
A Workflow Language for Web Automation

Paula Montoto, Alberto Pan, Juan Raposo, José Losada
Fernando Bellas, and Vı́ctor Carneiro
(University of A Coruña, Coruña, Spain

{pmontoto,apan,jrs,jlosada,fbellas,viccar}@udc.es)

Abstract: Most today’s web sources do not provide suitable interfaces for software programs to
interact with them. Many researchers have proposed highly effective techniques to address this
problem. Nevertheless, ad-hoc solutions are still frequent in real-world web automation applica-
tions. Arguably, one of the reasons for this situation is that most proposals have focused on query
wrappers, which transform a web source into a special kind of database in which some queries
can be executed using a query form and return resultsets that are composed of structured data
records. Although the query wrapper model is often useful, it is not appropriate for applications
that make decisions according to the data retrieved or processes that use forms that can be mod-
elled as insert/update/delete operations. This article proposes a new language for defining web
automation processes that is based on a wide range of real-world web automation tasks that are
being used by corporations from different business areas.
Key Words: web wrappers, data mining, web automation, web information systems
Category: D.1.7, H.2.5, H.2.8, H.3.3

1 Introduction

Most today’s web sources were designed to be easily used by humans, but they do not
provide suitable interfaces so that software programs can interact with them, which can
be considered a hindrance for the Web to reach its full potential. Recently, a growing
interest has arisen in automating the interactions with a web site by using so-called web
automation applications. Most previous research proposals focus on wrappers, which
abstract the complexities involved in automating a task on a web source and provide a
programmatic interface. A wrapper must address several difficult tasks, the most impor-
tant being: executing automated navigation sequences through web sites and obtaining
structured data records from the resulting HTML pages.

Most current proposals focus on the second task only, cf. [Doorenbos et al., 1997]
[Kushmerick, 2000] [Baumgartner et al., 2001] [Knoblock et al., 2000]
[Arasu and Garcia-Molina, 2003] [Zhai and Liu, 2006] [Zhai and Liu, 2007]
[Álvarez et al., 2008] ([Chang et al., 2006] provides a survey). The first task has been
paid much less attention, although it has been addressed in a number of proposals, e.g.,
[Anupam et al., 2000] or [Pan et al., 2002]. These approaches use different techniques,
but a common feature is that they allow to create wrappers quickly without requiring
any programming skills since they rely on a variety of graphical tools and intelligent
learning techniques. They further assume a particular underlying model to which we
refer to as the “query wrapper model”. Query wrappers transform a web source into a

Journal of Universal Computer Science, vol. 14, no. 11 (2008), 1838-1856
submitted: 30/9/07, accepted: 25/1/08, appeared: 1/6/08 © J.UCS

Application

Wrapper automatically fills
a form and submits the query

2

The application executes a query
q = TITLE contains XML

Wrapper extracts structured query
results and returns them to application1

3

Title: XML in a Nutshell,
Third Edition

Author: Elliotte Rusty Harold,
W. Scott Means

Format: Paperback
Date: September 2004
Price: $26.37

Title: Beginning XML,
Second Edition

Author: David Hunter, et al
Format: Paperback
Date: March 2003
Price: $27.19

Extracted Query Results

Figure 1: Query Wrapper.

special kind of database in which queries can be executed using a form and produce a
resultset that is composed of structured data records. The query wrapper model typi-
cally assumes a pre-defined list of execution steps: first, a navigation sequence is used
to fill in a query form automatically; then, intelligent data extraction techniques are used
to gather the results from the target HTML pages. Figure 1 sketches the execution flow
of a wrapper able to query an Internet bookshop. Query wrappers may also allow for
paginated result listings in which detail pages need to be fetched to extract further infor-
mation about each record. Web automation applications are a reality today, and they are
being used in business areas such as competitive intelligence, comparative shopping,
and B2B integration. Nevertheless, in spite of the many published research proposals,
ad-hoc solutions are still frequent in real-world applications. One of the main reasons is
that, despite the query wrapper model being useful, it does not fit some important web
automation applications. For instance, many tasks involve making decisions according
the data retrieved so that navigation can continue; other tasks use web forms that can be
easily modelled as insert/update/delete operations; an example of web automation task
that does not fit the query model is extracting book data from an Internet bookshop and,
according to the price and availability of each book, deciding to push either the “buy
new” button, the “buy used” button, or none of them.

In this article, we propose a graphical language for creating wrappers. Note that our
wrappers automate the interaction with a single web site for a single purpose. For tasks
that require to combine and/or orchestrate several web sources, our approach enables the
wrappers to participate as basic components in usual data and process integration archi-

1839Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

B2B Web
Automation

Batch Data
Extraction

Meta-search Technology and
Business Watch

Account
Aggregation

Total

Applications Number 7 6 2 7 2 24

Wrappers Number 45 45 38 145 118 391

Query Wrappers 53% 80% 100% 13% 95% 57%

Bifurcations in non-
query wrappers

92% 67% - 26% 0% 54%

Wrappers with User-
Defined Error Man-
agement

37% 0% 0% 0% 0% 4%

User-Defined Error
Management in Non-
Query Wrappers

68% 0% - 0% 0% 11%

Wrappers with Asyn-
chronous Operations

13% 0% 0% 0% 0% 2%

Asynchronous Oper-
ations in Non-Query
Wrappers

24% 0% - 0% 0% 4%

Table 1: Results of the experimental study.

tectures such as data mediators [Wiederhold, 1992] or Business Process Management
systems. Another key goal for our language is to be simple to use: wrappers should be
created graphically, and the language should not include features that are not useful in
practice but introduce unnecessary complexity. Programming-skills should not be nec-
essary, at least in the vast majority of cases. As a source of inspiration, we have studied
orchestration technologies such as BPMN [OMG, 2003] or WS-BPEL [Oasis, 2003],
and patterns [Aalst et al., 2003], which are also concerned with specifying complex ex-
ecution logic in a simple, graphical way. To provide our proposal with firm roots, we
have studied a wide range of real-world web automation tasks, which are being used by
corporations from different business areas.

The rest of the article is structured as follows. Section 2 reports on our motivation;
Section 3 describes our proposal, which is a graphical design language inspired by clas-
sic workflow systems, but adapted to the particular needs of web automation; Section 4
describes an example to illustrate our language; Section 5 describes related work in this
area, and Section 6 concludes the article.

2 Motivation

To guide the development of our language, we have studied a total of 391 wrappers used
in 24 real-world web automation applications that were developed during the last three
years by a European company. We have chosen applications in quite different business
areas to increase the generality of our conclusions: B2B web automation, i.e., automat-
ing repetitive operations with other organisations through a web interface, large volume
batch data extraction, Internet meta-search applications, technology and business watch,

1840 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

i.e., monitoring web information that is relevant for business and/or research purposes,
such as competitors prices or new patents, and web account aggregation.

We organised the study into two stages: first, we studied existing workflow technolo-
gies for BPM, e.g., [Aalst et al., 2003] [OMG, 2003] [Oasis, 2003], to identify a set of
features relevant to web automation applications, and we also analysed if the wrappers
fitted the query wrapper model; we then searched for common structural patterns and
analysed if our language should allow for defining and reusing them.

2.1 Workflow Requirements

The features that we found useful are: conditional bifurcations, error management, par-
allelism, asynchronous events and subprocesses; we also analysed if the wrappers fitted
the query wrapper model. Below, we report on our conclusions, cf. Table 1:

1. Only 57% of the wrappers fit the query wrapper model. The percentage varies
with the application area: 100% of the wrappers in meta-search applications fit
this model, whereas the percentage is 53% in B2B applications. Our conclusion is
that this model is too simple for many real-world web automation applications.

2. Roughly 54% of the wrappers that do not fit the query wrapper model require bi-
furcations. Therefore, our proposal should support them.

3. Most of the wrappers require or could benefit from the following error management
policies: i) indicating which action to perform when an error happens, e.g., either
ignore it or halt the process and return the error to the caller; ii) executing retries,
e.g., when executing web navigation sequences. In addition, 37% of the wrappers in
the B2B application area required or could benefit from user-defined, application-
specific exceptions. Therefore, our proposal should support these features.

4. We observed that parallelism is very useful in two cases: i) when a wrapper needs
to process a list of records extracted from a web page, and the processing of each
record involves executing one or more navigation sequences, e.g. fetching a details
page; since navigation sequences can be slow, processing the records in parallel can
significantly improve performance; ii) we have also realised that some applications
execute the same query multiple times using different query parameters and then
merge the results; thus it seems useful for our language to support specifying the
parallel execution of multiple queries on the same web form. 84% of the wrappers
could benefit from either one or both of these kinds of parallelism, and no wrapper
required other types. Recall that, in our model, wrappers abstract the interactions
with a single source for a given task. More room for parallelism would undoubt-
edly arise if we considered web automation tasks involving the combination and/or
orchestration of several sources. Nevertheless, we follow the common approach in

1841Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

integration architectures of separating access and coordination layers. To coordi-
nate and/or integrate several sources, our approach enables the wrappers to partici-
pate as components in usual data and process integration architectures such as data
mediators [Wiederhold, 1992] or BPM systems. Therefore, we conclude that the
language should not include more general support for parallelism because it would
increase the complexity and its benefits would be unclear.

5. Regarding asynchronous operations, some web pages may change using AJAX
without reloading them. In such cases, it would be useful if the wrapper could
be notified of changes to a region asynchronously. Six of the wrappers we have
studied have to deal with these sources, and they resort to polling selected target
regions at regular intervals. The reason is that most automatic navigation systems
use browsers for navigating and hosting HTML pages, and it is difficult to identify
content-change events with current browser APIs. Since AJAX sources are gaining
importance, our proposal allows for polling.

6. Regarding subprocesses, we have found only six wrappers that actually use some
kind of subprocess. Furthermore, we have detected that the implementation and
maintenance of the most complex wrappers could be simplified by using subpro-
cesses. Therefore, we conclude that this feature is desirable for our proposal.

2.2 Structural Patterns

We have identified several structural patterns that occur in many wrappers with slight
variations. Building such wrappers might be eased by defining source-level reusable
templates to implement them, so that only the behaviour that is specific to a wrapper
must be configured. Since these patterns occur frequently and some of them are rela-
tively complex, supporting this feature might greatly simplify the design of complex
wrappers by non-programmers. In this section, we just briefly describe some common
structural patterns found in our study, cf. Section 3.4 for further details.

– Simple Pagination: This pattern refers to paginated result listings in which the
navigation sequence required to fetch the next chunk of results is always the same,
e.g., clicking the “Next” link.

– Multiple Sequence Pagination: This pattern is used to process a paginated result
listing in which the navigation sequence required to fetch the next chunk differs
from page to page, e.g., clicking on the “11–20” link to navigate to the second
chunk, on the “21–30” link to navigate to the third one, and so on. There are several
variations of this pattern on which we do not report for the sake of briefness.

– Detail: This pattern refers to executing a navigation sequence according to the data
records extracted, e.g., navigating to the details page. There are several variations
of this pattern, too.

1842 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

– Filter And Transform: This pattern receives a record and filters or transforms it
according to a pre-defined condition and transformation.

Regarding asynchronous sources, most automatic navigation systems rely on stan-
dard browsers, which makes it difficult to identify content-change events at the desired
granularity; thus polling at given intervals is the most common solution. We define the
following related structural patterns:

– Polling: Executes a task at a specified time interval until a condition is met.

– Monitor List: This allows to monitor changes to a list of records, e.g., the results
of a query or the articles in the home page of an Internet news service. This pattern
allows to define an action to perform when a new record is found, modified or
removed. Combined with the Polling pattern, it allows simulating asynchronous
operation since each type of change in the monitored list triggers an action.

3 Description of Our Language

In this section, we describe our language and motivate the main design choices using
the evidence gathered from the previous study.

3.1 Encapsulate Data Extraction and Web Navigation Tasks

Many research proposals have reported on a variety of techniques to automate web
navigation and data extraction, namely:

– In proposals such as [Anupam et al., 2000] or [Pan et al., 2002], web navigation
sequences are recorded by a plug-in that monitors the navigation actions performed
by a user. The sequence thus captured is then transformed into a script that can be
repeated by a web navigation component.

– As for data extraction, there are proposals in which the user needs to provide some
examples of the data to extract, cf. [Kushmerick, 2000] [Baumgartner et al., 2001]
[Pan et al., 2002] [Knoblock et al., 2000] [Zhai and Liu, 2007], but others can anal-
yse the pages without any user intervention, cf. [Arasu and Garcia-Molina, 2003]
[Crescenzi and Mecca, 2004] [Zhai and Liu, 2006] [Álvarez et al., 2008].

These techniques allow the most complex tasks in web automation to be performed
in a fast and easy way even by users with little or no programming skills. To pre-
serve these advantages, our proposal uses a high-level approach that encapsulates auto-
matic web navigation and data extraction functionalities into built-in activities to which
we refer to as SEQUENCE and EXTRACTOR, respectively. An instance of the SE-
QUENCE activity executes a navigation sequence configured by the user, and returns

1843Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

BasicActivity

Handler
Exception

- name
11

Variable
- name

Workflow

StructuredActivity

Activity
- name

0..*0..*

0..* +mandatory inputs0..*

0..1 +output0..1

0..*

+optional inputs

0..*

1..*1..*

Figure 2: Basic language structure.

the furthest web page reached. An instance of the EXTRACTOR activity gets a page as
input and outputs the list of structured data records found in that page. Our implementa-
tion uses an extension of the techniques proposed in [Pan et al., 2002] to implement the
SEQUENCE activity, and wrapper induction techniques to implement the EXTRAC-
TOR activity, but other methods might be used, as well.

3.2 Data Model

We refer to the data instances handled in a process flow as values, and we assume they
have a structured type [Abiteboul et al., 1995], which is defined as follows:

– Our language supports the usual atomic data types found in common programming
languages, e.g., string, int, long, double, float, date, boolean, binary, and url.
There is another type called page that encapsulates the information required to
fetch a web page, i.e., its URL, the cookies, and other session information.

– If t1, . . . , tn are types, we then can define a new type T 〈t1, t2, . . . , tn〉 called
record; t1, t2, . . . , tn are the fields or attributes of T . An instance of T is a tu-
ple of the form 〈v1, v2, . . . , vn〉, where each vi is an instance of ti. We call such
instances record values. Optionally, a record type may define a key, which is a set
of fields that identify the real-world entity that record represents uniquely.

– If t is a type, we then can define a new type T [t] called list. An instance of T [t] is
a sequence of elements [r1, r2, . . . , rm], each of which is of type t. We call such
elements list values.

3.3 Workflow Model

Figures 2–5 show a partial meta-model for our language. A workflow gets a set of
variables as input and returns a single variable as output, cf. Figure 2. The value of

1844 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

BasicActivity

SequenceExtractor Output Wait

ThrowCustomComponent RecordConstructor

FieldExpression
- fieldname : string

1..*1..*

Expression

11

ExpressionActivity

11

Figure 3: Basic activities.

StructuredActivity

Iterator
- maximumIter : long
- parallel : boolean

FormIterator
- maximumIter : long
- parallel : boolean

Loop
- condition

Repeat
- condition

Switch

Activity

1..*1..*{ordered}

1..*1..*{ordered} 1..*1..* {ordered}

1..*1..* {ordered}
Case

- condition

1..n1..n

1..*1..* {ordered}

Figure 4: Structured activities.

a variable is an instance of a data type. The input parameters can be mandatory or
optional. A workflow is composed of a set of ordered activities. Activities can be either
basic or structured, namely: basic activities perform the actions in a workflow, and
are described later, cf. Figure 3; structured activities include looping and bifurcations,
each of which can enclose one or more sequences of activities, cf. Figure 4. Note that
a workflow can be seen as a subclass of Structured Activity. Although not shown in
the diagram, some activities may impose constraints on the variables they use, e.g., an
EXTRACTOR requires an input of type page and returns a list value.

To handle errors, the language leverages the standard concept of exception, which
can be either pre-defined or user-defined, cf. Figure 5. Pre-defined exceptions represent
generic, typical runtime errors, e.g., HTTP errors, or timeouts, or errors found while
extracting data records, e.g., invalid record type. User-defined exceptions can be gener-
ated using the THROW activity. Each exception has a handler, that can either ignore,
throw the exception, or retry the faulty action several times.

Graphically, activities are represented as squared boxes. Typically, each activity has
one input port and one exit port, except bifurcations, which can have several exit ports.

1845Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

Handler
- retry : boolean
- numRetries : int
- timeBetweenRetries : long

Exception
- name

11

PreDefinedException UserDefinedException

RuntimeException

ConnectionException

HTTPException

RaiseHandler IgnoreHandler

InvalidRecordException

TimeoutException

Figure 5: Exceptions.

ACTIVITY1

END
ACTIVITY2

ACTIVITY2

ACTIVITY3
Atomic value

Record value

List value

Page value

ACTIVITY1

END
ACTIVITY2

ACTIVITY2

ACTIVITY3
Atomic value

Record value

List value

Page value

Figure 6: Sample workflow.

The activities used to represent loops are represented using two boxes that delimit the
beginning and the end of the loop. The activities in a workflow are executed sequentially
in the order established by their interconnections.

In our implementation, workflows are created by adding activities to a workspace
and interconnecting them. Each activity has a wizard to configure it. For instance, the
SEQUENCE activity is configured with the navigation sequence to execute, which may
be customised according to the inputs. For instance, Figure 6 shows a sample workflow
in which the arrows represent executions flows and the dotted lines represent data flows.

Below, we briefly describe each activity:

– SEQUENCE: These activities execute navigation sequences and return page val-
ues. Optionally, they can have the following input parameters: i) one page value
that is loaded before executing the sequence; ii) one or more atomic or record val-
ues that allow parameterising parts of the sequence, e.g., the data used to fill in a
form.

– EXTRACTOR: These activities get page values and output list values that account

1846 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

SURNAME SUBSTRING(PERSON.NAME,0,INDEXOF(PERSON.NAME, ‘,’))

NAME

AGE GETYEAR(SUBTRACT(NOW(),PERSON.BIRTHDAY))

COMPANY_NAME COMPANY.NAME

COMPANY_ADDRESS COMPANY.ADDRESS

HIRE_DATE HIRE_DATE

SUBSTRING(PERSON.NAME,0,INDEXOF(PERSON.NAME, ‘,’),
LENGTH(PERSON.NAME))

Figure 7: Example of a RECORD CONSTRUCTOR.

for the list of records in those pages.

– SWITCH: These activities implement conditional bifurcations. They get zero or
more values as input, and each outgoing arrow represents an execution path, each
of which has a Boolean condition that usually relies on the input parameters.

– EXPRESSION ACTIVITY: These activities get zero or more values as input and
output a single value that is computed using a custom expression. Our implemen-
tation supports common arithmetic operations, text processing and regular expres-
sions, date manipulation and textual similarity functions, list or record manipula-
tion.

– RECORD CONSTRUCTOR: These are the basic activities for creating, trans-
forming and combining data records. They get zero or more values as input and
output custom records. For each field, the user needs to provide an expression to
compute its value. For instance, Figure 7 depicts how a record constructor activity
can be configured to implement the following requirements: it gets three values as
input, namely: i) a register called PERSON that has fields NAME and BIRTH-
DAY, a register value named COMPANY with fields NAME and ADDRESS, and
a date value called HIRE DATE that refers to the date when the person was hired
by the company. The workflow combines these data into a single record value. Fur-
thermore, it needs to divide both the name and surname into two fields and compute
the age of each person. The user must then create fields in the output record, each
of which is defined using an expression: the expressions to compute most fields
are trivial, but computing the SURNAME, NAME and AGE fields requires to use
constants, functions and the input values.

– LOOP/REPEAT: These activities allow to create conditional loops. They receive
one or more values as inputs and have an exit condition.

1847Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

– ITERATOR: These activities allow to iterate on a list of records. They get a list
value as input and output a record in each iteration. Iterations can be executed in
parallel to improve the response time, and the user can control how many parallel
threads are executed to avoid excessive load.

– OUTPUT: These activities produce the output of a workflow, i.e., to return the
records of the result list one by one as they become available.

– CREATE LIST/ADD RECORD TO LIST: A CREATE LIST activity creates an
empty list value; an ADD RECORD TO LIST activity gets a list value and a
record value as input and outputs a list value in which the record has been inserted
at a user-defined position.

– WAIT: These activities cause a workflow to wait for a number of milliseconds,
which is useful for polling, for instance.

– THROW: These activities are used to throw user-defined exceptions.

– FORM ITERATOR: These activities allow to execute several queries using dif-
ferent combinations of query parameters. They are configured with the navigation
sequence required to fill in and execute a given form, and can get one or more val-
ues that can be used to generate the combinations of query parameters to fill the
form in. The values of the form fields like drop-down lists, radio or check buttons
are inspected by a wizard so that the user can easily specify appropriate combi-
nations. The iterations can be configured to run in parallel. For instance, consider
a workflow that gets a list of cities and a list of professions and searches for ev-
ery combination on an on-line job database. Assume that the query form has three
fields: city, category and salary range; the former two are text fields, whereas
the latter is a drop-down list with three options. Thus, if the input list of cities has
two values and the input list of categories has three values, the workflow needs to
execute 18 queries to gather the desired information.

– Input/Output Activities: These activities allow to read/write data from/to files and
databases.

– Custom Activities: It is useful to allow developers to create new activities by using
a standard programming language (we use Javascript). For instance, these activities
are useful to invoke external applications to perform custom tasks.

3.4 User-defined Reusable Components

Our proposal allows to create both binary- and source-level reusable components. The
former allow to export an existing workflow as an activity that can then be used to create
new workflows (we call such activities Workflow Activities). Thus, subprocesses that
implement a piece of functionality that is common to several wrappers can be reused by

1848 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

exporting them as Workflow Activities. Source components allow to define templates
to represent frequently used structural patterns. Templates are reused at the source level
because the implementation of structural patterns in each wrapper may require slight
variations that prevent reuse at the binary level.

When a workflow is created, users can drag and drop templates to the workspace and
compose them to create new wrappers. A template is created as if it were a workflow,
but there are some differences, namely:

– The user does not need to configure all of the activities in the template, since this
will be accomplished when the template is instantiated in a workflow.

– Templates return a single output variable and can require mandatory and optional
input parameters. Nevertheless, when a template is instantiated, users may add as
many new input parameters as necessary. Such parameters may be necessary as
input for the activities that are not configured when the template is created.

– Templates can include special activities called Interface Activities that are analo-
gous to methods in a Java interface since they specify a list of input parameters and
one output result, but they do not specify any implementation. When the user uses
the template to create a new workflow, he or she has to specify an implementation
for each interface activity; the implementation may range from a simple activity to
a complex workflow or event another instantiated template.

Now, we introduce some useful templates. Figure 8 shows a template called Sim-
ple Pagination that is intended to process a common kind of paginated result pages,
cf. Section 2.2. It gets a page value as input and returns a list of records. The activities
the user needs to configure are depicted in gray. The template iterates through the result
pages until there are no further chunks left, which is detected by the SWITCH activity.
The SEQUENCE activity called Go to Next Chunk navigates to the next chunk. The
EXTRACTOR activity called Extract Records gathers the list of data records in each
result page. The user also needs to provide an implementation for the interface activity
called Process Record, which is responsible for processing each record. Below, we
report on three sample implementations:

– The simplest one is to use an OUTPUT activity, which can be used as long as the
workflow just needs to return the records extracted.

– Another implementation might build on the Filter and Transform template in Fig-
ure 9. It first filters the records by using the SWITCH activity; then, it transforms
the records that pass the filter using a RECORD CONSTRUCTOR activity. By
default, the SWITCH activity in the template specifies a condition that evaluates
to true, and the RECORD CONSTRUCTOR activity simply outputs the record
it gets as input. The template also uses the Process Record interface activity to
allow further processing of the records.

1849Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

CREATE LIST

EXPRESSION
CONTINUE=TRUE

WHILE
CONTINUE

EXTRACTOR
Extract_Records

ITERATOR

ADD RECORD
TO LIST

END
ITERATOR

SWITCH
More_Chunks

EXPRESSION
CONTINUE=FALSE

SEQUENCE
Go_to_Next_Chunk

END
SWITCH

END
WHILE

PROCESS
RECORD

CREATE LIST

EXPRESSION
CONTINUE=TRUE

WHILE
CONTINUE

EXTRACTOR
Extract_Records

ITERATOR

ADD RECORD
TO LIST

END
ITERATOR

SWITCH
More_Chunks

EXPRESSION
CONTINUE=FALSE

SEQUENCE
Go_to_Next_Chunk

END
SWITCH

END
WHILE

PROCESS
RECORD

Figure 8: Template Simple Pagination.

– Our last implementation builds on the Detail template in Figure 9, which is useful
when the web automation task needs to fetch detail pages to complete the data
extracted for each item. The template starts by navigating to the detail page of each
record; then, it extracts the detail information and combines it with the input record
to form a single record. This is accomplished by a RECORD CONSTRUCTOR
activity. Although it is depicted in gray, it does not need to be configured if the
default behaviour is appropriate. This template uses the Process Record interface
activity again. If it is necessary to fetch several levels of detail pages, the Detail
template can be used recursively.

We have also defined two templates called Polling and Monitor List to deal with
sources that change asynchronously, cf. Section 2.2. We, however, do not report on
them due to space limitations.

4 An Example

This section illustrates some of the key features of our language by means of an example
that was inspired by a real-world B2B web automation application. The sample wrapper

1850 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

EXTRACTOR

SEQUENCE

ITERATOR

END
ITERATOR

PROCESS
RECORD

RECORD
CONSTRUCTOR

SWITCH

PROCESS
RECORD

END
SWITCH

RECORD
CONSTRUCTOR

EXTRACTOR

SEQUENCE

ITERATOR

END
ITERATOR

PROCESS
RECORD

RECORD
CONSTRUCTOR

EXTRACTOR

SEQUENCE

ITERATOR

END
ITERATOR

PROCESS
RECORD

RECORD
CONSTRUCTOR

SWITCH

PROCESS
RECORD

END
SWITCH

RECORD
CONSTRUCTOR

SWITCH

PROCESS
RECORD

END
SWITCH

RECORD
CONSTRUCTOR

Figure 9: Templates Filter and Transform and Detail.

WORKFLOW ACTIVITY
Get_Search_Page

TEMPLATE
Simple_Pagination

WORKFLOW ACTIVITY
Get_Search_Page

TEMPLATE
Simple_Pagination

Figure 10: High-level activities.

implements a process for the fictitious company AcmeInstall, which is a local company
that has established a partnership with an Internet Service Provider, or ISP for short.
When an ISP client in the local area of AcmeInstall reports a problem that requires a
technician to work at his or her place, the ISP subcontracts AcmeInstall. The ISP reports
new problems to AcmeInstall by means of a web portal.

The wrapper we need to design must log on to the ISP portal and gather the problems
with which a worker can deal according to where he or she is located and the type of
problems he or she can solve. The wrapper has the following inputs: the login and
password required to log on to the ISP portal, the zip code that indicates where each
worker is located, the maximum distance between the worker and the location where
the problem is to be solved, and the type of problems the worker is able to solve. To
simplify the process, we assume that each worker can only solve one type of problem.
To meet these requirements, the wrapper must perform the following actions:

1. Log on to the ISP web portal using the input login/password pair.

1851Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

SEQUENCE
Authentication_Search

END
SWITCH

SWITCH
Is_Search_Error

THROW
Throw_Search_Error

SEQUENCE
Authentication_Search

END
SWITCH

SWITCH
Is_Search_Error

THROW
Throw_Search_Error

Figure 11: Workflow activity Get Search Page.

2. Fill in a search form to gather all of the active problems that are located near the
input postal code. The problem listing is paginated, and the chunks are reached by
means of a typical “Next” link. The wrapper must deal here with eventual errors if
the input zip code is not within the geographical area assigned to AcmeInstall.

3. Extract the data about the active problems, which includes their types. If a problem
is of the appropriate type, it is then necessary to click on its “More info” link to
gather additional information, e.g., the distance to the input zip code. The data
returned must include a derived field to indicate what the deadline is, which must
be computed from the date when each problem is reported and the maximum delay
agreed between the corresponding client and the ISP.

4. Return all of the problems of the appropriate type that are within the maximum
input distance.

The process flow of this wrapper is defined as the execution of two high-level sub-
processes, cf. Figure 10: a workflow activity called Get Search Page, which is in
charge of logging on to the ISP portal, executing searches, and handling errors; then, the
flow executes an instantiation of the Simple Pagination template, which is in charge
of processing the search results. The Get Search Page subprocess gets a ZIPCODE,
a LOGIN and a PASSWORD as input. It first performs the authentication process and
the search using a SEQUENCE activity called Authentication Search, cf. Figure 11.
This activity fetches the page that contains the authentication form, fills in the LOGIN
and PASSWORD fields and submits the form. Then, it executes the search by fetching
the query form, filling in the ZIPCODE and submitting the form. Then, a SWITCH ac-
tivity called Is Search Error is used to check if the page contains “You have entered
an incorrect zip code”. If the message is found, the Throw Search Error activity
returns exception IncorrectZipcode to the caller and the process finishes.

1852 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

EXPRESSION CONTINUE = TRUE

WHILE CONTINUE

EXTRACTOR - Extract_Problems

ITERATOR

CREATE LIST

SWITCH - Is_Valid_Problem

RECORD CONST.

WORKFLOW ACTIVITY - Get_Search_Page

SEQUENCE -Goto_Detail

END WHILE

END SWITCH

EXPRESSION CONTINUE = FALSE SEQUENCE - Goto_Next_Chunk

SWITCH - Is_More_Chunks

END ITERATOR

ADD RECORD TO LIST

END SWITCH

END ITERATOR

END SWITCH

OUTPUT - Return_Result

RECORD CONST. - Result_Problem

SWITCH -Is_Nearby_Problem

RECORD CONST. - Detailed_Problem

ITERATOR

EXTRACTOR - Extract_Detail

EXPRESSION CONTINUE = TRUE

WHILE CONTINUE

EXTRACTOR - Extract_Problems

ITERATOR

CREATE LIST

SWITCH - Is_Valid_Problem

RECORD CONST.

WORKFLOW ACTIVITY - Get_Search_Page

SEQUENCE -Goto_Detail

END WHILE

END SWITCH

EXPRESSION CONTINUE = FALSE SEQUENCE - Goto_Next_Chunk

SWITCH - Is_More_Chunks

END ITERATOR

ADD RECORD TO LIST

END SWITCH

END ITERATOR

END SWITCH

OUTPUT - Return_Result

RECORD CONST. - Result_Problem

SWITCH -Is_Nearby_Problem

RECORD CONST. - Detailed_Problem

ITERATOR

EXTRACTOR - Extract_Detail

Figure 12: Complete wrapper using template Simple Pagination.

Now, we describe how to instantiate the Simple Pagination template to extract
and process problem records. The input page for the activity is the page output by the
Get Search Page subprocess. It returns a list of records of type problem. The process

1853Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

is as follows, cf. Figure 12:

1. To implement pagination, we use the Simple Pagination template, which is in-
stantiated by configuring the Go to Next Chunk activity so that it clicks on a link
labelled “Next” to fetch further chunks of records, and the Extract Records activ-
ity with the appropriate extraction rules.

2. The Process Record interface activity of Simple Pagination is implemented
by means of an instance of the Filter and Transform template to filter out the
problems according to their type. Note that it is not necessary to configure the
RECORD CONSTRUCTOR activity since its default settings are appropriate.

3. The Process Record interface activity in the Filter and Transform template used
in the previous step is implemented by means of the Detail template; we just
need to provide the sequence for navigating to the detail page of every record
and the extraction rules needed to gather the detail data. The configuration of the
RECORD CONSTRUCTOR activity must also be extended to add the additional
derived field DEADLINE DATE.

4. The Process Record interface activity in the Detail template used in the previ-
ous step is implemented by means of the Filter and Transform template to fil-
ter the problems and verify that they are within the maximum input distance. The
Process Record interface activity in the Filter and Transform template is im-
plemented by means of a simple OUTPUT activity.

5 Related Work

Web wrapper generation has been an active research field for years. Most previous pro-
posals have focused on web data extraction and automatic web navigation problems,
but the former is the one that has been paid more attention, cf. [Doorenbos et al., 1997]
[Kushmerick, 2000] [Baumgartner et al., 2001] [Knoblock et al., 2000]
[Arasu and Garcia-Molina, 2003] [Zhai and Liu, 2006] [Zhai and Liu, 2007]
[Álvarez et al., 2008] ([Chang et al., 2006] provides a survey). Techniques for automat-
ing the generation of web navigation sequences were proposed in [Anupam et al., 2000]
or [Pan et al., 2002]. None allows for specifying the logic of a complete wrapper, since
they just provide the foundations for EXTRACTOR and SEQUENCE activities.

The proposals that address the problem of building complete wrappers can be di-
vided into two categories:

– Proposals that provide specific-purpose languages and require programming skills,
cf. [Hammer et al., 1997] [Kistlera and Marais, 1998] or [Luque et al., 2002]. Our
proposal has several advantages with respect to them: i) it allows to specify the logic
of a wrapper in a graphical manner, which makes them easier to create and maintain

1854 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

since the user is not required to have any programming skills; ii) it leverages current
methods to navigate or extract information and encapsulates them, whereas the
previous approaches rely on the user to accomplish these tasks.

– Other complementary higher-level proposals, cf. [Sahuguet and Azavant, 1999]
[Doorenbos et al., 1997] [Baumgartner et al., 2001] or [Pan et al., 2002]. They do
not require any programming skills, but they assume the query wrapper model,
which we have proved not to be adequate in general, cf. Section 2.

Furthermore, there are a variety of industrial tools in this field. QL2 and New-
Bie, for instance, fall within the first category, cf. http://www.ql2.com and http://www.
newbielabs.com. Another interesting tool is Dapper, which allows to create and share
wrappers that fit the query wrapper model, cf. http://www.dapper.com. The Kapow
Robomaker tool also uses a workflow approach for web automation, cf. http://www.
openkapow.com; our approach, however, has a number of advantages: i) Robomaker
does not encapsulate complex data extraction tasks into activities; the extraction of a
list of data records requires an activity in the workflow to extract each record field,
and optional attributes require bifurcations in the workflow, which usually leads to
large workflows even for relatively simple tasks; furthermore, their model does not
support example-based wrapper induction techniques; ii) Robomaker does not allow
for reusable components; iii) Robomaker does not support user-defined exceptions.
Other relevant commercial tools include Fetch and Lixto, cf. http://www.fetch.com and
http://www.lixto.com; unfortunately, they are not available for download, and we could
not compare them with our proposal.

6 Conclusions

This article describes a new graphical language for designing web automation applica-
tions. Our approach models each task as a high-level workflow composed of activities
that leverage previous research proposals in automatic web navigation and web data
extraction techniques, but allow for complex logic-control features such as branching
or parallelism. Our language allows to create reusable components easily. Subprocesses
that are common to several wrappers can be easily created and reused through workflow
activities. Furthermore, we allow to create templates that implement frequent structural
patterns at source-level. Reusable components also help ease the development process,
since advanced users can create complex patterns reused by other users. Our language
has been designed from the study of real-world web automation tasks, to ensure that it
allows for the most important requirements.

References

[Aalst et al., 2003] Aalst, W., Hofstede, A., Kiepuszewski, B., and Barros, A. (2003). Workflow
patterns. Distributed and Parallel Databases, 14(1):5–51.

1855Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

[Abiteboul et al., 1995] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of
Databases. Addison Wesley.

[Álvarez et al., 2008] Álvarez, M., Pan, A., Raposo, J., Bellas, F., and Cacheda, F. (2008). Ex-
tracting lists of data records from semi-structured web pages. Data and Knowledge Engineer-
ing, 64(2):491–509.

[Anupam et al., 2000] Anupam, V., Freire, J., Kumar, B., and Lieuwen, D. F. (2000). Automat-
ing web navigation with the WebVCR. Computer Networks, 33(1–6):503–517.

[Arasu and Garcia-Molina, 2003] Arasu, A. and Garcia-Molina, H. (2003). Extracting struc-
tured data from web pages. In Proceedings of the ACM SIGMOD Conference on Management
of Data, pages 337–348.

[Baumgartner et al., 2001] Baumgartner, R., Flesca, S., and Gottlob, G. (2001). Declarative in-
formation extraction. In Proceedings of the 6th International Conference on Logic Program-
ming and Non-monotonic Reasoning, pages 21–41.

[Chang et al., 2006] Chang, C.-H., Kayed, M., Girgis, M., and Shaalan, K. (2006). A survey of
web information extraction systems. IEEE Transactions on Knowledge and Data Engineering,
18(10):1411–1428.

[Crescenzi and Mecca, 2004] Crescenzi, V. and Mecca, G. (2004). Automatic information ex-
traction from large web sites. Journal of the ACM, 51(5):731–779.

[Doorenbos et al., 1997] Doorenbos, R., Etzioni, O., and Weld, D. (1997). A scalable
comparison-shopping agent for the world-wide web. In Proceedings of the First International
Conference on Autonomous Agents, pages 39–48.

[Hammer et al., 1997] Hammer, J., Garcia-Molina, H., Nestorov, S., Yerneni, R., Breunig, M.,
and Vassalos, V. (1997). Template-based wrappers in the tsimmis system. In Proceedings of
the ACM SIGMOD Conference on Management of Data, pages 532–535.

[Kistlera and Marais, 1998] Kistlera, T. and Marais, H. (1998). WebL: A programming language
for the Web. In Proceedings of the 7th International World Wide Web Conference, pages 259–
270.

[Knoblock et al., 2000] Knoblock, C., Lerman, K., Minton, S., and Muslea, I. (2000). Accu-
rately and reliably extracting data from the web: A Machine Learning approach. IEEE Data
Engineering Bulletin, 23(4):33–41.

[Kushmerick, 2000] Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness.
Artificial Intelligence, 118(1–2):15–68.

[Luque et al., 2002] Luque, V., Sánchez, L., Delgado, C., Breuer, P., and Gonzalo, M. (2002).
Standards-based languages for programming web navigation assistants. In Proceedings of the
5th IEEE International Workshop on Networked Appliances, pages 70–75.

[Oasis, 2003] Oasis (2003). WS-BPEL: Web Services Business Process Execution Language.
Available at http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel.

[OMG, 2003] OMG (2003). BPMN: Business Process Modelling Notation. Available at http:
//www.bpmn.org.

[Pan et al., 2002] Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., and Viña, A. (2002). Semi auto-
matic wrapper-generation for commercial web sources. In Proceedings of IFIP WG8.1 Working
Conference on Engineering Information Systems in the Internet Context, pages 265–283.

[Sahuguet and Azavant, 1999] Sahuguet, A. and Azavant, F. (1999). Building light-weight
wrappers for legacy web data sources using W4F. In Proceedings of the 25th International
Conference on Very Large Databases, pages 738–741.

[Wiederhold, 1992] Wiederhold, G. (1992). Mediators in the architecture of future information
systems. Computer, 25(3):38–49.

[Zhai and Liu, 2006] Zhai, Y. and Liu, B. (2006). Structured data extraction from the web
based on partial tree alignment. IEEE Transactions on Knowledge and Data Engineering,
18(12):1614–1628.

[Zhai and Liu, 2007] Zhai, Y. and Liu, B. (2007). Extracting web data using instance-based
learning. In Proceedings of the 16th International World Wide Web Conference, pages 113–
132.

1856 Montoto P., Pan A., Raposo J., Losada J., Bellas F., Carneiro V.: A Workflow ...

