is unfortunate that very few at-
tempts [Abadi and Rogaway(2000), Gollmann(2000)] exist to conjugate the two
groups and fade out what seems to remain a dichotomy. My own contribution
assumes black-box cryptography [Bella(2007)].

3 Recent Findings on Protocol Correctness

The vast majority of publications in this area follow a stable pattern: here is a
protocol that is worth considering, here is a major attack to it, and here is our
new method to find it. I have often not resisted this pattern, but will resist it this
time. Here, I intend to discuss some findings of mine that may have a method-
ical influence on how security protocols ought to be analysed, and eventually
on protocol development and deployment. In particular, I will demonstrate the
importance of defining the goals and the threat model precisely (§3.1), which
may help when we wonder whether we can live with flawed protocols. I will also
advance a principle of reliable protocol analysis, adherence to which may un-
veil additional protocol insights (§3.2). I will purposely attempt to dispose with
the formal overhead as much as possible, and mostly work out on the reader’s
intuition.

3.1 Goals and Threats

It is out of question that the most popular protocol is a simple three-message one
based on public-key cryptography and developed by Needham and Schroeder in
1978. It has been debated so much that it is slightly embarrassing to quote it
again here. But it provides a good workbench to expand my argument.

1. A— B:{Na, A}y,
2. B — A:{Na, Nb},
3. A— B:{Nbl},,

Encryption is assumed to be perfectly reliable, so that only who has the private
key corresponding to Kb can open up messages 1 and 3. If nothing wrong hap-
pened with key management, that must be B. Likewise, only A can decipher
message 2. Each agent can use the random number generator to invent his own
nonce: Na comes from A, and Nb originates with B. If nonces are assumed truly
random, then A concludes that her peer is B as soon as she receives message 2,
which quotes her nonce. And B deduces that her peer is A when he gets message
3, which mentions his nonce. Incidentally, message reception is not guaranteed
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in general over an insecure network, but if any protocol message fails to reach
its intended recipient, than the entire protocol fails.

This was a convincing reasoning for everyone until Lowe published an attack
to the protocol in 1995 [Lowe(1995)].

1. A—C:{Na, A},
1. C— B:{Na, A},
2'. B — A:{Na,Nb},
2. C— A:{Na,Nb},
3. A— C:{Nb}.
3. C— B:{Nb}y,

The attack proceeds from A’s initiating a session with the attacker C. This
seems realistic as no-one knows who the attacker is. It can be seen that the
attacker interleaves his communication with A to a session, indicated by the
primes, with some B. He fakes message 1’ by reusing A’s nonce and identity.
Then, he intercepts B’s reply 2’ to A but cannot decipher it, and so he merely
forwards it to A. It can be seen that, because A cannot register any irregularity,
she opens up B’s message and reveals nonce Nb to the attacker in message 3.
The attacker is now able to terminate his session with B successfully.

It is clear that B terminated a session with the attacker believing it was
A: the attacker has impersonated A with B. The protocol is incorrect because
authentication of A with B fails in this case. Lowe reports a drastic consequence
based on the fact that the nonces are meant to remain confidential. Following
the attack, B believes to share secrets Na and Nb with A, when in fact he shares
them with C. Therefore, if B were a bank the attacker could require a money
transfer from A’s account to his own by exhibiting the two nonces. The bank B
would believe the request came from A, and hence second the transaction.

3.1.1 Questioning the goals

If we are to properly evaluate these findings, we must wonder what the real goals
of this protocol were, according to its designers. There is no point lamenting that
a car does not go at 1000Mph because it only was conceived for 100Mph. What is
authentication? It is in fact the most discussed protocol goal, perhaps because it
is easy to misunderstand. Lowe and Gollmann published two separate, eminent
treatments [Gollmann(1996), Lowe(1997)].

Lowe in particular highlights the weakest form of authentication, which he
calls aliveness. It holds of an agent when he merely is alive, active in the net-
work. A more stringent form of authentication is weak agreement. There is weak
agreement of A with B if B believes that A is running the protocol with him,
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and this is true. This hierarchy of authentication specifications has four levels.
The next level, non-injective agreement subsumes weak agreement by also re-
quiring agreement on some set of message components. The final level, injective
agreement, requires a perfect match between the peers’ sessions, but has not
encountered much mention.

With some definitions in hand, it can be concluded that Lowe’s scenario does
not count as an authentication flaw if authentication means aliveness. When B
believes that his peer is A, she is in fact up and running (though not with
B). Only if authentication at least means weak agreement is Lowe’s scenario
an authentication flaw: B gets his peer wrong. However, these arguments still
remain to be matched against the protocol designers’ stated goals. It happens
that their concerns were even more fundamental, as I say below.

It must be noted that Lowe’s attack (or “attack”?) is conceived under the
well-known Dolev-Yao’s threat model [Dolev and Yao(1983)]. It sees a super-
powerful attacker who can intercept all network traffic and break concatenated
messages and ciphertexts of which he knows the encrypting key. He can also build
fake messages at will out of the components he knows. Dolev-Yao’s clearly is the
most potent attacker that can be conceived without relaxing the assumption of
black-box cryptography.

3.1.2 Questioning the threat model

Roger Needham refused Lowe’s attack not much on the basis of an imprecise
definition of authentication but more fundamentally on the basis of a wrong
threat model. There is no point observing that a car cannot fly, because its
stated threat model is the road, not the sky.

Needham said that the public-key Needham-Schroeder protocol had been
conceived for closed environments where the attacker was an outsider, not a reg-
istered agent [Needham(2000)]. It was thus impossible to initiate the protocol
with him. Clearly, without this prerequisite, Lowe’s attack would not proceed.
However, this reply received some criticism: if a trust relationship holds between
the peers so that none of them can be the attacker, it is unclear what an au-
thentication protocol is at all needed for.

When 1 formalised Lowe’s scenario using soft constraint programming, I
found out something that had never been reported [Bella and Bistarelli(2004)].
Because of C’s activity, B gets to learn nonce Na even if he only acted legally.
Is this a problem? Agent A invents that nonce to share it with its intended
peer, who is C. Therefore, the designers would agree that Na is only meant to
be shared between A and C, namely it should remain confidential for them. It
unquestionably follows that B’s learning Na counts as a protocol flaw.

It was enlightening to evaluate the putative consequences of this finding.
Could B ever take advantage of his knowledge of Nb? An initial negatively-
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flavoured answer derived from the fact that B is unaware of the power of Na.
But no-one would give his house keys to thefts merely because they do not know
which house they open. If the motivations to commit the crime are sufficient,
the attacker will try out all keys in his key ring virtually everywhere. This is
particularly feasible if there is some proximity relationship between the attacker
and the potential victims. It is the case of Lowe’s scenario for example, where
all peers are registered for the same protocol.

Having left that debate behind, I continued my investigation on the univer-
sally accepted security principle that any violation of a stated goal will be sooner
or later exploited by an attacker. But I realised that formally B could not be the
attacker because that was C. It was then when I started to question the appro-
priateness of Dolev-Yao’s model, and soon came to a negative conclusion. That
model had been formalised in the early 1980s, when a computer network was a
resource limited to a few worldwide institutions and no-one else. It was perfectly
realistic to assume that when two representatives of the same institution meant
to communicate remotely, they would trust each other and not the rest of the
world. Dolev and Yao appropriately formalised the worst case in which the rest
of the world would collude against that single line of communication.

It is difficult to picture this scenario nowadays because it just is no longer
adherent. Each house potentially is an Internet user, and offensive resources
have become cheap both in terms of hardware/software costs and in terms of
skill. The Internet even stores freely accessible databases of malicious code for
teenagers to try out for fun. The news are continuously reporting about new
frauds being mounted within the most unsuspected contexts. I thus envisaged
and defined a new threat model, where each agent can either be one who does
not break the rules, a good, or a Dolev-Yao’s attacker, a bad, or one with no
specific commitment, an ugly [Bella et al.(2005)]. This is the BUG threat model.
Attacks are always balanced decisions, and if we leave ethics behind, anyone will
mount an attack if profit outdoes risk. Therefore any agent must be allowed to
switch from one role played in a session to another role in the next session.

It is perfectly conceivable in the new threat model that B decides to exploit
his knowledge of Na. Because A believes to share that nonce only with C, agent
B can later impersonate C' with A, and retaliate against Lowe’s authentication
attack. For example, if A were also a bank, B can successfully ask a money
transfer from C’s account to B’s by exhibiting Na and Nb. The bank A would
believe the request came from C. This is a form of retaliation attack, which
informally is an attack that another attack made possible. More precisely, it is a
form of indirect retaliation: first, the bad C steals from the good A at the ugly
B; in consequence, the bad B steals from the good C' at the ugly A.

Retaliation may have important consequences both in terms of formal ver-
ification and in terms of protocol deployment. Verification has always pointed
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at establishing the existence of an attack, a point when the protocol was sent
back to redesign. With retaliation in mind, the analysis must be continued even
after an attack is found to realise whether it can be retaliated. This requires
dealing with more than one quantifier on the same history and, most impor-
tantly, upgrading the underlying threat model into BUG. As I have experience
in tool-supported protocol analysis, I have conducted some experiments in this
vein, but I have to state that at present the mechanical tool support is not yet
ready for analyses under BUG.

Protocol deployment may benefit from retaliation analyses. History has been
seeing immense costs to reengineer and redeploy a protocol in order to fix it
after an attack had been found. The social constraints deriving from retaliation
may be of help. Who would steal money today under significant risk that this
would cause twice as much stolen back to him tomorrow? It becomes interesting
to precisely assess whether we can keep in operation those flawed protocols that
admit retaliation. Attacking and immediately leaving the network is not prof-
itable for the attacker in the long run and, most importantly, it can be countered
by recent techniques based on Trusted Platform Modules (TPMs) recommended
by the Trusted Computing Group (TCG) [Gallery and Mitchell(2007)]. TPMs
make a change of user identity on the same machine impossible on the basis of
trusted hardware chipsets.

Non-repudiation protocols must be mentioned now. They are meant to resist
both the classical risk of an attacker’s eavesdropping on two peers’ channel,
and the extra risk of the peers’ illegally repudiating their own commitment
to a transaction. At the extreme, one peer may want to deny payment after
receiving the goods, and vice versa the other peer may want to deny the goods
after receiving payment. But non-repudiation protocols deliver each peer valid
evidence of the other’s commitment [Bella(2007)]. It is clear that non-repudiation
protocols must be analysed under BUG rather than under Dolev-Yao’s threat
model.

The BUG threat model might be simplified so as to consider each agent as
bad. Each agent would then be a rational attacker, conforming to the protocol
should he deem attacking inconvenient. His decision would derive from his own
risk/benefit analysis. I am currently evaluating this simplification, but in the
sequel of this paper I will only refer to BUG.

3.2 Formal Guarantees

I believe to have provided sufficient evidence that clear specifications of goals
and threats are fundamental prerequisites to formal protocol analysis. However,
it still remains to be assessed whether the very statements of the guarantees
that an analysis provides are meaningful, realistic or eventually of any use. It
is not obviously true in practice that a conditional guarantee attains protocol
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correctness. Agents need to be able to evaluate in practice the truth value of
the preconditions to be able to infer whether the postconditions hold. From the
theoretical standpoint, it is certainly interesting to hear that if P = NP then
confidentiality is violated. But a protocol peer cannot evaluate that precondi-
tion. By contrast, he precisely needs to know when and on which intelligible
evidence his session key can be considered confidential during the protocol run
or thereafter. This is not a subjective view but a precise path to extra protocol
insights, as I will show.

A real-world example can be easily derived from an e-commerce setting where
a peer may want to repudiate his commitment to a transaction. Suppose that an
electronic merchant vows in front of a notary public that he will ship the goods
if he receives the relative payment. If an electronic client pays for the goods but
fails to receive them, she cannot easily sue the merchant on the sheer basis of his
promise. A judge would face the problem of verifying whether the precondition
of the promise holds, namely that the merchant receives the payment, for the
promise to be beneficial to the controversy.

These observations provided the basis for my principle of goal availability.
It is a principle of realistic protocol analysis, that is, it aims at increasing the
impact that a formal analysis can have on the real world. The principle is easy to
describe informally, less easy to define precisely — see an early draft [Bella(2003)]
or a chapter in my book [Bella(2007)]. Because a formal guarantee is beneficial to
an agent only if the agent can verify its preconditions, goal availability exactly
prescribes that the human analyser look for such kind of formal guarantees.
I have always adopted this principle in my ten years of research in protocol
verification even if I have only spelled out its precise definition lately. It seems
fair to state that its very application has provided a number of novel protocol
insights. And it can also be argued that goal availability has been somewhere up
in the air to implicitly inspire other researchers.

My first intuition on goal availability dates back to my work on Kerberos IV
in 1998 [Bella and Paulson(1998)]. Kerberos comprises two trusted servers: the
first issues session keys, say, of type one, the second issues session keys, say, of
type two. This is a drastic simplification indeed. A key of type one is used to
encrypt various keys of type two. I proved a guarantee that, if an agent received
a key of type two, he could consider it confidential with the extra assumption
that not too long before had the first server issued the key of type one used to
encrypt the mentioned key of type two. Notice that “not too long before” had a
precise meaning. My colleagues and I were content with this guarantee for some
time. But soon I came to realise that its relevance was somewhat theoretical
because never in practice would the agent be able to verify all its preconditions.
No legal agent can inspect, within a realistic threat model, what happens at
other network ends.
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It has always been the case that, when a guarantee cannot be made avail-
able to a peer, namely it is impossible to have it conformed to the princi-
ple of goal availability, the protocol hides a flaw. It means that whenever an
agent cannot base its beliefs on clear facts whose truth value he can establish
without ambiguity, he typically becomes forced to unsupported decisions that
eventually the attacker exploits as targets. Kerberos IV made no exception:
it required a correction to the first server’s operation. In this paper I would
like to detail a subsequent outcome [Bella(2007)], on the Otway-Rees proto-
col [Otway and Rees(1987)]. It is a simple session key distribution protocol based
on shared-key encryption.

1. A— B:M,A B {Na,M,A B},

9. B— S :M,A B, {Na,M,A B} .. {Nb,M, A B},
3.S — B: M,{Na, Kab} ., {Nb, Kab}

4. B — A: M,{Na, Kab} .,

An initiator A begins by contacting a responder B with a ciphertext built with
its long-term key. It contains the session peers, a fresh nonce of the initiator’s,
and a session identifier M. Message 2 sees B forward to a trusted server A’s
ciphertext along with his own, built the same way. The server sends B two
tickets containing the same key in message 3. One gives the session key to B,
while the other one is meant to give it to A, and B forwards it on in message 4.

If we focus on the second round (the last two messages), it appears that
the protocol achieves its goal of key distribution: B learns the session key from
receiving message 3, and A from message 4. With goal availability in mind, I
was interested in verifying whether this goal can be proved on assumptions that
the agents can verify. It was encouraging to find out that some work in the
BAN logic was already available at the time: “it is interesting to note that this
protocol does not make use of Kab as an encryption key, so neither principal can
know whether the key is known to the other” [Burrows et al.(1989]. Its second
clause provides a negative answer to my concern. It means that the protocol
fails to make key distribution available to either of its peers, but I meant to
double-check this by myself. In my experience, that failure had to hide a flaw,
but also this intuition had to be verified.

I hence began to experiment with the formal analysis of this protocol using
the Inductive Method, which I outline in the next section. My experiments are
published with the 2006 distribution of Isabelle [URL(a)]. It was unsurprising
to find out that it is impossible to prove a conjecture useful to B: if B receives
message 3 and sends the corresponding message 4 to A, then A knows the session
key. Any proof attempt hangs in front of a simple flaw that sees the attacker
prevent delivery of message 4 (so A never learns the key). No weaker conjectures,
based on assumptions that B can check, confirming that A knows the session
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key are provable, so my conclusion is that the protocol indeed fails to make
key distribution available to B. And the flaw I just mentioned is the price to
be paid. Notice, however, that without the guidance of goal availability, one
would be tempted to make the extra assumption that A received message 4
and conclude the proof. That conjecture would become a theorem confirming a
guarantee that is not useful to B because he cannot assess all its assumptions
in practice.

My conclusion about A was similar but had much more exciting conse-
quences. In brief, the protocol fails to make key distribution available to A
because, whenever A receives the session key in message 4, it might be the case
that the attacker prevented delivery of the corresponding message 3 to B (so B
never learns the key). The attacker would merely have to extract the ticket for
A from message 3 and forward it to A with the session identifier M. Also in this
case, however, ignoring goal availability might induce a researcher to make the
extra assumption that B receives message 3. This would produce a theorem that
cannot and must not be evaluated as a useful guarantee for A. I was happy that
my experiments confirmed the second clause of the BAN statement.

Similar mistakes can be found in the literature. The BAN paper reports
a theorem about the shared-key Needham-Schroeder protocol meant to signify
authentication of A with B. Its proof had to make an extra assumption to
proceed, that a message received by B were fresh, namely not an attacker’s
replay. This was correctly reported as a “dubious” practice — in fact, it is
perfectly against goal availability because B cannot ever verify that such an
assumption is met. The guarantee was generally accepted but a flaw was soon
published describing how the attacker can impersonate A with B in a realistic
threat model [Denning and Sacco(1981)]. The flaw was exactly due to B’s chance
of erroneously evaluate the extra assumption.

Going back to the BAN statement on the Otway-Rees protocol, I went on
to parser its first clause: it could easily be confirmed by inspecting the protocol.
But being fond of linguistics, I got particularly interested in verifying the causal
relationship introduced by the conjunction “so” (the International Dictionary
of English by the Cambridge University Press explains “so” as “and for that
reason”). That relationship seems to imply that the protocol cannot inform any
of its peers that the other one knows the session key because none of them ever
uses the key, once he has received it, to encrypt anything. What’s more is that
this seemed to be formulated as a general lesson about the class of protocols that
do not prescribe to use the key once it is received. I soon rejected this lesson as
my previous work on Kerberos already supported that protocol as a counterex-
ample. But it seemed challenging to experiment directly with Otway-Rees.

I realised that B could not be helped. Because he is the peer who forwards
the ticket (containing the session key) to the other one, he cannot be informed
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that A knows it unless A uses it to encrypt something intelligible to send over for
B to check. In this extent, I found the causality in the BAN statement correct.
Because A’s situation seems more advantageous, it seemed interesting to verify
the outcome of the following modification to message 3.

3.5 — B: M, {{Na, Kab|} x,, Nb, Kab} .,

The only discrepancy with the original message is a single parenthesis shift:
encryption with B’s key now is the outermost operator. Notice that also my
variant protocol “does not make use of Kab as an encryption key”. However, 1
could prove the following theorem of its inductive model: if A learns the session
key from receiving message 4, then B knows that session key. This theorem
confirms that the variant protocol makes the goal of key distribution available
to A, although no peer uses the key to encrypt anything.

My findings refute the BAN statement — precisely, its half concerning A.
It teaches that in general the formal guarantees about security protocols must
be designed and interpreted with extreme care. And in particular, it shows that
not only does working with goal availability prevent erroneous interpretations of
the formal guarantees, but also helps unveil unknown protocol niceties. Other
examples of the usefulness of goal availability exist [Bella(2007)].

4 A Formal Method of Protocol Verification

I have built the vast majority of my experience in protocol verification us-
ing the Inductive Method, which is mechanised in the proof assistant Isabelle
[Nipkow et al.(2002)]. This section begins (§4.1) with a brief outline of the method
(see [Bella(2007), Paulson(1998)] for a complete presentation), and terminates
(84.2) with a demonstration of some of the findings described above.

4.1 The Inductive Method

Figure 1 shows file fragment.thy opened by the Isar graphical interface to Is-
abelle [URL(Db)]. The file sums up the definitions of a few main functions.
There exists an unlimited population of principals who are entitled to initiate
at will an unlimited number of sessions of the given security protocol. Among the
principals is the spy, who monitors the entire network traffic and in consequence
knows who sends and who receives which messages. This feature indicates that
the method was conceived under Dolev-Yao’s threat model. An unspecified set
of bad principals have colluded with the spy by revealing their long-term secrets.
The spy is herself bad, as it can be seen in Figure 1. However, she is the only
network principal who can send arbitrary messages built from components inter-
cepted from the network traffic. Interception is modelled by the function knows,
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and creation of fake messages by a conjunct use of the functions analz and synth.
All are described below.

The network traffic develops according to the events performed by the prin-
cipals while they are executing the given protocol. Typical events are to send or
to receive a message. A history of the network is represented by a trace, the list
of events occurred throughout that history. The set of all possible traces is the
formal model for the given protocol, and is defined inductively by specific rules
drawn from the protocol. For example, if the protocol prescribes that B sends
A a message m’ upon reception of m, then the model features a rule that may
extend a generic trace by the event Says B Am/' each time the trace contains the
event Gets Bm. In other words, that reception event is a precondition and that
sending event is a postcondition of the rule. Therefore, the events occur via the
firing of the inductive rules. But, as induction prescribes, no rule is forced to
fire, so no event is forced to occur.

The binary function knows, defined by primitive recursion in Figure 1, for-
malises the knowledge that principals derive from observing a trace [Bella(2007)].
So, knows A ews is the set of messages that principal A either sends or receives on
trace evs. Should A be the spy, the set would include all messages that anyone
ever sends or receives on the trace. Figure 1 also shows that the unary func-
tion parts extracts all components (portions of clear-text messages and bodies
of cipher-texts) from a set of messages; analz is the same but only opens those
cipher-texts whose encrypting key is available. This means that it is assumed
that no cryptanalysis is possible, namely that encryption is totally reliable. In
consequence, confidentiality of a message component m in a trace evs can be
expressed as

m ¢ analz(knows Spy evs).

The function synth, also defined by induction in Figure 1, is crucial. It ex-
presses the spy’s illegal activity in building up messages at will. It can be seen
that the spy can synthesise any agent name or number (timestamp), and hash
available messages. She can also concatenate messages into longer ones, and build
ciphertexts using available keys. Therefore, the set

synth(analz(knows Spy evs))

expresses all messages that the spy can synthesise from the analysis of the net-
work traffic over trace evs.

Each kind of cryptographic key has its own syntax: the long-term keys shared
with the trusted server are denoted by function shrK. Moving on to the actual
formal guarantees, they come in the form of theorems that hold of the protocol
model. Precisely, each theorem is expressed over a generic trace and hence holds
in general. A proof is conducted by structural induction on the length of the
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emacs: fragment.thy

Hle Edit View Cmds Tools Options Buffers Proof-General Isabelle X-Symbol

2097

@Il @& [« EI]E]|IE|E- 2] - |

fragment. thy |

consts

bad 11 "agent set"
specification (bad)

Spy_in_had [iff]: "Spy € bad"

consts parts :: "msg set = msg set"
inductive "parts H"
intros
Inj [intro]: "X € H = X € parts H"
Fst: *{x, ¥} € parts H = X € parts H"
snd: *{X, Y} € parts H =—> Y € parts H"
consts analz :: "msg set = msg set"
inductive "analz H"
intros
Inj [intro,simp] : "X € H = X € analz H"
Fst: "{X, ¥} € analz H = X € analz H"
snd: "{X, Y} € analz H = Y € analz H"
Decrypt [dest]: "[ccypt K X € analz H; Key(invKey K) € analz HJ
= X € analz H"]
consts synth :: "msg set = msg set"
inductive "synth H"
intros
Inj [intro]: "X € H = X € synth H"

Agent [intro]: "Agent agt € synth H"

Number [intro]: "Number n € synth H"

Hash [intro]: "X € synth H = Hash X € synth H"

MPair [intro]: "[X € syath H; Y € synth H] = {& ¥} € synth H"]
crypt [intro]: "[X € synth H; Key(K) € Hl = Crypt K X € synth H']

consts
knows :: "agent = event list = msg set"
primrec
knows_Nil: "knows & [] = initState A"
knows_Cons:

"knows A (ev # evs) =
(if A = Spy then
(case ev of
Says A' B ¥ = insert X (knows Spy evs)
| Gets A' ¥ = knows Spy evs
| Notes &' X =
5 if A' € bad then insert X (knows Spy evs) else knows Spy evs)
else
(case ev of
Says A' B X =
if A'=A then insert X (knows & evs) else knows A evs
|=Bets AlH =
if A'=A then insert X (knows & evs) else knows A evs
| Notes &' X =
if A'=A then insert X (knows & evs) else knows A evs))"

IS08----- XEmacs: fragment. thy (Isar script XS:isabelle/s Font)----All

Figure 1: Defining the main functions for the Inductive Method in Isabelle

trace, resulting in a number of long subgoals that can span several pages. Isabelle

solves the simple cases automatically.



2098 Bella G.: What is Correctness of Security Protocols?

4.2 Verifying the Otway-Rees-Bella Protocol

I used the Inductive Method to analyse my variant of the Otway-Rees protocol
mentioned in the previous section. Its inductive model, which is available with
the 2006 distribution of Isabelle [URL(a)], can be read in Figure 2.

:emacs: OtwayReesBella.thy

File Edit View Cmds Tools Options Buffers Proof-General Isabelle X-Symbol Help

NS RG]

OtwayReesBella. thy I

fi+ 1D: $Id: OtwayReesBella.thy,v 1.1 2006/02/01 14:22:15 paulson Exp §
Author : Giampaolo Bella, Catania University *)

header{*Bella's version of the Otway-Rees protocol*}
theory OtwayReesBella imports Public begin

consts orb  :: "event list set"
inductive “orbh" intros

Nil: "[]€ orb"

Fake: "[evsf € orh; X € synth (analz (knows Spy evsf))]
= Says Spy B X # evsf € orh"

0RB1: “[evsl € orb; Nonce NA € used evsl]
= Says A B {Nonce M, Agent A, Agent B,
Crypt (shrkK &) {Nonce NA, Nonce M, Agent A, Agent B}}
# evsl € orh"

0RB2: "[ews2 € orb; Nonce NB € used evs2;
Gets B {Nonce M, Agent A, Agent B, X} € set evs2]
= Says B Server {Nonce M, Agent A, Agent B, X,
Crypt (shrk B) {Nonce NB, Nonce M, Nonce M, Agent A, Agent B}
# evs2 € orb"

0RB3: “[evs3 € orb; Key KAB € used evs3;
Gets Server
{Nonce M, Agent A, Agent B,
Crypt (shrk a) {Nonce Na, Nonce M, Agent A, Agent B},
crypt (shrk B) {Nonce NB, Nonce M, Nonce M, Agent A, Agent B}}
€ set evsd]
= Says Server B {Nonce If,
crypt (shrk B) {Crypt (shrK a) {Nonce Na, Key KaB}, Nonce NE, Key KaB}}
# evs3 € orb"

(*B can only check that the message he is bouncing is a ciphertext*)
ORB4: "[evsd€ orb; B # Server; ¥ p q. X # {p, o};
Says B Server {Nonce M, Agent A, Agent B, X',
Crypt {shrk B) {Nonce NB, Nonce M, Nonce M, Agent &, Agent B}}
€ set evsd;
Gets B {Nonce M, Crypt (shrK B) {X, Nonce NB, Key KaB}} € set evsd]
= Says B A {Nonce M, X} # evsd € orb"

ISOBE==== XEmacs: OtwayReesBella. thy (Isar script XS:isabelle/s E‘ont)----Top---[

Figure 2: Inductive model of the Otway-Rees-Bella protocol

It can be seen that the full specification comes with file OtwayReesBella.thy
and is defined as the Isabelle theory OtwayReesBella. This is built up by extending
theory Public, which defines all functions for long-term cryptographic keys. The
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actual protocol model, constant orb, is declared as a set of traces and defined
inductively by five rules. Rule Nil sets the base of the induction stating that the
empty trace belongs to the model. Rule Fake models the spy’s activity: given
a trace evsf in the model, its extension (# is the list append operator) with
the event whereby the spy sends some agent B one of her fake messages X is
still a trace of the protocol model. The inductive layout is clear. Notice that the
message X is derived from the set of fakes described in the previous section. The
remaining rules model the steps of the protocol, one by one.

Rule ORB1 has the only premise that A uses a fresh nonce. Freshness on a
trace is modelled via the function used, whose intuitive definition I omit from
this paper. Rule ORB2 also relies on the precondition that B received an instance
of message 1 on the given trace evs2. Its postcondition is that B sends message
2 to the server. Rule ORB3 describes the server’s operation upon reception of
a well-formed request. It issues a fresh session key and sends message 3 to B.
Rule ORB4 sees B complete the protocol by sending the last message to A. This
is subjected to three preconditions: that B invoked the server, that he received
a matching reply, and that the message component X is a ciphertext. It is the
ticket that the server issued for A, and that B cannot decrypt. In practice, he
identifies it from its length, while the model insists that X cannot be written
as any concatenated message. I omit two rules for simplicity: one states that a
message that is sent can be received, and the other one allows session keys to be
accidentally lost to the spy.

A number of theorems proved of the original protocol model continue to hold
about my variant. The main theorem that holds only of my variant can be found
in Figure 3. Its statement is simple: if A initiated the variant protocol with B and
received an instance of the last message that delivers a session key to her, then
her peer B knows the same session key. As A can verify the preconditions, this
theorem provides a guarantee that the variant protocol makes key distribution
available to A.

The proof is simple to develop in a forward style. The first command uses
the second assumption to derive that the ticket can be analysed from the traffic,
namely that

Crypt(shrK A){Nonce Na, Key K|} € analz(knowsSpy evs).

This fact is stronger than the analogous one (which also holds) expressed in
terms of parts rather than of analz, because in general analzH C parts H. In
intuitive terms, this stronger fact implies B’s activity of extracting A’s ticket
from message 3, thereby learning the session key from her own ticket, and of
sending message 4. By contrast, the weaker fact in terms of parts is insufficient,
as it also holds before B receives message 3. Notice that this argument fails for
the original protocol. In technical terms, what concludes that B sent message 4
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emacs: OtwayReesBella.thy

File Edit View Cmds Tools Options Buffers Proof-General Isabelle X-Symbol
el @ 1 Bl b et = el ol [
State Context Retract Next Use Goto | Fnd (o Stop e
OtwayReesBella. thy |
/|
lemma A keydist to B:
"[says & B {Nonce M, Agent A, Agent B,
Crypt (shrk a) {Nonce Na, Nonce M, Agent A, Agent B}} €set evs;
Gets A {Nonce M, Crypt (shrkK &) {Nonce Na, Key K}} € set evs;
A € bad; B € bad; evs € orh]
= Key K € analz (knows B evs)"
apply (drule Gets_imp_knows Spy [THEN analz.Inj, THEN analz.Snd], assumption)
apply (drule analz hard, assumption, assumption, assumption, assumption)
apply (drule OR4_imp Gets, assumption, assumption)
apply (erule exE)
apply (fastsimp dest!: Gets_imp knows [THEN analz.Inj] analz.Decrypt)
done I
hd
IS08--**-¥Emacs: OtwayReesBella. thy (Isar script ¥S:isabelle/s Font)----95%- |

Figure 3: Proving key distribution for A in the Otway-Rees-Bella protocol

on evs is the application of lemma analz_hard by the second command. The third
command applies another lemma saying that, if B sent message 4, he received
message 3. The rest of the proof easily deduces that B learnt the session key,
which is the thesis.

Is the proof that simple? As it is often the case with theorem proving, much
proof efforts are deferred to the necessary lemmas. My example is emblematic,
as it only requires a bunch of commands to conduct a short forward-style proof.
But the subsidiary lemma analz_hard requires an inductive proof whose current
distribution terminates at level 26! Its development required a major effort. The
proof details certainly lie outside the focus of this paper.

It was heartening to realise that goal availability is reasonably easy to use
within the Inductive Method. I have specified elsewhere [Bella(2007)] that this
is not trivially the case with any formal method. Both the protocol specification
and the reasoning about it must be conducted from each agent’s viewpoint.

5 Open Issues

There exist a variety of open issues currently related to the problem of security
protocol correctness. I outline just a few of them here, and make an anchor
citation each time.

5.1 Multi-protocol attacks

Each security protocol is normally analysed, whether formally or informally, as
a stand-alone object. It is implicitly assumed that the protocol is always run
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in isolation, without any interaction with other protocols. However, a protocol
that is secure if run in isolation may no longer be so if it can be interleaved
with other protocols, as it is realistic at present. Bad agents may attempt to
exploit the messages of a protocol to violate another protocol [Cremers(2006)].
This issue deserves attention both at time of design and especially in terms of
formal verification.

5.2 Secure protocol composition

There exists an even more general issue, which is composition of correct security
protocols. System composition is not necessarily property-preserving. But with
protocols getting more and more complex, it is getting unfeasible to analyse
each protocol as a monolythic object down to each component. The sheer size of
the system is often the major obstacle. Some efforts exist using the probabilistic
approach [Kushilevitz et al.(2006)]. When I studied a protocol for certified e-mail
that adopts SSL [Bella and Paulson(2006)], I made the assumption that no low-
level interaction between the two protocols was possible. If this were unsound,
reusability of existing proofs would be unfeasible, a severe constraint to the entire
area.

5.3 Reconciling the two approaches to protocol verification

The probabilistic and black-box cryptography approaches still partition the
international community of researchers. I already mentioned contributions by
Abadi [Abadi and Rogaway(2000)] and by Gollmann [Gollmann(2000)], and it
may seem emblematic that they are not very recent. However, last year saw an
important contribution by Backes and Laud [Backes and Laud(2006)], and this
year’s web site of an important security conference features what seems a rele-
vant programme title [Blanchet(2007)]. Its proceedings are unavailable yet, but
I am seriously hoping that we are facing a renewed interest.

5.4 Probabilistic approach for e-commerce protocols

I believe to have contributed to what qualifies as the formal analysis of the
most entangled security protocol tackled thus far. It is the purchase phase of
SET [Bella et al.(2006)Bella, Massacci and Paulson]. It uses all available crypto-
graphic measures, such as symmetric and asymmetric cryptography, public-key
infrastructures, cryptographic hashing, digital envelopes and dual signatures.
Its goals are complex distributed agreement properties between more than two
peers, as also other researchers noted [Meadows and Syverson(1998)]. It is worth
investigating the contributions that the probabilistic approach may give to the
analysis of complex e-commerce protocols like SET and of their subtle goals.
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5.5 Security of non-hierarchical networks

Classical wired networks are hierarchical, as each node in a LAN sees the In-
ternet via its boundary router, which is in turn connected to a more central
node serving a number of LANs, and so on. The formation of an IP address
is emblematic. Conversely, peer-to-peer networks such as MANETS bear a flat
structure by nature: they are formed by a number of nodes wishing to enjoy
(and provide) the same service. Security in this context is a multifaceted con-
cern [Jiang and Baras(2004)]. It can no longer be assumed that a trusted third
party (T'TP) or a certification authority (CA) or a key-distribution centre (KDC)
are available, because nodes can join or leave frequently. The management of
trust relationships among participating nodes is most important, with some pro-
tocols currently under scrutiny [Aberer and Despotovic(2001)]. Also the proto-
cols aimed at secure communication, such as WEP or WPA, need analysis and
improvements.

5.6 Complete formal treatment of retaliation

A complete formal treatment of retaliation [Bella et al.(2005)] is still out of reach.
As a start, it demands disposing with Dolev-Yao’s model and adopting BUG.
Then, it requires a detailed formalisation of a retaliation attack: if there ex-
ists a trace with a classical attack, it must be studied the existence of a trace
that continues the first one and features a retaliation attack. The impossibil-
ity of retaliation requires inspecting all possible continuations of the first trace,
producing alternation of quantifiers. It may become particularly elucidating to
implement these concepts on model checkers, tools that have importantly con-
tributed to the area thus far [Lowe(1996a)].

5.7 Machine support for non-crisp analyses

Real-world concepts are often non-crisp, meaning that they are not achieved in
their entirety but, rather, are attained up to a certain level. For example, each
resource can be labelled to express its sensitivity in terms of confidentiality,
such as “top-secret”, “secret”, “restricted”, “public”. Exhibiting a highly confi-
dential item also provides a high level of authentication of its holder, whereas
in practice we still tend to attach some level of authentication to an e-mail
received via HTTP. I used the framework of soft-constraint programming to
formally analyse static configurations of security protocols in their non-crisp
goals [Bella and Bistarelli(2004)]. However, that work requires machine assis-
tance, even if a different formal approach were necessary.
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5.8 Anti-DoS techniques

Denial of service (DoS) is a subtle threat to our time. A multitude of legitimate
requests can overflow the resources of a server in terms of memory, computation
or bandwidth. I find a denial-of-service attack of peculiar nature: it is illegal
merely because it is an indefinite replication of legal requests. The technique of
cookie-transformation [Datta et al.(2003)] attempts to delay the computational
burden of a server in a client-to-server session to when it is clear that also the
client is computationally active at an address. It is adopted in common proto-
cols such as IKE and JFK, which therefore require an initial hello round between
server and client. Whether these and similar strategies qualify as general solu-
tions is currently being debated. It is unclear how formal verification techniques
can address this matter. I do not find it trivial to tailor the Inductive Method
to analyse a cookie-transformation protocol.

6 Conclusions

A security protocol is correct if it lives up to the goals that its designers stated
against specific threats. I have demonstrated the importance of defining both
goals and threats in detail.

I have also described the importance of a threat model (called BUG) that
seems more appropriate to our days. For example, it is necessary to analyse
non-repudiation protocols.

The new threat model allows the concept of retaliation attack. If attackers’
logic merely is profit, they may decide to refrain from attacking if their actions
can be retaliated.

The formal analysis of security protocols can address various issues. However,
it must be conducted with care. Adopting the principle of goal availability can
favour extra insights.

The Inductive Method effectively helps to analyse security protocols under
the classical threat model and with the mechanical support of the proof assistant
Isabelle.

A variety of issues concerning protocol correctness remain open at present.
They range from the need to mechanically support the novel concepts to the
conjugation of different approaches to protocol analysis.

Research in protocol correctness has been attracting wide interest from a
number of areas in Informatics for about two decades by now. The international
ferment does not seem to settle.
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