
Quo Vadis Abstract State Machines?

J.UCS Special Issue

Egon Börger
(Università di Pisa, Italy

boerger@di.unipi.it)

Andreas Prinz
(University of Grimstadt, Norway)

andreas.prinz@uia.no)

Abstract: In introducing this special ASM issue of J.UCS we point out the partic-
ular role this Journal played in the short history of the ASM method and add some
reflections on its current status.

1 J.UCS and the ASM Method

The Journal of Universal Computer Science has marked some important steps of
the development of the Abstract State Machines (ASM) method for a rigorous
design and the mathematical analysis of complex computer-based systems. It
is the first journal which devoted a special issue to the ASM method and its
applications, and within the last decade this is the fourth special ASM issue
hosted by J.UCS. In addition, some other influential papers on the ASM method
have been published as single papers in J.UCS.

The first ASM issue in J.UCS (3.4 in 1997) dealt with ASM theory: foun-
dational questions, questions from complexity theory and logic, investigation of
the central notion of refinement and of machine support for reasoning about
ASMs. The second ASM issue in J.UCS (3.5 in 1997) was devoted to applica-
tions of ASMs to classical problems of programming and software engineering:
semantics of programming languages, compiler correctness (verifiable design and
implementation of real-life programming languages), integrating ASMs into the
software development life cycle. The third ASM issue in J.UCS (7.11 in 2001)
was the first journal issue to publish revised and rereviewed versions of selected
best papers from an International ASM Workshop, to be specific the 8th one,
held in 2001 in Las Palmas (Gran Canaria). The themes of J.UCS 7.11 in 2001
covered the full range from theoretical foundations to industrial applications,
as is typical for ASM workshops since their establishment. Also the individual
papers that appeared in this journal span from theory to applications: math-
ematical investigation of the Kerberos protocol [BR97], a formal definition of

Journal of Universal Computer Science, vol. 14, no. 12 (2008), 1921-1928
submitted: 16/6/08, accepted: 23/6/08, appeared: 28/6/08 © J.UCS



the International Telecommunication Union standard for SDL [GK97], an ASM-
based software development method leading from rigorously modeling informal
requirements to compilable code with verifiable properties, illustrated for the
light control case study [BRS00], an account of the development of the ASM
method [Bör02].

After the ASM issue in J.UCS in 2001, two more editions of the Interna-
tional ASM Workshop series saw the publication of revised selected best papers
in special journal issues. The 10th edition, which took place in 2003 in Taormina
(Sicily), aimed at an integration of ASM-based modeling, validation and veri-
fication techniques into neighboring system engineering methods, and was doc-
umented in [BGR03] and the special ASM issue in the Theoretical Computer
Science journal (336 (2-3), 2005). The 12th edition, which took place in 2005 in
Paris (France), was dedicated to mathematical techniques and their implemen-
tation for ASM-based system design and analysis and was documented in the
special ASM issue in the Fundamenta Informaticae journal [BS07].

The J.UCS issue presented here contains selected best papers from the 14th
International ASM Workshop, which took place in Grimstadt, Norway, in June
2007 and was characterized by contributions ranging from theory to industrial
applications. After the workshop we invited the speakers to submit during the
Summer of 2007 full papers to this special issue. As a result of a double reviewing
procedure1 the reader finds seven papers in this issue. One paper (see [AFL08])
surveys recent industrial applications of the ASM method in the area of web
services (their mediation, discovery and composition). One paper (see [BB08])
illustrates how to integrate the ASM method into a feature-based software engi-
neering discipline to modularize proofs of properties for software product lines.
Three papers ([GRS08, OL08, SV08]) contribute to the tool environment for
executing ASMs from certain classes, notably ASMs including the consideration
of resources and of real-time properties. One paper (see [Bel08]) surveys security
issues and was invited to trigger applications of the ASM method in the field.
One paper (see [Sch08]) is on recent progress for the ASM refinement notion
that resulted from its recent application to the verification of the well-known
Mondex protocol.

2 Present Status and Some Challenges

2.1 Present Status

The ASM method by now is an established mathematics-based and industrially
successful method for an accurate design of complex computer-based systems
1 A first round of reviews lasted from September until the end of 2007 and resulted in

the selection of the papers present in this volume, which were accepted for a revision
reflecting the criticism of the reviews and a resubmission by April 30 (2008). The
second review round ended at the end of May 2008.

1922 Boerger E., Prinz A.: Quo Vadis Abstract State Machines?



that is linkable to a precise analysis. The analysis covers both experimental val-
idation (by simulation) and mathematical verification (by manual or machine
assisted or automated proofs or by model checking). The validation of ASMs
exploits the fact that they are not logical formulae but machines and as such
come with a notion of run (execution). The verification of ASMs exploits the
fact that they come with a (simple) mathematical definition of their seman-
tics and of a practial refinement notion, whereby they can be made subject
to far reaching system decompositions with precise formulations of the inter-
faces and composable proofs of the intended properties. The design capabilities
of the ASM method also cover capturing requirements by ASM models in a
reliable way. Reliability means that the appropriateness of the models can be
checked by the application domain experts, the persons who are responsible
for the requirements, and can be used by the system developers for a stepwise
detailing (by provably controllable ASM refinement steps) to executable code.
This exploits the abstraction potential of ASMs, which is unconstrained by any
formal straitjacket. The reader who is interested in detailed information and
references on the achievements of the ASM method may read the historical ac-
count in this Journal [Bör02] (complete as of 2002). Not surprisingly the ASM
method is best qualified (see [Bör08b, Bör07]) for being used in the challeng-
ing Verified Software Initiative, which is kicked off during these days by the
Second IFIP Working Conference on Verified Software: Theories, Tools, and
Experiments (VSTTE 2008), “a fifteen-year, cooperative, international project
directed at the scientific challenges of large-scale software verification” (quoted
from http://qpq.csl.sri.com/vsr/vstte-08, see also [MW08]).

An interesting phenomenon, which confirms the maturity and practicality of
the ASM method, is that over the last five years numerous publications with
ASM-based research results appeared in a variety of journals and conferences
spread over the field of computer science and its applications and are not any
more presented at the (still regularly held) ASM workshops. So the question is
whether there is still something to be done for the ASM approach to system
development. We believe yes. Since this is not the place for an extensive pro-
posal of future research themes, we restrict ourselves here to list some issues we
consider as worth to be investigated within the ASM method.

2.2 Some Challenges

Concerning computational concepts : asynchronous (also called distributed) ASMs
badly need further development. For example, we need practically useful pat-
terns for communication and synchronization of multi-agent ASMs, in particular
supporting omnipresent calling structures (like RPC, RMI and related middle-

1923Boerger E., Prinz A.: Quo Vadis Abstract State Machines?



ware constructs) and web service interaction patterns.2 Furthermore the concept
of time, which for synchronous (also called sequential) ASMs coincides with the
order of natural numbers, has not yet received a practically viable foundation
for multi-agent ASMs. For the real-time case some steps are made in the two
papers [OL08, SV08] in this issue.

Concerning modeling aspects : The ASM method badly needs to be integrated
into current modeling and software engineering practice, both conceptually and
concerning tool support (see below). By conceptual integration we mean to pro-
vide ASM libraries where rigorous ASM-based definitions are offered for basic
method patterns as they are used in current practical frameworks. An example
are behavioral definitions of architectural (de)composition techniques, in partic-
ular for dynamic Web application architectures. Another example are rigorous
semantical definitions for various successful notations as used in current sys-
tem design and programming practice, including diagram-based graphical no-
tations. This is feasible, as one can see from the accurate semantical models
that have been developed in terms of ASMs for numerous representative pro-
gramming or modeling languages, including pictorial notations like the ones
in UML [Cav00, CRS03, Obe03], SDL [EGG+01], BPEL [FGV04, RFV06] and
BPMN [BT08]. Such ASM libraries should support porting application programs
in a coherent way between different platforms or languages, due to the “codeless”
form of programming represented by building ASM models. This challenge has
also a verification aspect, namely to combine feature-based modular design and
proof techniques, with the goal to scale verification to software product lines
and to integrate it into current software development practice, as is advocated
in the paper [BB08] in this issue. The combination of modeling and verification
is a theme that relates the ASM method to Abrial’s B-method [Abr96], which
stresses the point of (and provides strong support for) computer-assisted verifi-
cation.

A less technical but nevertheless very important desideratum, to support the
modeling activities with ASMs, is to develop precise pragmatical guidelines ex-
plaining how to apply the concepts and techniques offered by the ASM method
when building rigorous models leading from informal requirements to compil-
able code. One subproblem probably worth some investigation concerns methods
supporting the extraction of ground model elements from natural language de-
scriptions of requirements. Inspiration should be taken from established process
models, e.g. the Rational Unified Process [Kru03].

Concerning tool support : a great variety of experiments has been made with
different tools, in particular for executing classes of ASMs. Each such simulator
2 Theoretical ASM-based interaction schemes, so-called interactive small-step algo-

rithms made up for proofs of various parallel ASM theses, have been analyzed
in [BG07, BGRR06]. The set of practical interaction patterns proposed in [AMH05]
has been modeled by ASMs in [BB05].

1924 Boerger E., Prinz A.: Quo Vadis Abstract State Machines?



had its raison d’etre, created with a specific goal in mind, and has served its
immediate purpose it had been built for, see [BS03, Ch.9.4.3] for a survey of the
numerous tools built until 2003; for recent tools see [F+, FGG06] and the three
papers [GRS08, OL08, SV08] in this issue. For verifying properties of ASMs
leading existing theorem provers and model-checkers have been linked to ASMs.
What we need now is an integrated environment of cooperating (not isolated)
tools for design, validation and verification, and its deployment for industrial ap-
plications. This environment needs to support the different activities of defining,
transforming (by refinements, including code generation) and analysing ASM
models: by testing, via simulation that is supported by good visualization and
debugging mechanisms, and by verification. The tool environment has to enable
us to capture the design knowledge in a rigorous, electronically available and
reusable way, and to achieve this goal it must be integrated into established
design flows and their standard tool environments.

Progress in this direction can be expected from a cooperation with neighbour-
ing modeling and verification approaches, in particular the B-method [Abr96].
A good start in this direction has been made by organizing joint meetings. The
first one was the 2006 Dagstuhl Seminar on Rigorous Methods for Software Con-
struction and Analysis3. It is followed this Fall by the ABZ 2008 Conference4 in
London, where two tutorials on ASM and B tools are given. Since Event-B sys-
tems can be viewed in a natural way as particular classes of ASMs (see [Bör08a,
Sect.6.1]), it should be possible to strongly relate the two methods and link their
tools, to the advantage of both.

Acknowledgements

We thank the seven members of the program committee of the International
ASM Workshop ASM’2007 for assisting us in reviewing the submitted papers
for presentation at the workshop, which constituted a first selection step: Uwe
Glässer (Simon Fraser University, Canada), Yuri Gurevich (Microsoft Research,
USA), Elvinia Riccobene (University of Milan, Italy), Bernhard Thalheim (Chris-
tian Albrechts University, Germany), Margus Veanes (Microsoft Research, USA),
Charles Wallace (Michigan Technological University, USA), Wolf Zimmermann
(Martin Luther University, Germany).

We thank the 31 colleagues who acted as additional reviewers in the sec-
ond and third phase of the procedure for carefully reviewing the submissions
and resubmissions of the full papers for this J.UCS issue: David Aspinall (U.
Edinburgh), Richard Banach (U. Manchester), Andreas Blass (U. Michigan at
Ann Arbor), Antonio Brogi (U. Pisa), Pietro Cenciarelli (U. Roma), Massimo

3 http://www.dagstuhl.de/06191/ and [AG08]
4 http://www.abz2008.org/ and [BBBB08]

1925Boerger E., Prinz A.: Quo Vadis Abstract State Machines?



Coppola (U. Pisa), Roozbeh Farahbod (Simon Fraser U. Vancouver), Joachim
Fischer (Humboldt U. Berlin), Leo Freitas (U. York), Angelo Gargantini (U.
Bergamo), Andreas Glausch (Humboldt U. Berlin), Mats Heimdahl (U. Min-
nesota), Jim Huggins (Kettering U.), Kai Koskimies (Tampere U. of Technology),
Igor Kotenko (St. Petersburg Institute for Informatics and Automation), Birger
Moeller-Pedersen (U. Oslo), Wolfgang Müller (U. Paderborn), Zsolt Nemeth
(U. Budapest), Rolf Nossum (U. Agder), Ileana Ober (U. Toulouse), Vladimir
Oleshchuk (U. Agder), Wolfgang Reisig (Humboldt U. Berlin), Peter Schmitt
(U. Karlsruhe), Jaroslav Sevcik (U. Edinburgh), Anatol Slissenko (U. Paris 7),
Sofiene Tahar (U. Montreal), Mark Utting (Waikato U.), Jan Van den Buss-
che (U. Hasselt), Margus Veanes (Microsoft Research, USA), Charles Wallace
(Michigan Technological U.), Heike Wehrheim (U. Paderborn).

A special thanks goes to Prof. Hermann Maurer and the J.UCS team for the
opportunity they gave us to document in another special issue of their journal
some of the recent progress in the theory and applications of the ASM method,
and last but not least Dana Kaiser for the efficient and pleasant cooperation.

References

[Abr96] Abrial, J.-R. The B-Book. Cambridge University Press, Cambridge, 1996.
[AFL08] Altenhofen M., Friesen A., and Lemcke J. ASMs in service oriented archi-

tectures. This Journal, 2008.
[AG08] Abrial, J.-R. and Glässer, U., editors. Rigorous Methods for Software Con-

struction and Analysis – Papers Dedicated to Egon Börger on the Occasion
of His 60th Birthday, volume 5115 of LNCS. Springer, 2008.

[AMH05] Barros, A., Dumas, M., ter Hofstede, A. Service interaction patterns.
In Proc.3rd International Conference on Business Process Management
(BPM2005), LNCS, pages 302–318, Nancy, 2005. Springer.

[BB05] Barros, A., Börger, E. A compositional framework for service interaction
patterns and communication flows. In K.-K. Lau and R. Banach, editors,
Formal Methods and Software Engineering. Proc. 7th International Confer-
ence on Formal Engineering Methods (ICFEM 2005), volume 3785 of LNCS,
pages 5–35. Springer, 2005.

[BB08] Batory, D., Börger, E. Modularizing theorems for software product lines:
The Jbook case study. This Journal, 2008.

[BBBB08] Börger, E., Bowen, J., Butler, M., Boca, P., editors. Abstract State Ma-
chines, B and Z, volume 5238 of LNCS. Springer-Verlag, 2008.

[Bel08] Bella, G. What is correctness of security protocols? This Journal, 2008.
[BG07] Andreas Blass, A., Gurevich, Y. Ordinary interactive small-step algorithms,

I-III. ACM Transactions on Computation Logic, 7/8, 2006/07.
[BGR03] Börger, E., Gargantini, A., Riccobene, E., editors. Abstract State Machines

2003–Advances in Theory and Applications, volume 2589 of Lecture Notes
in Computer Science. Springer-Verlag, 2003.

[BGRR06] Blass, A., Gurevich, Y., Rosenzweig, D., Rossman, B. Interactive small-
step algorithms I-II. Technical Report 2006-170/1, Microsoft Research Red-
mond, November 2006. To appear in: Logical Methods in Computer Science.

[Bör02] Börger, E. The origins and the development of the ASM method for high-
level system design and analysis. J. Universal Computer Science, 8(1):2–74,
2002.

1926 Boerger E., Prinz A.: Quo Vadis Abstract State Machines?



[Bör07] Börger, E. Construction and analysis of ground models and their refine-
ments as a foundation for validating computer based systems. Formal As-
pects of Computing, 19:225–241, 2007.

[Bör08a] Börger, E. The Abstract State Machines method for high-level system de-
sign and analysis. In P. Boca, editor, BCS-FACS Seminar Series Book.
2008.

[Bör08b] Börger, E. Linking the meaning of programs to what the compiler can verify.
In Meyer, B. and Woodcock, J., editors, Verified Software: Theories, Tools,
Experiments, volume 4171 of LNCS, pages 325–336. Springer, 2008. First
IFIP TC 2/WG 2.3 Conference, VSTTE 2005, Zurich, Switzerland, October
10-13, 2005, Revised Selected Papers and Discussions.

[BR97] Bella, G., Riccobene, E. Formal analysis of the Kerberos authentication
system. J. Universal Computer Science, 3(12):1337–1381, 1997.

[BRS00] Börger, E., Riccobene, E., Schmid, J. Capturing requirements by Abstract
State Machines: The light control case study. J. Universal Computer Sci-
ence, 6(7):597–620, 2000.

[BS03] Börger, E. and Stärk, R.F. Abstract State Machines. A Method for High-
Level System Design and Analysis. Springer, 2003.

[BS07] Börger, E. and Slissenko, A. Special asm issue of fundamenta informati-
cae. Fundamenta Informaticae, 2007. Volume 77 (issues 1-2) with Selected
Revised Papers from ASM’05.

[BT08] Börger, E. and Thalheim, B. A method for verifiable and validatable busi-
ness process modeling. In Börger, E. and Cisternino, A., editors, Advances
in Software Engineering, volume 5316 of LNCS. Springer-Verlag, 2008.

[Cav00] Cavarra, A. Applying Abstract State Machines to Formalize and Integrate
the UML Lightweight Method. PhD thesis, University of Catania, Sicily,
Italy, 2000.

[CRS03] Cavarra, A., Riccobene, E., Scandurra, P. Integrating UML static and dy-
namic views and formalizing the interaction mechanism of UML state ma-
chines. In Börger, E., Gargantini, A., Riccobene, E., editors, Abstract State
Machines 2003–Advances in Theory and Applications, volume 2589 of Lec-
ture Notes in Computer Science, pages 229–243. Springer-Verlag, 2003.

[EGG+01] Eschbach, R., Gässer, U., Gotzhein, R., v. Löwis, M., Prinz, A. Formal
definition of SDL-2000 – compiling and running SDL specifications as ASM
models. J. Universal Computer Science, 7(11):1025–1050, 2001.

[F+] Farahbod, R., et al. The CoreASM Project. www.coreasm.org.
[FGG06] Farahbod, R., Gervasi, V., Glässer, U. CoreASM: An Extensible ASM Ex-

ecution Engine. Fundamenta Informaticae XXI, 2006.
[FGV04] Farahbod, R., Glässer, U., Vajihollahi, M. Specification and validation of

the Business Process Execution Language for web services. In Zimmermann,
W., and Thalheim, B., editors, Abstract Sate Machines 2004, volume 3052
of Lecture Notes in Computer Science, pages 78–94. Springer-Verlag, 2004.

[GK97] Glässer, U., Karges, R. Abstract State Machine Semantics of SDL.
J. Universal Computer Science, 3(12):1382–1414, 1997.

[GRS08] Gargantini, A., Riccobene, E., Scandurra, P. A metamodel-based language
and a simulation engine for Abstract State Machines. This Journal, 2008.

[Kru03] Kruchten, P. The Rational Unified Process: An Introduction. Addison-
Wesley Professional, 3rd edition, 2003. ISBN-10: 0321197704, ISBN-13: 978-
0321197702.

[MW08] Meyer, B., Woodcock, J., editors. Verified Software: Theories, Tools, Ex-
periments, volume 4171 of LNCS. Springer, 2008. First IFIP TC 2/WG
2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005,
Revised Selected Papers and Discussions.

[Obe03] Ober, I. An ASM semantics for UML derived from the meta-model and
incorporating actions. In Börger, E., Gargantini, A., Riccobene, E., editors,

1927Boerger E., Prinz A.: Quo Vadis Abstract State Machines?



Abstract State Machines 2003–Advances in Theory and Applications, volume
2589 of Lecture Notes in Computer Science, pages 356–371. Springer-Verlag,
2003.

[OL08] Ouimet, M., Lundqvist, K. The timed Abstract State Machine language:
Abstract Sstate Machines for real-time system engineering. This Journal,
2008.

[RFV06] Glässer, U., Farahbod, R., Vajihollahi, M. An Abstract Machine Architec-
ture for Web Service Based Business Process Management. International
Journal on Business Process Integration and Management, 1(4):279–291,
2006.

[Sch08] Schellhorn, G. ASM refinement preserving invariants. This Journal, 2008.
[SV08] Slissenko, A., Vasilyev, P. Simulation of timed Abstract State Machines

with predicate logic model-checking. This Journal, 2008.

1928 Boerger E., Prinz A.: Quo Vadis Abstract State Machines?


