
Modularizing Theorems for 

Software Product  Lines:  The Jbook Case Study

Abstract: A goal of software product lines is the economical assembly of programs in a family
of programs. In this paper, we explore how theorems about program properties may be integrated
into feature-based development of software product lines. As a case study, we analyze an existing
Java/JVM compilation correctness proof for defining, interpreting, compiling, and executing
bytecode for the Java language. We show how features modularize program source, theorem
statements and their proofs. By composing features, the source code, theorem statements and
proofs for a program are assembled. The investigation in this paper reveals a striking similarity
of the refinement concepts used in Abstract State Machines (ASM) based system development
and Feature-Oriented Programming (FOP) of software product lines. We suggest to exploit this
observation for a fruitful interaction of researchers in the two communities.
Keywords: ASM, features, composition, verification, AHEAD.
Categories: D.2.1, D.2.4, D.2.10, D.2.11.

1 Introduction 

Product-lines are used in many industries to reduce product development costs, im-
prove product quality, and increase product variability. The automotive, computer
hardware, and software industries offer examples [BMW 2007][Dell 2007][Pohn
2005]. Sadly, what distinguishes software products is the absence of meaningful war-
ranties [Java 2008]. While great strides have been made in verification over the last ten
years, there are few results on verifying software product-lines (SPLs) [Blundell
2004][Krishnamurthi 2001][Krishnamurthi 2004][Thaker 2007].

Scaling verification to large programs is a long-standing problem. There is a grow-
ing community of researchers that believe verification must be intimately integrated
with software design and modularity for scaling to occur; verification of programs
should not be an after-thought [Hunt 2006][Xie 2003]. In this paper, we explore an ap-
proach that suggests how feature modularization may scale verification to product-lines
of programs. We bring together results from previously unrelated communities: Ab-
stract State Machines (ASM) based system development and Feature-Oriented Pro-
gramming (FOP). The ASM method is a rigorous approach to step-wise program de-
velopment and verification. FOP is a design methodology and compositional technolo-
gy for customized program assembly. ASM and FOP both use step-wise refinement to
construct programs and specifications. Although ASM and FOP were conceived inde-
pendently (their roots trace back to the early 1990s), both have independently recog-
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nized the value of features — increments in functionality — as a modularization center-
piece. 

To explore the idea of assembling not only programs, but also theorems about pro-
gram properties in a feature-oriented way, we use as a case study the 2001 Jbook [Stärk
2001] that among other results presented a Java/JVM compilation correctness proof for
defining, interpreting, compiling, and executing bytecode for the Java 1.0 language.
Among the pragmatic discoveries of Jbook were problems with bytecode verification,
inconsistent treatment of recursive subroutines, method resolution and reachability def-
inition, under-specification of static initializers (leading to portability problems of Java
programs), concurrent initializations could deadlock, and existent Java compilers vio-
lated initialization semantics through standard optimization techniques [Börger 1999].
More recent work examined C# with similar results [Börger 2005][Fruja and Börger
2006][Fruja 2004][Fruja and Börger 2006]. 

Jbook and FOP both use features to modularize grammars and programs in an iden-
tical way. Using the Jbook case study we show how the modularization of Java pro-
grams can go in parallel with a feature-oriented description and verification of desired
program properties. By composing features, complete grammars, programs, theorem
statements and proofs can be assembled. To our knowledge, this is the first time that
this has been shown. Thus, the first contribution of our paper is to document this claim
for the Jbook case study. Our paper does not present a complete report on Jbook, which
is presented elsewhere [Stärk 2001]. Rather, we explain that the Jbook illustrates all the
characteristics of a verified SPL development using features. We can only illustrate
each of these characteristics by giving concrete examples from the Jbook, and explain-
ing what is needed for a fair understanding without assuming Jbook familiarity.

The second contribution of our paper is to make the two involved communities
aware of the fact that the refinement concepts used in FOP of software product lines and
ASM based system development are to a large extent the same. This leads us to discuss
the generality of the proposed feature-based verification method, which combines
ASMs and SPLs. Our approach is general: features provide a way to modularize all rep-
resentations of programs, irrespective of the domain. We argue that our results are not
limited to a verified language implementation and still less to the proven-correct com-
pilation scheme of Java programs to JVM bytecode taken from the Jbook. What is im-
portant for a successful application of the method is to start from a precise definition of
the application domain with well-understood features. We explain why we believe that
our results are meaningful in the context of any SPL where each of its programs may
have its own unique set of properties and requiring customized proofs. Instead of man-
ually verifying individual programs, which is a laborious task, theorem statements and
proofs may be assembled, like other program representations. Assembled proofs may
then be certified manually or automatically using a proof checker. 

Since we use FOP and ASMs, besides mentioning along the way what we need, we
also give in Appendix I and Appendix II summaries of FOP and ASMs in an effort to
make the paper self-contained for the reader who may not know both.

2060 Batory D., Boerger E.: Modularizing Theorems ...



2 An Overview of the Jbook Product Line

Jbook [Stärk 2001] presents a structured way to incrementally develop the Java 1.0
grammar, its language interpreter, compiler, and bytecode (JVM) interpreter (including
a bytecode verifier). The sublanguage of Java expressions is considered first, then it is
progressively refined with the addition of Java statements, static class constructs, object
constructs, and lastly support for exceptions. Each increment in functionality, here
called a feature, builds upon previously defined functionalities by showing how the
grammar, language interpreter, compiler, and bytecode interpreter are simultaneously
and consistently refined.1 At the end of this horizontal refinement chain, a complete
grammar, language interpreter, compiler, and bytecode interpreter for Java 1.0 are ob-
tained. 

Figure 1 shows the Jbook organization, what is called there the vertical refinement
structure. Each oval represents a domain and each solid arrow denotes a tool that is a
function that maps an object in its domain to an object in its codomain. The parser
maps a Java program to an abstract syntax tree (AST). The interpreter maps an AST to
an interpreter run or execution trace (InterpRun). The compiler maps an AST to byte-
code. And the JVM interpreter, after having successfully run the bytecode verifier on
the given bytecode, executes this bytecode to produce a JVM run. 

At this point, various properties are considered, such as the correctness of the com-
piler. The dashed arrow in Figure 1 denotes the proof that interpreter runs are equivalent
to JVM runs for the same Java program. Correctness is established by a mathematical
proof of the equivalence of the interpreter execution of a Java 1.0 program and the JVM
run (execution) of the compiled program. 

Jbook was not developed with product lines in mind. It focussed on the definition
and verification of a single abstract interpreter and compiler scheme for the Java 1.0 lan-
guage. To give Jbook an SPL architecture, we present a series of more elaborate FOP
models that link the horizontal and the vertical refinement steps in a way that allows the
theorems and proofs to be refined, in particular the compiler correctness theorem (i.e.,
its statement and proof).

We use for this purpose the GenVoca model of product-lines: base programs are val-
ues (0-ary functions) and features are unary functions that map programs to refined pro-
grams [Batory 1992]. A GenVoca model of Jbook is JB, where each element of JB is an

1. The set of instructions of the bytecode interpreter progressively grows with each additional fea-
ture. New instructions help execute a feature’s increment in functionality.

Figure 1: Jbook Organization
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increment in Java language functionality, and different compositions of features yield
different variants of the Java language:

JB = { ExpI, // imperative expressions
StmI, // imperative statements
ExpC, // static fields & expressions
StmC, // method calls and returns
ExpO, // object expressions
ExpE, // expression exceptions
StmE, // exception statements

}

JB has a single value ExpI which defines the Java sublanguage of imperative expres-
sions. The remaining features are functions (refinements). StmI adds imperative state-
ments; ExpC and StmC add static fields, static methods, and static initializers; ExpO adds
object expressions; and ExpE and StmE add exceptions to expressions and exception
handling statements. The version of Java that was verified is Java1.0, which composes
all of these features:

Java1.0 = StmE ExpE ExpO StmC ExpC StmI ExpI (1)

where  denotes function composition. That is, Java1.0 was incrementally developed
in the Jbook by starting from base ExpI (which defines the Java sublanguage of imper-
ative expressions, an interpreter of this sublanguage, a compiler, etc.), then StmI refines
it, then ExpC refines StmI ExpI, etc. In Jbook, only when the composition of Java1.0
was complete was the correctness theorem (i.e. its statement and proof) developed. We
show in the next section how theorem statements and correctness proofs can be assem-
bled at each composition step.

Note: Figure 2 lists compositions of JB features that were given special names in the
Jbook.

Note Jbook treats Java expressions separately from statements. This separation al-
lows one to use properties proved for expression evaluation as an inductive hypothesis
when proving properties for statement execution.

To create a product-line, features can be omitted from Java1.0 to produce sublan-
guages of Java. (A slightly different feature set than JB could be used to produce the
Java Card language [Java 2008]. Another possibility is to add new language constructs:
updating to Java 1.6, support for state machines [Batory 2004] and Lisp quote/unquote
metaprogramming constructs [Taha 1997]. In either case, features can be mixed-and-
matched, yielding a family or product-line of Java dialects and their tools (i.e., parser,
interpreter, compiler). This is exactly how the language-extensible AHEAD tools were
built [Batory 1998][Batory 2004]. 

Jbook Term Composition

JavaI StmI ExpI

JavaC StmC ExpC JavaI

JavaO ExpO JavaC

JavaE StmE ExpE JavaO

Java Java1.0 (see (1))

Figure 2: Jbook Compositions
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3 AHEAD Representation of Jbook SPL

AHEAD is a generalization of GenVoca that exposes different representations of pro-
grams (source, grammars, documentation, makefiles, etc.) and reveals how features re-
fine each of these representations by composition [Batory 2004]. We start with program
representations of JB features and consider theorems soon thereafter. 

In this paper, we use shorter names for features and program representations than in
the Jbook. Figure 3 lists correspondences of terms and their indices: term I with index
ExpI (i.e., IExpI) denotes the Jbook term execJavaExpI.

1

3.1 Program Representations
Every program has multiple representations: source, documentation, bytecode, make-
files, etc. A GenVoca value is a tuple of representations for a base program, a notion we
use now to represent the vertical refinement levels used in the Jbook. The representa-
tions of the JB value ExpI are: the grammar for Java imperative expressions GExpI, the
ASM definition of the expression interpreter IExpI, the ASM definition of the expres-
sion compiler CExpI, the ASM definition of the bytecode (JVM) interpreter JExpI, and
the verification (theorem) representation TExpI which we will explain shortly. The tuple
for program ExpI is [GExpI,IExpI,CExpI, JExpI,TExpI].

A GenVoca function maps a tuple of program representations to a tuple of (in the
Jbook called horizontally) refined representations. Feature StmI refines the base gram-
mar by GStmI (new rules for Java statements and tokens are added), the language inter-
preter by IStmI (to implement the new statements), the compiler by CStmI (to compile
the new statements), etc. StmI’s tuple is [ GStmI, IStmI, CStmI, JStmI, TStmI].

The representations of a program are computed by tuple composition, where corre-
sponding components are composed. The grammar, interpreter, compiler, etc. represen-
tations of the Java sublanguage JavaI that has imperative expressions and statements is:

JavaI = StmI ExpI // GenVoca expression

= [ GStmI, IStmI, CStmI, JStmI, TStmI] 
[GExpI, IExpI, CExpI, JExpI, TExpI]

= [ GStmI GExpI, IStmI IExpI, CStmI CExpI,
JStmI JExpI, TStmI TExpI]

That is, the grammar of the JavaI language is the base grammar composed with its
refinement ( GStmI GExpI), the ASM definition of the JavaI interpreter is the base defi-

1. In the Jbook also compileri has a modular structure, being composed out of a compiler E for
expressions, S for statements, and B for flow-control expressions.

Our Term Jbook Term Meaning

Gi syntaxi language grammar

Ii execJavai language interpreter

Ci compilei language compiler

Ji trustfulVMi virtual machine

Ti theoremi theorem of compiler correctness

Figure 3: Name Correspondences
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nition composed with its refinement ( IStmI IExpI), and so on. In general, the represen-
tations of a program are assembled by taking a GenVoca expression, replacing each
term with its corresponding tuple, and composing tuples. 

Note that features are not created in a haphazard way; they are carefully designed so
that they (and their representations and refinements) are compatible, and their compo-
sitions yield the desired representations of the expected program. This design philoso-
phy is present both in Jbook and AHEAD applications.

3.2 Theorems
Theorems proving program properties are another representation that is subject to re-
finement. The Jbook presents several theorems including the correctness of the Java
compiler. We use this theorem, denoted by T, as a representative example. 

TExpI denotes the theorem for the correctness of the ExpI compiler, i.e., the proof
that interpreter runs of an ExpI program are equivalent to the JVM run of the compiled
program. The refinement of this theorem by the StmI feature is denoted by TStmI in tu-
ple StmI. The expression TStmI TExpI assembles the correctness theorem for the JavaI
language. Similarly for the languages JavaC, JavaO, JavaE and Java. Before proceeding
in section 5.3 with more details on theorem refinement we need to explain how AHEAD
allows one to split program representations into subrepresentations and to define their
refinements.

3.3 Nested Tuples
Program representations typically have subrepresentations, and recursively, subrepre-
sentations may have subrepresentations. Hierarchical containment relationships are ex-
pressed by allowing each term of a tuple to be a tuple that can be refined. In general, the
composition operator ( ) that we use recursively composes nested tuples. This is the es-
sence of AHEAD [Batory 2004].

As an example, theorems have a tuple structure. Theorem T has a statement S and a
proof P; T’s tuple is [S,P]. A theorem refinement T may refine its statement ( S) and/
or its proof ( P). A composite theorem is produced by composing its subrepresenta-
tions, i.e., T T=[ S S, P P]. Examples of nested representations of code are given in
[Batory 2004].

4 What is a Refinement?

A feature F is a collection of transformations of the form A A that maps an input artifact
of a type A to a modified (usually extended) artifact of the same type (e.g.,
source source, grammars grammars, etc.). These transformations are structure-pre-
serving and monotonic in the following sense: new elements can be added to the input
artifact and existing elements can be modified but not deleted.

Abstract state machines (ASMs) can be refined in several ways [Börger 2003] where
AHEAD uses three. One is conservative extension: (a) define the condition for the new
case, (b) define a new ASM to add the extra behavior, and (c) restrict the original ma-
chine by guarding it with the negation of the new case condition. Suppose the original
machine is written in Java as method m():
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void m() {...} // original machine

The structure of a method refinement in AHEAD that corresponds to a conservative
extension is:

void m() { 
if (!condNew) SUPER.m(); // original actions
else {...} // new actions

}

That is, if condNew (the condition of the new case) is not satisfied, invoke the origi-
nal method, which is denoted by SUPER.m(). Otherwise execute the new actions. Ex-
ploiting a technique that is well-known from logic one can prove a theorem for a con-
servative extension M of a machine M by first proving the theorem T=[S,P] for M and
then extending the statement S and proof P by what is needed to establish the theorem
T T=[ S S, P P]. Typically this involves a case distinction within an induction on

runs of M M, namely whether the considered step is an M-step, in which case the known
proof P for the statement S for M can be invoked, or a M-step, in which case the proof
extension P for the extended statement S is used. For a non-trivial example see the
extension of a trustful JVM interpreter by a bytecode verifier in Appendix V. 

A second form of ASM refinement is parallel addition: (a) start with a given ASM,
typically guarded by some condition, (b) define a new ASM to add extra behavior, typ-
ically coming with the same guard of the original ASM. In effect, the example rule (b)
below is added “after” rule (a):

if cond then update1 // ASM rule (a)
if cond then update2 // ASM rule (b)

By ASM semantics, both are executed simultaneously if cond is satisfied, effective-
ly extending the first rule to be:

if cond then {update1; update2} // rules a + b

In AHEAD, the parallelism cannot be expressed directly. But one way to emulate it
is by the following refinement pattern:

void m() { before; SUPER.m(); after; }

where either before or after could be null. Historically, a null before is called an af-
ter-method, a null after is a before-method, and non-null before and after actions are
an around-method [Kiczales 1991]. The naming relates to the fact that in AHEAD, the
semicolon expresses sequential execution. See Appendix III for one more case. 

Sequential execution is one implementation of the parallel execution in ASMs; the
independence of the given and the new actions in ASMs is reflected in a semantically
correct way by a sequential execution only if different sequential orders produce seman-
tically equivalent executions.1

The typical theorem refinement scheme for parallel addition is the conjunction,
where T=[Sa,Pa] represents the theorem for rule (a) and T=[ S, P]=[Sb,Pb] the an-
alogue for rule (b).2

1. The related issue of how to incorporate sequentiality into the parallelism of ASMs has been
addressed in [Börger 2000].
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A third and by far most common form of refinement is adding new elements or
equivalently, mapping a null artifact to a non-null artifact. Such refinements are called
introductions. Adding new rules that apply to new states of execution is in the ASM
framework a form of parallel addition and in fact is very common in Jbook. Introduc-
tions are also very common in AHEAD: a refinement of a class can add or introduce
new members (fields, methods) and can modify existing methods (as indicated above).
A refinement of a package can add or introduce new classes and refine existing classes.
As we will see, the concepts of introduction and refinement apply to theorems as well.

5 Refinement of Artifacts

As we identify the feature-refinements of grammars, code, and theorems used in the
Jbook, note the similarity of the underlying ASM design refinement to feature-based
development. We will argue that one can incorporate into FOP the idea of feature-based
refinement to verification as adopted in the Jbook, where it is used to a) rigorously de-
fine the complex program properties of interest there and b) to prove them. 

5.1 Refining Grammars
The GExpI grammar is shown below (in black font), where a Java imperative expression
can be a literal, local variable, unary expression, binary expression, conditional expres-
sion, or expression assignment:

Exp := Lit | Loc | Uop Exp | Exp Bop Exp 
| Exp ? Exp : Exp | Asgn |Field
| Class.Field | Invk 

Invk := Meth(Exps) | Class.Meth(Exps) 
Exps := (Exp)+ 
Asgn := Loc = Exp |Field = Exp 

| Class.Field = Exp 

The ExpC feature adds object fields and method calls by refining productions Exp
and Asgn with additional right-hand sides, and introducing new productions Invk and
Exps (indicated in italic font above). Similar extensions are used for ExpC, ExpO, St-
mI, etc. features, covering the entire syntax of Java. Exactly the same technique was
used in AHEAD to modularize1 and refine grammars [Batory 2004].

5.2 Refining Code
Although ASMs are rule-based, they can express object-oriented concepts of inherit-
ance hierarchies and methods. Adding hierarchies and methods to programs is concep-
tually not very interesting, but refining them is. In the following, we present examples
of Jbook refinements of both.

2. As we will see the composition operator ( ) for statements and proofs is logical conjunction:
T T=[Sb Sa,Pb Pa]

1. The grammar modules for various Java sublanguages can be viewed as partitioning of the entire
grammar into independent and replaceable parts with precisely defined interfaces.
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5.2.1 Refining Inheritance Hierarchies
Features progressively elaborate inheritance hierarchies by incrementally adding new
subclasses. Figure 5 shows the kind of progressive elaboration used in the Jbook. The
following explains the details.

Jbook calls expressions, statements and the result of executing an expression or
statement a Phrase. ExpI defines a simple inheritance hierarchy rooted at Phrase (Fig-
ure 4). Val is a subclass of Phrase and it has many different subclasses (boolean, byte,
short, etc.) which are depicted by a single class PrimValue.

Feature StmI adds imperative block statements subclasses to Phrase that represent
the possible results of executing those imperative statements (e.g., Abruption, Break,
Continue, and Normal). Feature StmC adds to this the Return class; feature ExpO adds
Reference and Null subclasses to Val, and feature ExpE adds Exception as a new sub-
class of Abruption, where an abruption is an interruption in flow control.1 Thus, the
class hierarchy of Figure 4 is progressively revealed as features are composed. This is
typical of FOP designs.

5.2.2 Refining Methods
Besides adding new classes, features can refine existing classes. In particular, existing
methods can be refined. The ASM concept of a “machine” or “submachine” closely re-
sembles a Java method. For example feature StmC defines a submachine exitMethod for
the actions (in black font) taken when a method is exited. It is refined by the special
case of exiting a class initialization method (called clinit):

exitMethod(result) = // ASM definition

let (oldMeth, ...) = top(frames)
...
if methNm(meth)=”<clinit>” result=”norm” then ...
elseif methNm(meth)=”<init>”  result=”norm” then ...
elseif ...

Feature ExpO adds constructor calls to the Java language. This requires exitMethod
to be refined to handle the actions for returning from constructors. The refinement adds
the definition in red italic font above. This change can be easily expressed as a refine-
ment of Java code.

1. ExpE adds exceptions to expressions. StmE adds throw-catch clauses to Java. Without the StmE
feature, exceptions will be thrown by expressions and cannot be caught by a program.

Figure 4: Refinement of Phrase Inheritance Hierarchy
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5.3 Refining Theorems
Our example theorem T defines the correctness of the Java compiler. The statement of
T for Java1.0 consists of thirteen invariants, nine are tersely described in Figure 5. A
detailed knowledge of these invariants is not needed for this paper: it is sufficient to
know that there are distinct named invariants. The next sections explain how the state-
ment of T (denoted by T.S) and its proof (denoted by T.P) are refined by features. Again,
refinement means adding new elements (invariants, proof cases) and refining existing
elements (invariants, proof cases). We show examples of each. Readers will note the
similarity of theorem refinement with grammar and code refinement. 

5.3.1 Adding New Invariants
T.S is a conjunction of invariants, which is subject to incremental refinement by adding
further conjuncts. The conjunction is represented here as a list. T.S of the initial ExpI
sublanguage has the (reg), (begE) and (exp) invariants. The remaining invariants of
Figure 5 are absent as they deal with abstractions (statements, abruptions, and class in-
itializations) that cannot be defined using only ExpI concepts.

The StmI feature refines T.S by conjunctively adding the invariants (begS), (stm)
and (abr) which deal with the normal and abrupted termination of statement execu-
tions. The (stack), (clinit) and (exc) invariants are not included as they cannot be
defined using ExpI and StmI concepts alone.

Similarly, the ExpC feature adds as further conjuncts the (stack) and (clinit) in-
variants to T.S; the StmC feature leaves T.S unchanged.

Given these features, Figure 6 lists their compositions and the invariants of T.S for
each composition. The T.S for composition j1 has three invariants; the T.S for j3 and
j4 have eight. As Figure 6 shows, the set of invariants that define the statement of the-
orem T in the JB product-line varies from program to program. The remaining JB fea-
tures introduce the remaining invariants of T for Java1.0. 

Invariant Description

(reg) the equivalence of local variables in the language interpreter and the
associated registers in the JVM interpreter when both are in corre-
sponding states

(begE) when the language interpreter begins to evaluate an expression, the
JVM interpreter begins to execute the compiled code for that expres-
sion and the computed intermediate values are equivalent

(exp) same as (begE) for a value returning termination of an expression
evaluation

(begS) same as (begE) except it applies to statement execution
(stm) conditions for normal statement termination
(abr) conditions for abrupted statement execution
(stack) frame-stack equivalence condition
(clinit) class initialization status equivalence condition
(exc) conditions for exception statement execution

Figure 5: Invariants Used in Compiler Correctness Proofs
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Note that part of the theorem statement refinement may also come through a gram-
mar extension (if present). For example when new expressions are introduced by j3,
then the meaning of invariant (reg) ranges not only on the ExpI expressions, as in j1,
but also on the new expressions defined by the ExpC grammar. The same remark applies
to the theorem statement refinement of Stm properties.

5.3.2 Refining Existing Invariants
The program invariants themselves are also subject to refinement. As an example con-
sider a sketch of the abruption (abr) invariant, which is as follows:

if restbodyn/A=abr then <cond_1> (2)

That is, <cond_1> must hold when an abruption occurs. In section 5.2.1 we saw that
feature ExpE extends the definition of an abruption to include exceptions. The <cond_1>
of (2) applies only to abruptions that are not exceptions. 

ExpE uses a conservative extension to express this change. First, ExpE refines invar-
iant (2) by adding the qualifying condition that the abruption is not an exception (below
in italics). (2) becomes:

if restbodyn/A=abr and abr is not an exception
then <cond_1> (3)

Second, ExpE introduces two new invariants to T.S. to cover the cases where an
abruption is an exception (exc) and an exception is thrown during class initialization
(exc-clinit). Both invariants have the following form:

if restbodyn/A=abr and abr is an exception ...
then <cond_2> (4)

In general, each member of the Jbook product line has a theorem statement. As fea-
tures are composed, the theorem statement of what it means to be a correct compiler is
refined by the addition of new invariants and the refinement of existing invariants.

5.3.3 Adding Proof Cases
Let T.S(C) denote the conjunction of the invariants making up the theorem statement
T.S for feature composition C. If G is another feature, G C must be shown to satisfy
T.S(G C) — the (conjunction of the) invariants collected and refined by G C.

Figure 6: Statement of Correctness
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The structure of the compiler correctness proof T.P in Jbook is a list of cases appear-
ing in an induction on the interpreter runs, i.e. in the initial state and each time an inter-
preter step has been performed. Feature G refines T.P(C) by adding more cases and/or
refining existing cases. Below we examine the refinements of T.P that are made by each
of the ExpI, StmI, ExpC and StmC features. 

The ExpI feature defines the imperative expressions of Java. Recall the recursive
ExpI grammar definition:

Exp := Lit | Loc | Uop Exp | Exp Bop Exp 
| Exp ? Exp : Exp | Asgn 

Asgn := Loc = Exp

The proof for T is a case analysis using structural induction on the definition of ex-
pressions and of their compilation. The invariants (reg), (begE) and (exp) relate cer-
tain items (e.g. local Java variables and JVM registers) in the Java and JVM interpreters
for ExpI. If these invariants hold, the Java and JVM interpreter executions produce
equivalent evaluation results. The proof T.P for ExpI is a list of 12 proof cases, one or
more cases for each kind of expression showing the ExpI invariants are preserved [Stärk
2001].

The StmI feature introduces the imperative statements of Java. Its grammar refine-
ment adds productions for Java statements; no ExpI productions are refined:

Stm := ; | Loc = Exp; | Lab : Stm; 
| break Lab; | continue Lab; 
| if (Exp) Stm else Stm 
| while (Exp) Stm | Block (5)

The invariants that StmI adds are about statement executions, while the invariants
of ExpI are about expression evaluations. Execution steps of the ExpI interpreter trivi-
ally preserve the StmI invariants, and vice versa, as these invariants relate sets of items
that are disjoint.1 For the composed interpreters to satisfy the invariants of StmI ExpI,
StmI must add cases to T.P, one or more for each production in (5), that prove the in-
variants of StmI are preserved; see cases 14-35 in [Stärk 2001]. Note that this induction
on statements uses the proofs for the statement subexpression invariants as induction
hypothesis.

The grammar refinement of feature ExpC adds expressions for static class fields, as-
signments to them, expression sequences and method invocations. The interpreter re-
finement of ExpC introduces frames and a frame stack and their values are related by the
new invariant (stack). The second new invariant (clinit) relates the class initializa-
tion status of Java and JVM interpreter runs. As no ExpI and StmI interpreter step ref-
erences or updates frames or the class initialization status, invariants (stack) and
(clinit) are trivially satisfied by them. ExpC refines T.P with additional cases proving
these two new invariants hold, one case for each kind of new expression. Since no new

1. In proof arguments, we tacitly use the fact that an ASM execution step is given by a set of
guarded multiple assignments, in each step only the values of those locations (i.e., variables) that
occur in a rule with a true guard may change, whereas the rest of the state remains unchanged.
Thus, each time a new feature is introduced that adds a new invariant, that invariant is trivially
preserved by each execution step that does not affect a location (variable) of the new invariant.
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ExpC execution step affects any of the previous invariants, all the invariants hold for Ex-
pC StmI ExpI; see cases 36-44 in [Stärk 2001].

StmC follows the above pattern: it adds no new invariants and refines T.P with addi-
tional proof cases, one or more for each production in its grammar refinement that adds
method calls and returns.

Figure 7 lists compositions of  features and the number of cases in T.P per compo-
sition. Each feature adds new cases (or refines existing ones, see below) in the proof of
T.

Cases can also be added as a result of refining invariants. In section 5.3.2, we
showed the ExpE feature refined the abruption invariant (abr). As the existing proof
cases for (abr) are not exceptions, their correctness remains unaffected by this refine-
ment. However, ExpE adds new proof cases for the new invariants (exc) and (exc-
clinit) which express the desired property for exceptions.

5.4 Refining Existing Proof Cases
Proof cases are also subject to refinement. The ExpI feature defines a case (in black font
below) that shows the (exp) and (reg) invariant, which were introduced by ExpI, holds
[Stärk 2001], namely (exp) for an expression evaluation and (reg) for the current val-
ues of Java local variables and the associated JVM registers:

Case 9: context(posn) = (loc =  val) and posn= :
Assume … Hence invariant (exp) is satisfied in state n+1… and invariant (reg) is
satisfied as well.
The invariant (fin) remains true since…

The StmE feature introduces try-catch-finally statements and a new invariant
(fin) that deals with return addresses from finally code. As the return addresses from
finally code are stored by the JVM in dedicated registers (not registers used by ExpI),
it has also to be checked that every register assignment preserves this invariant (fin).
Therefore the proof case concerning the values in JVM registers reg must be refined
with additional proof text to show that the return addresses stored in reg for finally
code are correct (in italic font above).

A larger example of theorem refinement that includes the addition and extension of
both invariants and proof cases is presented in Appendix IV.

5.5 Further Structure
The ASM interpreter for Java programs and the compiler use a familiar object-oriented
structure for implementing grammars. Each left-hand side of a production corresponds

Composition total # of cases
in Proof of Theorem T

j1 = ExpI 13

j2 = StmI ExpI 35

j3 = ExpC StmI ExpI 44

j4 = StmC ExpC StmI ExpI 54

Java1.0 83

Figure 7: Proof of Correctness
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to an abstract class and each right-hand side corresponds to one of its subclasses. The
inheritance hierarchy for expressions is rooted at abstract class called Exp (expression),
and it has concrete subclasses for literals (Lit), variables (Loc), unary expressions
(Uop), etc. Instances of these classes define an AST for a parsed expression [Batory
1998].

The Java interpreter defines an abstract method interpret() in the Exp class, and
all subclasses are obliged to provide implementations of this method (to interpret an ex-
pression). Similarly, a compiler defines an abstract method compile() in the Exp class,
and all subclasses must provide implementations of this method (to compile an expres-
sion). Type checking ensures the methods are present in subclasses.

The proof of T in the Jbook is a sequence of cases within an induction on interpreter
runs. These cases largely correspond to the following: an ‘abstract’ theorem is defined
in the Exp class; all subclasses are obliged to define a concrete (i.e., fully elaborated)
theorem for each subclass. The ‘abstract’ theorem defines the invariants that are to hold
for all expressions. The ‘concrete’ theorems provide the proofs that these invariants
hold for particular expression types. This is the essence of structural induction (which
was used in the proof of T). In creating the original proof of the Jbook, some cases were
initially missed (and subsequently discovered). Type-checking would have automati-
cally reported the absence of missing cases. We will see in section 6 that type checking
might play a more expansive role in certifying theorems.

6 Generality of the Approach

An obvious question is: why does this work? We found in the Jbook an explicit repre-
sentation of a feature-based compositional verification structure. In a sense it did not
come as a surprise, since the major driving force for developing ASM models by step-
wise refinement had been “splitting the overall definition and verification problem into
a series of tractable subproblems” ([Stärk 2001] p7) for a complete (not some light-
weight) version of Java/JVM. The question remains whether we found an explicit fea-
ture-based formulation and proof of properties of interest because of the special charac-
ter of the domain of language compilation. We explain in this section the reasons which
make us believe that it is a general phenomenon that a clear compositional design struc-
ture goes together with a feasible structure of system invariants and their proofs.

Ideally, features only add new elements (e.g., ASMs, methods, classes, proofs). But
generally, this is not common. More typically, features add new elements and extend
existing elements, as we have seen in all the program representations used in the Jbook.
Such features have incremental (also called monotonic) semantics. As an aside, in twen-
ty years of building GenVoca product-lines, virtually all the features we have encoun-
tered have incremental semantics.

But there are domains where features have a more invasive impact by erasing the
definitions of existing elements (methods, ASMs, proofs) and replacing them with def-
initions that are specific to a composition of two or more features. That is, the replaced
definitions cannot be incrementally built. This is known as feature interaction: it is usu-
ally accompanied by an abrupt discontinuity in semantics where prior properties are no
longer valid. The telecommunications domain is replete with examples [Calder 2003].
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Appendix III shows how element definitions can be replaced. [Liu 2006] is a general
way to express feature interactions in a GenVoca model.

What can be said in full generality is the following: assume we are in a well-defined
application domain where the domain expert knows well the relevant features. Then ar-
tifacts representing domain problem solutions, typically some code, as well as the state-
ment and justification of properties of such problem solutions (read: invariants and
proofs) typically have some structure. And within a structure, there are extension points
or variation points  where more structure can be added or existing structure can be re-
placed. Features exploit structure variability in that they modularize the structural
changes of all program representations [Batory 1992][Batory 1998][Batory
2004][Kästner 2007].

This leads to the general question of mechanized support for verified developments.
In many real-life software engineering problems a justification of the development
(read: a proof of a certain system behavior) does not come in an automatic form, but
builds upon the understanding of the subject matter by the engineer, as in Jbook1 and
thus in this paper. In such an endeavor, ASMs help engineers formalize their programs
and prove needed properties. The effort needed for manual proofs to convince humans
is many times less than for comparable automated proofs.2 But manual certification of
assembled theorems is only a provisional solution. The need for mechanized proofs for
ASMs has been both recognized and accomplished for various case studies using theo-
rem provers [Gargantini 2000][Goerigk 1996][Schellhorn 1998] [Schellhorn 1998]
[Schellhorn 2007]. In particular, Schellhorn has shown that developing proofs incre-
mentally (much like the incremental development in Jbook) simplifies the task of me-
chanically proving program properties [Schellhorn 1998].

Further progress for constructing feature-modularizing proofs may be made by ex-
amining what is assembled when features are composed:

• the text of a program’s source. This text must be compiled by a tool such as javac
to verify that it is both syntactically correct and type correct. 

• the text of a grammar’s specification. This text must be compiled by a tool such
as javacc to verify it is both syntactically correct and well-formed (i.e., it type-
checks according to the meta-grammar). 

• the text of the program’s theorems. Here is where we need help: how do we know
that the text constitutes a correct proof? If all program representations are treated
similarly, what is the theorem counterpart to syntax and type checking?

Once the theorems are expressed in a machine manageable form, proof-checkers
might be used. Theorems are written in a designated logic; a proof-checker certifies that
the proof statements are well-formed in that logic. In effect, proof checking reduces to
the type checking of terms that define the logic’s syntax, judgements, and rule schemes

1. As far as we know nobody in the theorem proving community up to now has accepted the chal-
lenge to mechanically verify the theorems proved in Jbook; much work has been done for restrict-
ed sublanguages, but not for the entire Java 1.0 (or the present Java) language. Therefore also the
Jbook case study presented in this paper cannot (yet) be verified mechanically.

2. The reported ratio for two verification efforts was 1 to 4 .
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[Appel 2003]. So verifying a program of a product-line may be accomplished by assem-
bling the program and its theorems, and using a proof checker to certify theorems auto-
matically. Currently this is difficult to do: we cannot rely on different versions of a the-
orem prover to produce the same proofs (as different proofs may result as a conse-
quence of different search strategies being used). Ideally, the incremental changes to
proofs should not be dependent on particular proof technologies. In the case of Jbook,
this seems to be the case: that a feature-based design of both code and proofs can lend
itself to extensions that are straightforward to implement. Clearly, more examples like
Jbook are needed.

Our approach is similar to verifying that the assembled source of a program is type-
correct, i.e., assemble the program’s source and to see if it compiles without errors. Re-
cent work shows how type safety properties of all programs of a product-line can be
verified using SAT solvers [Thaker 2007]. This analysis may apply to proof text as well.
Proof trees may have holes that are filled by refinements, e.g. when replacing an ab-
straction by a detailed machine, for which the axiomatic assumptions made for the ab-
straction have to be proved. Another example is the introduction of a sub-induction (e.g.
on expressions) in a head induction (e.g. on statements). These ‘holes’ can be instanti-
ated only by proof trees of a certain ‘shape’ (i.e., a theorem type). Guaranteeing that the
‘holes’ are instantiated properly is a problem of type-correctness. 

7 Related Work

There is an enormous literature on verification. We limit our discussion of related work
to that relevant to verifying software product lines.

The verification of product-lines using features using model-checkers was first stud-
ied by Krishnamurthi and Fisler in a series of papers (e.g., [Krishnamurthi
2001][Krishnamurthi 2004][Blundell 2004]). Properties of systems are often properties
of individual features. They noted relationships between feature verification and open
system verification, where information needed for system verification must be supplied
by the set of features that define the target program. They developed specific algorithms
and tools for computing propositional ‘interfaces’ of individual features, and for testing
whether features violate system-wide properties. Our emphasis is on the feature-modu-
larization of proofs for subsequent assembly, rather than techniques for automated for-
mal verification. 

Not all features are compatible; some features preclude or require the use of others
in a composition. Verifying compositions of features is discussed in [Batory 2005],
where feature models, grammars, and propositional formulas are related, and tech-
niques for validating feature models are discussed.

Czarnecki used [Batory 2005] to show how feature models could be used to check
the well-formedness of all products of a product line [Czarnecki 2006]. [Thaker 2007]
is a follow-on work that showed how to verify the type correctness of a product-line.

Grammes and Gotzhein have studied a problem related to a product-line of SDL di-
alects [Grammes 2007]. A profile is a restriction of SDL to some sublanguage. Given
an ASM interpreter for the semantics of full SDL and a profile, they can compute the
interpreter for that profile and verify its correctness. (This computation may be charac-
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terized by the removal of features). The verification step is done manually, but is be-
lieved that it is possible to be done automatically.

Hoare, Misra, and Shankar proposed a Verified Software Grand Challenge in 2005
with the goal of scaling verification to a million lines of code [Hoare 2005][Jones 2006].
Verification would be based on the text of a program and the annotations contained
within it [Levens 2006]. We, like others, believe that verification must be intimately in-
tegrated with software design and modularity [Hunt 2006][Xie 2003]. Verifying prod-
uct-lines, which requires the integration of design and verification, seems a fitting goal
for a Verified Software Grand Challenge.

8 Conclusions

Providing warranties about programs is a long-standing goal of Computer Science. A
pragmatic extension of this goal is to provide warranties for programs in a software
product line. We make steps toward this extended goal by showing how features can
integrate program verification and program design. A feature encapsulates program
fragments that implement the feature’s functionality, as well as theorem fragments that
prove the correctness of the feature’s behavior. Composing features yields both com-
plete programs and their theorems. Our use of Jbook as a case study illustrates the fea-
sibility of our approach.

Another contribution of this paper is the reinforcement that features offer a funda-
mental way to modularize programs. Disjoint communities (ASM and FOP) have inde-
pendently recognized the utility of features to define complex programs in an incremen-
tal manner. We used the ASM Jbook case study to illustrate the power of features and
to add theorems to the growing set of representations that are feature-refinable.

Although our work is preliminary, it provides us with new insights on feature-based
verification. The next steps are to (a) evaluate the practicality of refining theorems, (b)
certify assembled theorems by proof-checkers, and (c) see if certification can scale to
all programs in a product line by exploiting recent advances in SPL verification. Fur-
ther, the similarity of refinements of different program representations reinforces the
possibility that general tools can be developed for refining all program representations,
rather than developing unique tools to accomplish the same goals for different represen-
tations [Batory 2004].
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Appendix I:  Basics of FOP

A feature is an increment in program functionality. A software product line is a family
of programs where no two programs have the same combination of features. Every pro-
gram in a product line has multiple representations (e.g., source, documentation). When
a feature is added to a program, any or all of the program’s representations may change.
Below we informally sketch the first two generations of FOP, GenVoca and AHEAD,
which have been used to build product-lines in many applications areas (e.g. [Batory
1992][Batory 2004]). 

GenVoca. A GenVoca model of an SPL represents base programs as values (0-ary
functions):

f // base program with feature f
h // base program with feature h

Features are unary functions:

i x // adds feature i to program x
j x // adds feature j to program x

where the operator  denotes function composition.
The design of a program is a named expression:

p1 = j f // p1 has features j and f
p2 = j h // p2 has features j and h
p3 = i j f // p3 has features i,j,f
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The set of programs that can be defined by a GenVoca model is its product line. Ex-
pression optimization is program design optimization, and expression evaluation is pro-
gram synthesis [Batory 2004][Batory 2005]. 

AHEAD. AHEAD generalizes GenVoca by revealing the internal structure of val-
ues and unary functions as tuples and modifications to tuples. Every program has mul-
tiple representations, such as source, documentation, bytecode, and makefiles. A Gen-
Voca value is a tuple of representations of a program. For example, in a product line of
parsers, a base parser f is defined by its grammar gf, Java source sf, and documentation
df. Program f’s tuple is [gf,sf,df]. 

A GenVoca unary function maps a tuple of program representations to a tuple of ex-
tended representations using deltas. Suppose feature j extends a grammar by gj (new
rules and tokens are added), extends source code by sj (new classes and members are
added and existing methods are modified), and extends documentation by dj. The tu-
ple of deltas for feature j is [ gj, sj, dj], which we call a delta tuple.

The representations of a program are computed by tuple composition. The represen-
tations for parser p1, which is produced by composing features j and f, are:

p1  = j f ; GenVoca expression
= [ gj, sj, dj] [gf,sf,df] ; substitution
= [ gj gf, sj sf, dj df] ; composition

That is, the grammar of p1 is the base grammar composed with its extension
( gj gf), the source of p1 is the base source composed with its extension ( sj sf), and
so on. 

Representations can have sub-representations, recursively. Every sub-representa-
tion can be modeled as a tuple, and can be transformed by delta tuples. In general, Gen-
Voca values are nested tuples and functions are nested delta tuples, where the  operator
recursively composes nested tuples. This is the essence of AHEAD [Batory 2004].

Appendix II:  Basics of ASMs

Abstract State Machines provide a way to mathematically define the intuitive under-
standing of pseudo-code, extending Finite State Machines by “instructions” which op-
erate on arbitrary structures. 

Machine Concept. A (basic) ASM is a set of transition rules of form

If Condition then Updates

where the guard Condition is a first-order expression, denoting typically an event
that has happened and/or a state of affairs that holds currently, and Updates is a set of
array variable assignments (also called function updates) f(exp1,...,expn):=exp with
arbitrary expressions expi, exp. In each step of such an ASM, all its transitions that can
be fired (read: whose Condition is true in the current state) are executed simultane-
ously, changing as indicated by the Updates some array variable values (and only
those), thus producing the next state (if the updates are consistent). 

Also quantified rules of the following form are allowed, whose meaning, supporting
synchronous parallelism and choice, should be obvious:

Forall x with Cond(x) do rule(x)
Choose x with Cond(x) do rule(x)
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The level of abstraction of an ASM (read: the structure upon which the machine
rules operate) is determined by the functions that compose the expressions. These func-
tions can be static or dynamic, the dynamic ones can be defined explicitly (so-called de-
rived functions) or by the environment (so-called monitored functions) or by updates of
the machine itself (so-called controlled functions), or they can be shared by the machine
and (other agents in) its environment. 

When dealing with multi-threaded distributed computations the notion of basic
ASMs and the single computation steps performed by them does not change; what
changes is the notion of runs. It is extended from runs where all the steps are ordered to
asynchronous (formally: partial order) runs.

Refinement Concept. When refining an ASM, both its state (read: data structures)
and its rules (read: computation steps) can be refined in combination. When relating ab-
stract and refined runs, typically for stating and proving correctness, completeness and
similar properties for the refinement, one has the freedom to define five features: a) the
data structure refinement one wants to introduce, b) appropriate pairs of corresponding
abstract and refined states of interest one wants to relate, c) segments of abstract and
refined computation steps leading from one pair of corresponding states of interest to
another one, d) sets of abstract and refined locations of interest one wants to compare,
e) the equivalence properties one wants to establish. 

For more detailed explanations we refer the reader to the (introductory chapter of
the) ASM book [Börger and Stärk 2003].

Appendix III:  Replacement Refinements

There is an additional refinement possibility in AHEAD: calls to SUPER.m() may be
conditional. Consider the following refinement pattern:

void m() {before; if (cond) SUPER.m(); after;} (6)

which is a blend of parallel addition and conservative extension. A special case of (6)
that arises infrequently is when cond is always false (i.e., the original method is never
called). This refinement is called replacement. The simplest known counter-example
deals with element deletion in data structures. The element removal operation is:

void remove() { … remove current element … } 

When the feature of logical deletion is added to a data structure, elements are simply
flagged deleted and are never removed. The logical deletion refinement of remove() is:

void remove() {set delete flag of element;
 if (false) {… remove current element …}

}

which is a replacement as the original method is not called. The logical deletion feature
is not semantically equivalent to the original remove() method, though from an abstract
viewpoint, by defining deletion to be equivalent with setting the deletion flag, an equiv-
alence relation can be established between the two features.
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Appendix IV:  Complex Theorem Refinement

A feature can refine a theorem (statement and/or proof), namely by adding (Add) new
and refining (Ref) existing invariants (Inv) and proof cases (Prf). We present an exam-
ple that illustrates all of these possibilities.

Recall that an abruption is is an interruption in flow control. Consider an abruption
that is not an exception, say due to a return statement (which is similar to the remaining
cases of a break or continue statement). If it occurs within a try block of a try-catch-
finally statement and the corresponding target statement contains some try-catch-
finally statement, then the Java semantics requires that all finally blocks between
the return statement and its target have to be executed in innermost order before re-
turning. To verify that this is correctly realized by the appropriately refined compiler
(Fig.12.3 p164, which refines Fig.10.3 p153 and Fig.9.4 p144 in [Stärk 2001], feature
StmE introduces a new invariant (fin) which states the correctness condition for return
addresses from finally code that has to be executed when an abruption is encountered.

(fin) is a new condition for the newly introduced exceptions and try-catch-fi-
nally statements and thus is added to the list of invariants (Add-Inv). This triggers also
a new proof part requiring new cases (Add-Prf), which are added to the existing proof
(Jbook cases #76-80 for finally statements p199-201).

But the new invariant also refines the invariant that had already been imposed by the
previously introduced features on abruptions that are not exceptions. In fact (fin) con-
tains a refinement of the invariant for return statements (Ref-Inv) expressing that the
correctness of the return address is preserved during the corresponding run segments
for the finally code in the two interpreters executing the return statement. This triggers
also a refinement of the proof cases (Ref-Prf) for return statements to guarantee that
(fin) holds, namely adding the (fin)-related part to the original cases #48 (p191), #52
(top of p193), #53 (p193). Note that this refinement can be viewed as a conservative ex-
tension of the case of a return statement without finally code, because in the latter
case the invariant (fin) is void.

Finally, an existing proof case is refined (Ref-Prf), which is discussed in section 5.4.

Appendix V:  Two ASM Refinement Examples

We give two examples for non-trivial ASM refinements which illustrate the combined
refinement of data structures and computation steps.

The first example is a case of conservative refinement. Let trustfulVM be the com-
plete JVM interpreter, as defined in Part II of Jbook. Let verifyVM be the machine that
verifies single bytecode methods, using appropriate data structures, as defined in Part
III of Jbook. Then trustfulVM is conservatively refined by including a bytecode veri-
fier which contains verifyVM as main component, as defined by Figure 8 For the refined
machine, called diligentVM, one can prove the soundness and completeness of byte-
code verification, combining appropriately the existing soundness proofs for the com-
ponents trustfulVM and verifyVM, see Ch.17 of Jbook for the details.

The second example is a refinement of the execJava interpreter for single Java
threads (defined in Ch. 1-6 of Jbook) to a machine that interpretes the concurrent exe-
cution of multiple Java threads, as defined in Ch.7 of Jbook. What the extension essen-

2081Batory D., Boerger E.: Modularizing Theorems ...



tially does is to add a scheduler that at each of its steps chooses a thread for execution
by the execJava component, following its specific and independently definable and an-
alyzable selection criteria. In  it has been shown for the C# analogue of this construction
how to prove properties of interest for such a thread handling model, using the ASM
interpreter for C# defined in [Börger 2005].

Figure 8: Adding the ByteCode Verifier
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