
Structure-Based Crawling in the Hidden Web

Marcio Vidal, Altigran S. da Silva
Edleno S. de Moura, João M.B. Cavalcanti

(Federal University of Amazonas, Manaus, Brazil
{mvidal,alti,edleno,john}@dcc.ufam.edu.br)

Abstract: The number of applications that need to crawl the Web to gather data is growing at
an ever increasing pace. In some cases, the criterion to determine what pages must be included
in a collection is based on theirs contents; in others, it would be wiser to use a structure-based
criterion. In this article, we present a proposal to build structure-based crawlers that just requires
a few examples of the pages to be crawled and an entry point to the target web site. Our crawlers
can deal with form-based web sites. Contrarily to other proposals, ours does not require a sample
database to fill in the forms, and does not require the user to interact heavily. Our experiments
prove that our precision is 100% in seventeen real-world web sites, with both static and dynamic
content, and that our recall is 95% in the eleven static web sites examined.
Key Words: Web crawling, hidden web, tree-edit distance, web wrappers
Category: H.3.3, H.3.4, H.3.5, H.3.7

1 Introduction

Crawling web sites to gather collections of pages that contain valuable data is more and
more frequent. Common criteria to determine which pages must be included in a col-
lection are usually content-based. There are situations, however, in which the structure
of the web pages provides better criteria. For instance, consider an application to collect
information about films from the Yahoo! web site. Defining a set of content-related fea-
tures that encompasses film pages only would be very difficult. For instance, if we train
a traditional content-based classifier, it is likely that pages related to actors, theatres or
studios would be classified positively. Furthermore, film pages whose content-related
features are not related to the training pages, e.g., pages of a different genre, might be
classified negatively. For instance, the film page at top of Figure 1 shares content-related
features with the artist page in the middle, but it does not share any content-related fea-
tures with the page at the bottom, despite the fact that they both are film pages. In these
cases, using content-related features is likely to fail.

Content-based crawling has been paid much attention, but structure-based crawl-
ing techniques have been overlooked. Nevertheless, this is an interesting choice in
many cases, e.g., providing web pages to wrappers, which usually rely on structural
patterns [Arasu and Garcia-Molina, 2003] [Reis et al., 2004] [Zhai and Liu, 2005]
[Chang et al., 2006] [Turmo et al., 2006], structure-aware querying and searching of
web pages [Ahnizeret et al., 2004] [Davulcu et al., 1999], public digital libraries on the
Web [Calado et al., 2002] [Qin et al., 2004], or web usage mining [Cooley, 200]. This
motivated us to work on a web crawling technique that is based on the structure of the

Journal of Universal Computer Science, vol. 14, no. 11 (2008), 1857-1876
submitted: 30/9/07, accepted: 25/1/08, appeared: 1/6/08 © J.UCS

Figure 1: Sample pages from the Yahoo! web site.

web pages. Our technique requires an entry point to a web site, and a handful sample
pages to be fetched by the user. (More often than not, only one page is enough.) For in-
stance, assume that the entry point is www.yahoo.com, and that the sample page is the
one at the top of Figure 1; our technique first traverses the web site looking for pages
that are similar to the sample page from a structural point of view, which includes the
page at the bottom; then, all of the paths that lead to target pages are used to generate
a navigation pattern [Lage et al., 2004], which is composed of links patterns a crawler
has to follow to reach the target pages; finally, a crawler based on these patterns is gen-
erated automatically. In many cases the crawling process must be performed on pages
that are generated on-demand from back-end databases, i.e., pages from the Hidden
Web, and they require the crawler to fill in search forms. Our proposal learns the argu-
ments to fill in a form and includes this information in the navigation patterns so that
they are available to the final crawler. Addressing the Hidden Web is important since

1858 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

the number of organisations that provide valuable data behind a search form is larger
than ever, e.g., department stores, newspapers, research institutions, or media and en-
tertainment companies. A key aspect of our technique is that it can be more precise than
other techniques based on content criteria, which seldom achieve high precision levels.
Our experiments prove that the structure-based approach tends to be extremely precise;
we have performed our experiments on 17 real-world sites, and our crawlers were able
to collect almost all the pages that matched the samples, including pages added long
after the crawler was generated; we achieved 100% precision and at least 95% recall in
the case of static pages.

The rest of the paper is organised as follows: Section 2 reports on some related
research initiatives; in Section 3, we present basic concepts related to structural simi-
larity between web pages; in Section 4, we focus on the details of the structure-based
crawling approach and the techniques used for generating structure-based web crawlers;
Section 5 reports on how we address dynamic web sites; Section 6 reports on the ex-
periments we performed; finally, Section 7 concludes the paper and highlight future
research directions.

2 Related Work

We use the structure of the DOM trees that underlie every web page to create clus-
ters of pages that are similar from a structural point of view. This topic was addressed
in [Crescenzi et al., 2005] and [Reis et al., 2004], where the goal was to organise a col-
lection of web pages to feed wrappers. Our problem is related, but different since
we need to collect web pages that are similar to a few sample pages provided by
the user. Our proposal also differs regarding how structural similarity is calculated.
In [Crescenzi et al., 2005] the authors rely on some layout properties of links since
they use the set of paths between the root of a page and the anchor HTML tags to
characterise the structure. Pages that share the same paths are considered structurally
similar. Instead, our technique relies on a variation of a tree-edit distance algorithm
called RTDM [Reis et al., 2004]. The use of features other than page contents has been
explored in [Aggarwal et al., 2001] [Liu et al., 2004], for instance, where features such
as the tokens in the URLs and the linking structure of the sites have been examined;
however, none of them allows for the internal structure of the web pages.

Our technique relies on using navigation patterns [Lage et al., 2004], which were
introduced to guide the navigation of a crawler to fetch pages of interest for data extrac-
tion tasks. Our contribution is that the set of navigation patterns is not set beforehand,
and they are not hand-crafted, but calculated automatically.

It is also worth mentioning that many current techniques do not allow for dynamic
web sites, i.e., sites in which the pages are generated on demand. Some techniques
allow the crawler to reach such pages, but require heavy user intervention to fill in
search forms [Golgher et al., 2000] [Raghavan and Garcia-Molina, 2001]. In other ap-
proaches, a database of common search terms must be created beforehand to help fill in

1859Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Figure 2: Restrict top-down example.

the forms [Bergmark et al., 2002] [Liu et al., 2004] [Lage et al., 2004]; other propos-
als fetch pieces of text from the pages that contain forms and use them to fill them
in [Hedley et al., 2004].

3 Structural Similarity

Note that the structure of a web page can be described by a DOM tree, which is a
labelled ordered rooted tree. (A rooted tree is a tree whose root vertex is fixed; ordered
rooted trees are rooted trees in which the relative order of the children is fixed for each
vertex; labelled ordered rooted trees have a label attached to each of their vertices.) In
our proposal, structural similarity between two pages is based on the tree-edit distance
between their corresponding DOM trees [Selkow, 1977]. Intuitively, the edit distance
between trees T1 and T2 is the cost of the minimal set of operations required to transform
T1 into T2, i.e., the similarity between T1 and T2 is inverse to their edit distance. We
take three operations into account, namely: vertex removal, vertex insertion, and vertex
replacement, each with a cost. We use a restricted top-down version of the tree-edit
distance problem which restricts the removal and insertion operations to take place in
the leaves of the trees only [Chawavate, 1999], which is particularly useful to deal with
DOM trees. This version is referred to as RTDM [Reis et al., 2004].

Let T1 and T2 be to trees with n1 and n2 vertices, respectively. To determine the
restricted top-down tree-edit distance between them, the RTDM algorithm first finds all
identical sub-trees that occur at the same level, which is performed in O(n 1) time using
a graph of equivalence classes. Then, an adaptation of Yang’s algorithm [Yang, 1991]
is applied to obtain the minimal restricted top-down mapping between the trees, which
is performed in O(n1n2) worst-case time. (In practice, it performs better since only a
restricted set of operations can be applied). The results of the algorithm are illustrated
in Figure 2, where dashed lines denote node mappings.

4 Generating Crawlers

We use the Yahoo! films web site to illustrate our ideas. This site provides information
about films, actors, directors, producers, and so on, but we are interested in film pages

1860 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Figure 3: Overall structure of the Yahoo! film web site.

only. The overall structure of this site is sketched in Figure 3. In this section, we focus
on the static part of the site, i.e., pages with prefix 0/2/3 on the left of the figure. The
dynamic part, i.e., pages with prefix 0/2/4, will be addressed in Section 5.

Assume that the pages with a label of the form 0/2/3/i (1 ≤ i ≤ k) are similar
to the page labelled 0/2/3/0, which has links to film pages. We call the pages that are
referenced to by these links film hub pages. Furthermore, assume that the pages with
labels of the form 0/2/3/i/j (1 ≤ i ≤ K, 1 ≤ j ≤ Ki) are similar to page 0/2/3/0/0,
i.e., they all are film pages. A crawler for this site would start at page 0; it then would

1861Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Id Regular Expression Applied to

E0 http://www.yahoo.com Entry Point

E1 http://films.yahoo.com/ First level

E2 http://films.yahoo.com/rss Second level

E3 http://rss.ent.yahoo.com/films/ˆ[a-zA-Z]+$.xml Films Hub Page

E4 http://films.yahoo.com/shop?d=hv&cf=info&id=ˆd+$&intl=us Film Page

Table 1: Example of a simple navigation pattern using Perl-like syntax.

have access to all of the film hub pages and would be able to fetch all of the film pages.
Notice that new film pages can be added without a notice, which implies that the film
hub pages may be updated to include new links to new film pages. Obviously, these new
links and pages need to be fetched in future crawls. Our technique requires two input
parameters: a URL that serves as an entry point to the site to be crawled, and another
URL to a sample web page that is representative enough of the pages to be fetched. In
our example, page 0 is the entry point, and page 0/2/3/0/0 serves as the sample page.

Generating a crawler comprises two phases: site mapping and navigation pattern
generation. In the former, all of paths starting from the entry point are traversed looking
for target pages. A page is considered to be a target if it is structurally similar to the
given sample page. Notice that, the process is limited to a web site, i.e., no path to
external sites is processed. Every path from the entry point that leads to a target page
is recorded, i.e., the output of the site mapping phase is a minimum spanning tree in
which all leaves are target pages, and it is referred to as the target pages map. In the
latter phase, the goal is to create a generic representation of the target pages map that
consists of a list of regular expressions that represent the links in a page that the crawler
has to follow to reach the target pages. This generic representation is called a navigation
pattern. Note that several paths to the target pages may exist; in such cases, we choose
the one that potentially leads to the largest number of target pages.

Table 1 shows a real-world navigation pattern for the Yahoo! web site: E 0 corre-
sponds to the entry page, E1 corresponds to the first level, E2 matches the links to film
RSS feeds, E3 matches film hub pages only, and E4 is applied to each RSS feed hub
page and matches every link that leads to a film page. Notice that no user intervention
other than providing the entry point and the sample page is required.

4.1 Site Mapping

The goal of this phase is to generate a target pages map, for which we simply crawl
the web site starting from the entry point using a breadth-first traversal procedure. (The
breadth-first traversal is the best choice for mapping the target web site, since this strat-
egy provides a better coverage of the sites traversed due to the fact that more relevant

1862 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Algorithm 1 Procedure used for the site mapping phase.
1: function MAPPING(e, p) � e is an entry point to a site, and p is a sample page
2: Q← a queue with the links extracted from e
3: X ← ∅
4: while Q �= ∅ ∧ ¬STOPPING do
5: x← dequeue(Q)
6: if RTDMSIM(p, x) then
7: X ← X ∪ {x}
8: else
9: Q← Q ∪ {links extracted from x}

10: end if
11: end while
12: Let T ← an empty target pages map
13: for all x ∈ X do
14: Let C = 〈e, v1, . . . , vk, x〉 be the path from e to x
15: Add the nodes and links in C to T
16: end for
17: return T � Return the target pages map in T
18: end function

pages are usually found in upper levels of web sites [Najork and Wiener, 2001].) Below,
we provide a formal definition of a target pages map:

Definition 1. Let S = 〈P, L〉 be a web site, where P is a set of pages and L is a set of
pairs 〈x, y〉 such that a link exists from page x to page y; let e, p ∈ S be the entry point
and a sample page supplied by the user, respectively. We define a target pages map as a
tree T that is a subset of the minimum spanning tree of S in which e is the root and the
set of leaves is consists of the set of nodes pi that are structurally similar to p.

A formal definition of our procedure is presented in Algorithm 1. In line 2, all links
in e are queued in Q; next, the crawling process iterates over this queue in the loop in
lines 4–11. This loop ends when the queue is empty or another STOPPING condition
is met, e.g., the maximum number of pages to be fetched or the maximum number
of levels to be explored are reached. In our current implementation, the STOPPING

condition is set by means of user-defined parameters, which are fairly simple to be
estimated. Notice that these parameters are used only for the site mapping phase and are
not required once the resulting crawler is generated. In lines 5 and 6, the first element
in the queue is compared with p using the RTDMSIM function. This comparison, is
based on the structure of these pages, i.e., we verify how similar their underlying DOM
trees are using the RTDM algorithm, cf. Section 3. If the current page x and the sample
page p are considered structurally similar, we add x to a set X of target pages in line 7;
otherwise, the links in x are enqueued in line 9, and the crawling process goes on. At
the end of each iteration, set X has all target pages found. In the loop in lines 13–16,
every node and link in the paths from the entry point to target pages in X is be added
to the target pages map T. To avoid links to be visited more than once, the dequeue
operation simply marks the link on the top as visited, instead of actually removing it

1863Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Algorithm 2 Procedure used for grouping nodes.
1: function GROUP(r) � r is a node
2: Let G = {G1, G2, . . . , Gk}, k ≤ |C(r)| such that � μ(x) denotes the URL of node x

G1 ∪ . . . ∪ Gk = C(r), � C(x) denotes the set of children of node x
Gi ∩ Gj = ∅, and
c� ∈ Gi iff cm ∈ Gi ∧ URLSIM(μ(c�), μ(cm))

3: for all Gi = {ci1 . . . ciki
} do

4: π ← URLPATTERN(μ(ci1) . . . μ(ciki
))

5: ni ← 〈π, ci1 ∪ . . . ∪ ciki
〉

6: Remove all cij ∈ Gi as a child of r
7: Add ni as a child of r
8: Call GROUP(ni)
9: end for

10: end function

from the queue, and moves the top pointer to the next link, if any; furthermore, a link is
not queued if it is already on the queue, even if it is marked as visited.

4.2 Navigation Pattern Generation

The goal of this phase is to build a navigation pattern from the target pages map gen-
erated in the mapping phase. Such pattern consists of a list of regular expressions that
represent the links in a page the crawler has to follow to reach the target pages. In order
to generate it, we have to generalise the URLs of the pages in the paths of the target
pages map using regular expressions, and select the best paths that lead to the desired
target pages amongst all of the paths from the entry point.

The first step consists of grouping the nodes in the target pages map tree that rep-
resent pages whose URLs are considered similar, cf. Section 4.3. The procedure for
performing this grouping is presented in Algorithm 2. It is applied to the root of the tar-
get pages map tree initially, and it is then applied recursively to its children nodes. For
a given node r, line 4 defines a partitioning on the set of children of r, where each par-
tition Gi only contains nodes that correspond to pages with similar URLs. In lines 6–9,
a new node ni is created from the nodes in Gi as follows: the URL in ni corresponds to
a regular expression π that generalises the set of URL from the nodes in G i according
to function URLPATTERN, cf. Section 4.3. The set of children of n i is composed of the
children of the nodes in Gi. Then, the nodes in Gi are removed from the set of children
of r in line 8, and replaced by node ni in line 9. In summary, we replace all nodes corre-
sponding to pages with similar URLs by a single node that represents them. In line 10,
the GROUP procedure is called recursively to deal with the new node n i.

The execution of the GROUP procedure is illustrated in Figure 4, in which the left
side sketches a target pages map T, and the right side illustrates the tree T ′ returned
by this procedure. (Nodes with the same fill pattern correspond to pages with similar
URLs.) Each node represented by a capital letter in T ′, except for the root r, groups all

1864 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

(a) (b)

Figure 4: Sample execution of the GROUP procedure.

nodes from T represented by non capital letters. Notice that nodes labelled A, C and D
actually represent single nodes, a1, c and d, respectively.

This procedure may lead to a navigation pattern in which there is more than one
path that leads to the target pages. This is depicted in Figure 4, in which three paths are
found: r to F, r to G, and r to H. From these paths, we choose the one that leads to the
greatest number of target pages. In our example, path r to H satisfies this heuristic. This
notion is formalised in the following definition:

Definition 2. Let S be a web site, and let T be a target pages map for S obtained when
e, p ∈ S are the entry point and the sample page supplied by the user, respectively. A
navigation pattern is the path in the tree T ′ obtained after applying the GROUP pro-
cedure on T, which begins with e and ends at the node of T ′ that corresponds to the
greatest number of target pages in T.

4.3 Evaluating Similarity between URLs

We consider that a URL is a string formed by several substrings separated by a “/”
that are referred to as levels. Let u = u1/u2/ . . . /un (n ≥ 1) and v = v1/v2/ . . . /vm

(m ≥ 1) be two URLs; they are considered similar if: they have the same number of
levels, i.e., n = m; the first level in u and v are equal, i.e., u1 = v1; and there are at
most K levels in the same position in u and v (except for the first one) that are not equal,
i.e., if δ = {〈ui, vi〉 | ui �= vi}, then |δ| ≤ K. By performing preliminary experiments
with several actual URLs, we have found that K = 2 results in an accurate and safe
similarity evaluation.

4.4 Generating URL Patterns

We now report on the procedure used to generate a pattern that represents a set of URLs.
Recall that the URLs are assumed to be similar and that they differ at most in K levels.
Our strategy for generating URL patterns consists in building regular expressions that

1865Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Figure 5: A sample regex tree.

match the strings occurring at levels in which the URLs differ from each other. This
requires to introduce the notion of a regex tree.

Definition 3. A regex tree R is a tree in which each node n is associated with a regular
expression en over an alphabet Σ that denotes a language Ln, such that for each internal
node a in R whose children are {c1, . . . , ck}, it holds that Lc1 ∪ . . . ∪ Lck = La and
Lc1 ∩ . . . ∩ Lck = ∅.

Figure 5 illustrates the kind of regex trees we use, which are adapted from the so-
called delimiters tree in [Reis et al., 2002]. According to Definition 3, the regex tree is
built so that each node defines a language that is disjoint with the languages in its sibling
nodes. In particular, each leaf node defines a language that is disjoint with the languages
in its sibling leaf nodes. Thus, when applied to the tokens in a URL, a given token will
match exactly one leaf node. This property allows to use the leaf nodes in a regex tree to
tokenise a URL or a URL level. Furthermore, each internal node defines a language that
is formed by the union of the languages of its children nodes. This property allows to
find a single regular expression that matches every token that occurs in a set of URLs at
the same position. Let lt and ls be two leaf nodes matched by two distinct tokens t and s;
the node a that is the deepest common ancestor of l t and ls defines a regular expression
that matches both t and s.

The complete procedure for generating a URL pattern is described in Algorithm 3.
To explain it, we use the set of sample URLs in Figure 6. The URLPATTERN procedure
iterates in the loop of lines 4–15 through the levels in the URLs that are different from
each other. As illustrated in Figure 6(a), only levels 6 and 7 will be processed in this
loop. We focus on level 7, since it is more illustrative of the procedure. This level is
detailed in Figure 6(b). According to line 5 there is no common prefix between all u i[7],
but there is common suffix .html between them. In the loop of lines 6–8, we tokenise
each infix fi[7] and generate the tokens in Figure 6(b). Next, in the loop in lines 9–13,
each set of tokens in the same position of the infixes is given as an argument for calling
the TOKENREGEX procedure. This means that in Figure 6(b), each column labelled
f̂i[7][j] is passed as an argument to TOKENREGEX. The result of each call is shown in

1866 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Algorithm 3 Procedure for generating a URL pattern.
1: function URLPATTERN(U) � U = {u1, u2, . . . , un} is a set of URLs
2: uπ ← u1

3: Let ui[k] be the k−th level of URL ui

4: for all k such that {〈u1[k], . . . , un[k]〉 | ui[k] �= uj[k] for some 1 ≤ i, j ≤ n do
5: Let ui[k] = p • fi[k] • s where p(s) is the common prefix (suffix) of every ui[k]
6: for i← 1 to n do � Symbol “•” is denotes string catenation
7: 〈fi[k][1], fi[k][2], . . . , fi[k][mi,k]〉 ← TOKENISE(fi[k])
8: end for
9: for j← 1 to max{m1,k, m2,k, . . . , mn,k} do

10: x← TOKENREGEX(f̂1[k][j], f̂2[k][j], . . . , f̂n[k][j])
11: where f̂i[k][j] = f1[k][j] if j ≤ mk,i or tf1[k][j] = “” otherwise
12: π ← π • x
13: end for
14: uπ [k]← s • π • p
15: end for
16: return uπ � Returns a URL pattern
17: end function
18:
19: function TOKENISE(s) � s is a string
20: R← an empty regex tree
21: i← 0
22: while s �= “” do
23: i← i + 1
24: si ← the leftmost largest substring from s that matches a leaf in R
25: s← s− si

26: end while
27: return {s1, s2, . . . , sn} � Returns a set of tokens
28: end function
29:
30: function TOKENREGEX(T) � T = {t1, t2, . . . , tn} is a set of tokens
31: if ti = tj for all ti, tj �= “” then
32: pT ← ti

33: else
34: Let η(ti) be the leaf node that matches token ti �= “”
35: a← the deepest an ancestor of all η(ti)
36: pT ← ea

37: end if
38: if there is some ti = “” then
39: pT ← pt • “∗”
40: end if
41: return pT � pT is a regex that matches the tokens in T
42: end function

the line labelled with π. For column f̂i[7][1], all of the tokens match the same leaf in
the regex tree in Figure 5. Thus, the regular expression in this node is used. For column
f̂i[7][2], since the same token appears in every line, it is simply considered as the regular
expression. In the case of the tokens in column f̂i[7][5], notice that tokens 8 and D match
distinct leafs in the regex tree and the deepest common ancestor corresponds to the node
whose regular expression is \w. Thus, this regular expression is used.

1867Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

ui[1] ui[2] ui[3] ui[4] ui[5] ui[6] ui[7]

u1 informatik.uni-trier.de ∼ley db indices a-tree c Chaves:Silvio 8=.html

u2 informatik.uni-trier.de ∼ley db indices a-tree u Ugher:Mangabeira D=.html

u3 informatik.uni-trier.de ∼ley db indices a-tree m Mendes:Sergio.html

Π informatik.uni-trier.de ∼ley db indices a-tree [a-Z]+ [a-Z]+:[a-Z]+ *\w*.html

(a)

f̂i[7][1] f̂i[7][2] f̂i[7][3] f̂i[7][4] f̂i[7][5] s

u1[7] Chaves : Silvio 8 .html

u2[7] Ugher : Mangabeira D .html

u3[7] Mendes : Sergio “” “” .html

π [a − Z]+ : [a − Z]+ * \w* .html

(b)

Figure 6: Example of a simple navigation pattern using Perl-like syntax.

Figure 7: Sample HTML form.

5 Dealing with Dynamic Web sites

Currently, the number of pages in the hidden web is enormous, which argues for a good
crawler to be able to fetch those pages. If a page with a form is found during the mapping
phase, it is necessary to check if it can generate new target pages, in which case, it might
well be included in the target pages map along with the required parameters to fill it in.
In this section, we report on how we deal with dynamic sites.

5.1 Characteristics of HTML Forms

For our purposes, a form can be viewed as the HTML code contained within tags
〈FORM〉 and 〈/FORM〉. For instance, Figure 7 sketches a form that collects pages
about films; it has a menu between tags 〈SELECT name=’select’〉 and 〈/SELECT〉,
a text box encoded in tag 〈INPUT type=’text’ name=’for’ size=’14’〉, and the infor-
mation required to submit the form in tag 〈FORM action=’/find.cgi’ method=’get’
NAME=’QSFORM’〉.

We model a form F as a set {(t1, v1), (t2, v2), . . . , (tk, vk)} in which each pair (ti, vi)
corresponds to a field fi with type ti and (possibly) value vi. The type of a field denotes if

1868 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

it is a selection list, a text box, a check box, or a radio button, for instance. (If t i indicates
a text box, then vi = text.) For instance, the form in Figure 7 is modelled as follows:
F = {〈select, all〉, 〈select, title〉, 〈select, director〉, 〈select, cast〉, 〈for, text〉}.

Regarding the submission method, it can be either GET or POST. The main dif-
ference between them is the way the browser encodes the data sent to the Web server.
Whereas using GET the submission is through the URL, using POST encodes the data
into the HTTP header. With the GET method, queries are generated as a concatenation
of the following: the URL of the page that has the form; the value defined for the at-
tribute action; the special character ?; t1, that is, the name of the first input type of the
form; the symbol “=”; and the value v1; if there are other fields in the form, they are
encoded and appended to the URL using symbol “&” as a separator. In tag 〈FORM〉 in
Figure 7, the value of the attribute action is find.cgi. If the URL of the page with this
form is http://www.myhtmlform.com, the following are then samples of the URLs to
submit this form using the GET method: http://www.myhtmlform.com/find.cgi?select=
all&for=mytext, http://www.myhtmlform.com/find.cgi?select=title&for=mytext.

5.2 Automatic Web Form Filling

Our technique first verifies if the form requires parameters like e-mail addresses, user
names or passwords, or if it relies on Java script, in which case we consider the form
impossible to handle. If it can be handled, we extract the fields and create the set of
pairs 〈type, value〉; for instance, in Figure 7, type select has four values, namely: all,
title, director, and cast. For forms that do not have text fields, all possible combina-
tions of types and values are used to create a query vector. However, if the form has one
text field at least, our technique uses search terms that are sampled from the sample and
the form pages themselves, and it then fills in the form and gathers the corresponding
answer pages. We focus on the less frequent terms, and then we extract the labels of the
text fields and generate a set P′ of pairs 〈label, value〉. We have adapted the well-know
heuristics for label extraction used in [Fontes and Silva, 2004], [Lage et al., 2004] and
[Zhang et al., 2004]. Contrarily to [Chakrabarti et al., 2002], [Bergmark et al., 2002],
[Lage et al., 2004] and [Liu et al., 2004], we do not use a predefined database to fill in
text fields; instead, we consider only the 10 less frequent terms in the sample page and
in the form page. This value is based on the results of our extensive tuning experiments.

For instance, consider the form in Figure 7 and the set of the 10 less frequent
terms occurring in the given sample page and in the form page, namely: Harry, Pot-
ter, Joanne, Kathleen, Rowling, philosopher, quidditch, Voldemort, Hogwarts,
and Azkaban. The following queries would be generated amongst the possible queries
for this form: select=all&for=Harry, select=all&for=Potter, select=all&for=Joanne,
and select=title&for=Harry. Once we have all the possible combinations generated for
each form field, we proceed to the submission phase for collecting the answer pages.

1869Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

5.3 Submission Plan and Crawling Answers Pages

Consider a set of queries, constructed as discussed in the previous section. Initially, all
queries are submitted and the corresponding answer pages are collected. An analysis of
the answer pages is necessary to detect useless pages, e.g., pages with error messages
or empty pages. We consider useful the 30% largest pages only (size in bytes), which is
based on our extensive tuning experiments. There are several cases regarding the answer
pages thus collected:

Target Pages: If the page is structurally similar to the sample page, it is stored, and the
form page being processed is added to the target pages map.

Form pages: To deal with new forms, the procedure described in Section 5.2 is applied
recursively.

Pages with links: This is the most common case. A naive approach to deal with these
pages is to follow each link in the usual way, cf. Section 4; however, our experi-
ments prove that the number of links is usually very large, which argues for group-
ing them to reduce the total number of links to explore. (Each group has URLs that
are similar to each other, cf. Section 4.2.) After that, we follow each link in that
group until we find a target page, and add it to the target pages map.

Error pages: If a query is invalid, the result is usually an error page. Proposals such
as [Doorenbos et al., 199] and [Barbosa and Freire, 2004] classify a page as an er-
ror if it matches pre-defined error templates, e.g., pages with words such as ER-
ROR, Internal Server Error, or 400 Bad Request. In our approach, we simply
assume that 30% of the largest pages are originated from valid queries. For this
reason, we do not have a specific procedure for cases in which the pages returned
are error pages. In exceptional cases, if a form always returns error pages, the pro-
cessing may continue following any of the links found in these pages. If the list of
links extracted from these pages is empty and no target page can be reached, then
the form that generated these queries is discarded.

5.4 Incorporating Forms into a Target Pages Map

After the queries are submitted and the corresponding answer pages are analysed, the
result is a bunch of queries that lead to target pages from a given form, e.g., http://www.
myhtmlform.com/find.cgi?select=all&for=Harry,or http://www.myhtmlform.com/find.
cgi?select=title&for=Potter. In turn, these pages may lead to additional forms that can
be incorporated into the target pages map if they are processed successfully. This is
accomplished by means of a generic URL that encodes the structure of the queries and
the parameters they require for execution, e.g., http://www.myhtmlform.com/find.cgi?
select=*&for=*. This URL will be incorporated into the navigation pattern and ulti-
mately used by the crawler, as if it was an ordinary node in the target pages map. Notice

1870 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Site Static Sites Description Target Page

www.ejazz.com.br Jazz styles, artists, instruments, and so on. Artists

informatik.uni-trier.de/∼ley/ VLDB conferences at DBLP VLDB Conferences

www.olympic.org International Olympic Committee Olympic Heroes

www1.folha.uol.com.br/folha/turism Travel Site News

www1.folha.uol.com.br/folha/money Economics Site News

www.dot.kde.org KDE Software Releases Package Releases

www.amazon.com Amazon Essential CDs section CD

www.wallstreetandtech.com Wall Street Technology News

www.cnn.com/weather Wether in the World Wether Forecast

sports.yahoo.com Yahoo! sports section European soccer league

www.nasa.gov/home NASA web site News

Site Dynamic Sites Description Target Page

www.bestwebbuys.com On-line products comparison Harry Potter Books

www.chapters.indigo.ca On-line store “Right Now” CDs

www.dvdempire.com On-line DVD store “Final Fantasy” DVDs

www.gracenote.com On-line CD store CDs by “Eminem Show”

www.talkingbooks.com On-line Book store Books on travel

www.zevelekakis.gr Medical On-line Bookstore Books on “Heart Disease”

Table 2: List of web sites used in the experiments.

that it is impossible to define, prior to executing the crawler, which parameters must be
used for the forms it is expected to find. It is the user who must provide the appropriate
arguments for these parameters during the execution of the crawler.

6 Experiments

In our experiments, we used 11 real-world web sites that are well-known to have large
collections of data-rich pages. Regarding dynamic sites, we used 6 web sites from the
TEL-8 collection [Chang et al., 2003]. These sites have been used in references such
as [Zhang et al., 2004] and [Davulcu et al., 1999]. Table 2 provides a little information
on these sites.

The experiments were carried out on a Linux-based PC (distribution Gentoo Kernel
2.4), with 1GB RAM, 2.8GHz processor and 80GB HD, and the prototype was imple-
mented in Java. Our experiments consisted of first generating a navigation pattern using
a sample page and an entry point, then generating a crawler to process the web site, and,
finally, collecting the target pages according to the procedures described earlier.

6.1 Results regarding Static Web Sites

Table 3 shows the results of our experiments on 11 static web sites. Column Inspection
reports on the number of pages a person found in each site using a standard browser;

1871Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Target Pages Traversed Links

Site Inspection Automatic Mapping Crawling

E-jazz 149 149 (100%) 2213 199

VLDB 30 30 (100%) 70 32

OLYMPIC 335 328 (98%) 395 379

Travelling 301 301 (100%) 348 335

Money 470 468 (99%) 550 528

KDE 30 30 (100%) 120 31

CDs 416 398 (96%) 440 426

Wall Street 261 253 (97%) 1579 283

CNN 51 49 (96%) 485 65

Yahoo! Sports 38 37 (97%) 1307 45

NASA 339 325 (95%) 687 389

Table 3: Results of the experiments with static sites.

Target Pages Links New Target

Site Run Inspection Automatic Traversed Pages

Trip 1 314 308 (98%) 335 7

2 303 291 (96%) 310 11

Money 1 486 478 (98%) 497 84

2 482 476 (99%) 497 80

KDE 1 29 29 (100%) 31 14

2 29 29 (100%) 34 19

CDs 1 409 394 (96%) 492 4

2 418 412 (98%) 487 18

WallStreet 1 267 257 (96%) 271 17

2 272 267 (98%) 273 25

NASA 1 334 320 (95%) 339 12

2 337 323(95%) 341 13

Table 4: Results after new target pages are created.

contrarily, column Automatic reports on the number of pages our crawler found auto-
matically. Note that we reach 100% precision in all of the cases, which implies that
we do not collect any inadequate page. Column Traversed Links reports on the number
of links covered to generate the crawler during the mapping and the crawling phases,
respectively. Notice that the figures in the latter column are smaller than the corre-
sponding figures in the former column; this happens because the only links that match

1872 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

Site Parameter Value

www.bestwebbuys.com searchfor title

title Harry Potter

www.chapters.indigo.ca section music

keyword Right Now

www.dvdempire.com search type title

media DVD

search string Final Fantasy

www.gracenote.com q artist Eminem Show

www.talkingbooks.com search by title

search for Health

www.zevelekakis.gr title Heart Disease

Table 5: Parameters and values used with dynamic web sites.

Automatic Crawling

Site Inspection Training Production

www.bestwebbuys.com 334 240 330 (98%)

www.chapters.indigo.ca 13 140 13 (100%)

www.dvdempire.com 14 80 14 (100%)

www.gracenote.com 20 15 20 (100%)

www.talkingbooks.com 23 80 23 (100%)

www.zevelekakis.gr 282 15 280 (99%)

Table 6: Results of the experiments with dynamic sites.

the regular expressions in the navigation pattern are followed. In our experiments, we
executed the crawlers twice. In some cases, we detected that new pages were added to
the corresponding site since the first run, cf. Table 4. Notice that the figures in columns
Target Pages and Links Traversed are similar in both Tables 3 and 4.

6.2 Results regarding Dynamic Web Sites

We conducted our experiments on six dynamic web sites, cf. Figure 6, and the form
fields were filled in using the specification in Table 5. Again, column Inspection in
Table 6 correspond to the number of pages a person found using a standard browser.
The figures in column Training correspond to the number of pages collected from the
forms in each site. Notice that, the answer pages were always target pages in the six
sites under examination. The results are presented in column Production. Notice that
we achieved 100% precision, i.e., no page other than target pages was collected; the

1873Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

percentage in this column corresponds to the ratio of pages collected by a person with
regard to the number pages collected automatically. This percentage can be interpreted
as the level of recall reached by the crawlers in dynamic web sites. Notice that the usual
notion of recall does not make sense for dynamic web sites because the number of pages
to collect depends on the value of the arguments used to fill in the forms.

7 Conclusion and Future Work

In this article we have proposed and evaluated a new approach for generating structure-
based web crawlers automatically. This new approach uses the structure of web pages
instead of their content to determine which pages should be collected. Our method also
deals with dynamic web sites, since our crawlers are able to fill in a web form with
minimal user intervention. Our experiments indicate that the new structure-based ap-
proach can be extremely effective, since it results in high precision and recall levels.
Furthermore, our proposal requires only a few examples to learn how to identify the set
of target pages; in reality, we have used just one example in our experiments, whereas it
is usually necessary to provide a few dozen using other well-known content-based tech-
niques, cf. [Chakrabarti et al., 2002] [Liu et al., 2004] [Qin et al., 2004]. The structure-
based approach is complementary to the traditional content-based approach, in the sense
that it is more suited for sites that are both data intensive and regular. This means that
our new method is the best option for a restricted set of crawling tasks.

In future, we wish to extend our method so that the resulting crawlers are able to
retrieve pages from several distinct web sites. For this, we plan to combine the content-
based and the structure-based approaches, i.e., a hybrid strategy. The idea is to produce
methods that are more flexible than the structure-based method proposed here, while
still achieving high precision and recall levels.

Acknowledgments

This work was partially supported by projects GERINDO (CNPq/CT-INFO 552.087/02-
5), SIRIAA (CNPq/CT-Amazônia 55.3126/05-9), 5S-VQ (CNPq/CT-INFO 55.1013/
05-2), UOL through its “UOL Bolsa Pesquisa” program (Proc. Num. 0503301456),
and grants by CNPq to A.S. da Silva (308528/07-7), E.S. de Moura (302209/07-7),
J.M.B. Cavalcanti (303738/06-5), and a grant by FAPEAM to M. Vidal.

References

[Aggarwal et al., 2001] Aggarwal, C., Al-Garawi, F., and Yu, P. (2001). On the design of a
learning crawler for topical resource discover. Transactions on Information System, 19(3):286–
309.

[Ahnizeret et al., 2004] Ahnizeret, K., Fernandes, D., Cavalcanti, J., de Moura, E., and da Silva,
A. (2004). Information retrieval aware web site modelling and generation. In Proceedings of
the 23rd Conference on Conceptual Modeling, pages 402–419.

1874 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

[Arasu and Garcia-Molina, 2003] Arasu, A. and Garcia-Molina, H. (2003). Extracting struc-
tured data from web pages. In Proceedings of the 19th Conference on Management of Data,
pages 337–348.

[Barbosa and Freire, 2004] Barbosa, L. and Freire, J. (2004). Siphoning hidden-web data
through a keyword-based interface. In Anais do XIX Simpósio Brasileiro de Banco de Dados,
pages 309–321.

[Bergmark et al., 2002] Bergmark, D., Lagoze, C., and Sbityakov, A. (2002). Focused crawls,
tunneling, and digital libraries. In Proceedings of the 6th European Conference on Digital
Libraries, pages 91–106.

[Calado et al., 2002] Calado, P., da Silva, A., Ribeiro-Neto, B., Laender, A., Lage, J., Reis, D.,
Roberto, P., Vieira, M., Gonçalves, M., and Fox, E. (2002). Web-DL, an experience in building
digital libraries from the Web. In Proceedings of the 11th Conference on Information and
Knowledge Management, pages 675–677.

[Chakrabarti et al., 2002] Chakrabarti, S., Punera, K., and Subramanyam, M. (2002). Acceler-
ated focused crawling through online relevance feedback. In Proceedings of the 11th World
Wide Web Conference, pages 148–159.

[Chang et al., 2006] Chang, C.-H., Kayed, M., Girgis, M., and Shaalan, K. (2006). A survey of
web information extraction systems. IEEE Transactions on Knowledge and Data Engineering,
18(10):1411–1428.

[Chang et al., 2003] Chang, K.-C., He, B., Li, C., and Zhang, Z. (2003). Tel-8 query interface.
Available at http://metaquerier.cs.uiuc.edu/repository/datasets/tel-8/.

[Chawavate, 1999] Chawavate, S. (1999). Comparing hierarchical data in external memory. In
Proceedings of the 25th Conference on Very Large Data Bases, pages 90–101.

[Cooley, 200] Cooley, R. (200). The use of web structure and content to identify subjectively
interesting web usage patterns. Transactions on Internet Technology, 3(2):93–116.

[Crescenzi et al., 2005] Crescenzi, V., Merialdo, P., and Missier, P. (2005). Clustering web pages
based on their structure. Data an Knowledge Engineering, 54(3):277–393.

[Davulcu et al., 1999] Davulcu, H., Freire, J., Kifer, M., and Ramakrishnan, I. (1999). A layered
architecture for querying dynamic web content. In Proceedings of the 25th Conference on
Management of Data, pages 491–502.

[Doorenbos et al., 199] Doorenbos, R., Ezioti, O., and Weld, D. (199). A scalable comparison-
shopping agent for the World Wide Web. In Proceedings of the 1st Conference on Autonomous
Agents, pages 39–48.

[Fontes and Silva, 2004] Fontes, A. and Silva, F. (2004). SmartCrawl: a new strategy for the
exploration of the hidden Web. In Proceedings of the 6th Workshop on Web Information and
Data Management, pages 9–15.

[Golgher et al., 2000] Golgher, P., Laender, A., da Silva, A., and Ribeiro-Neto, B. (2000). AS-
ByE: uma ferramenta baseada em exemplos para especificação de agentes para coleta de docu-
mentos web. In Anais do XV Simpósio Brasileiro de Banco de Dados, pages 217–231.

[Hedley et al., 2004] Hedley, Y., Younas, M., James, A., and Sanderson, M. (2004). A two-phase
sampling technique for information extraction from hidden-web database. In Proceedings of
the 6th Workshop on Web Information and Data Management, pages 1–8.

[Lage et al., 2004] Lage, J., da Silva, A., Golgher, P., and Laender, A. (2004). Automatic gen-
eration of agents for collecting hidden web pages for data extraction. Data an Knowledge
Engineering, 49(2):177–196.

[Liu et al., 2004] Liu, H., Milios, E., and Janssen, J. (2004). Probabilistic models for focused
web crawling. In Proceedings of the 6th Workshop on Web Information and Data Management,
pages 16–22.

[Najork and Wiener, 2001] Najork, M. and Wiener, J. (2001). Breadth-first crawling yields high-
quality pages. In Proceedings of the 10th World Wide Web Conference, pages 114–118.

[Qin et al., 2004] Qin, J., Zhou, Y., and Chau, M. (2004). Building domain-specific web col-
lections for scientific digital libraries: a meta-search enhanced focused crawling method. In
Proceedings of the 4th Conference on Digital Libraries, pages 135–141.

[Raghavan and Garcia-Molina, 2001] Raghavan, S. and Garcia-Molina, H. (2001). Crawling the
hidden Web. In Proceedings of the 27th Conference on Very Large Data Bases, pages 129–138.

1875Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

[Reis et al., 2002] Reis, D., Araújo, R., da Silva, A., and Ribeiro-Neto, B. (2002). A framework
for generating attribute extractors for web data source. In Proceedings of the 9th Symposium
on String Processing and Information Retrieval, pages 210–226.

[Reis et al., 2004] Reis, D., Golgher, P., da Silva, A., and Laender, A. (2004). Automatic web
news extraction using tree edit distance. In Proceedings of the 13th World Wide Web Confer-
ence, pages 502–511.

[Selkow, 1977] Selkow, S. (1977). The tree-to-tree editing problem. Information Processing
Letters, 6(6):184–186.

[Turmo et al., 2006] Turmo, J., Ageno, A., and Català, N. (2006). Adaptive information extrac-
tion. ACM Computing Surveys, 38(2):#4.

[Yang, 1991] Yang, W. (1991). Identifying syntactic differences between two programs. Soft-
ware: Practice and Experience, 21(7):739–755.

[Zhai and Liu, 2005] Zhai, Y. and Liu, B. (2005). Web data extraction based on partial tree
alignment. In Proceedings of the 14th World Wide Web Conference, pages 76–85.

[Zhang et al., 2004] Zhang, Z., He, B., and Chang, K.-C. (2004). Understanding web query
interfaces: Best-effort parsing with hidden syntax. In Proceedings of the 30th Conference on
Management of Data, pages 107–118.

1876 Vidal M., da Silva A.S., de Moura E.S., Cavalcanti J.M.B.: Structure ...

