
Feature Selection for the Classification of Large
Document Collections

Janez Brank
(Jožef Stefan Institute, Ljubljana, Slovenia

janez.brank@ijs.si)

Dunja Mladenić
(Jožef Stefan Institute, Ljubljana, Slovenia

dunja.mladenic@ijs.si)

Marko Grobelnik
(Jožef Stefan Institute, Ljubljana, Slovenia

marko.grobelnik@ijs.si)

Nataša Milić-Frayling
(Microsoft Research, Cambridge, UK

natasamf@microsoft.com)

Abstract: Feature selection methods are often applied in the context of document
classification. They are particularly important for processing large data sets that may contain
millions of documents and are typically represented by a large number, possibly tens of
thousands of features. Processing large data sets thus raises the issue of computational
resources and we often have to find the right trade-off between the size of the feature set and
the number of training data that we can taken into account. Furthermore, depending on the
selected classification technique, different feature selection methods require different
optimization approaches, raising the issue of compatibility between the two. We demonstrate
an effective classifier training and feature selection method that is suitable for large data
collections. We explore feature selection based on the weights obtained from linear classifiers
themselves, trained on a subset of training documents. While most feature weighting schemes
score individual features independently from each other, the weights of linear classifiers
incorporate the relative importance of a feature for classification as observed for a given subset
of documents thus taking the feature dependence into account. We investigate how these
feature selection methods combine with various learning algorithms. Our experiments include a
comparative analysis of three learning algorithms: Naïve Bayes, Perceptron, and Support
Vector Machines (SVM) in combination with three feature weighting methods: Odds ratio,
Information Gain, and weights from the linear SVM and Perceptron. We show that by
regulating the size of the feature space (and thus the sparsity of the resulting vector representa-
tion of the documents) using an effective feature scoring, like linear SVM, we need only a half
or even a quarter of the computer memory to train a classifier of almost the same quality as the
one obtained from the complete data set. Feature selection using weights from the linear SVMs
yields a better classification performance than other feature weighting methods when combined
with the three learning algorithms. The results support the conjecture that it is the sophistication
of the feature weighting method rather than its compatibility with the learning algorithm that
improves the classification performance.

Journal of Universal Computer Science, vol. 14, no. 10 (2008), 1562-1596
submitted: 18/3/08, accepted: 25/5/08, appeared: 28/5/08 © J.UCS

Keywords: Feature Selection, Text Classification, Machine Learning, Support Vector
Machines, Information Retrieval, Knowledge Representation, Data Preprocessing
Categories: H.3.3, I.2.4, I.2.6, M.4

1 Introduction

In classification of text documents, feature selection is typically used to achieve two
objectives: (1) to reduce the size of the feature set used for data representation and
thus optimize the use of computing resources and (2) to remove noise from the data in
order to optimize the classification performance. A number of standard methods, such
as stop word removal or linguistic normalization using stemming, are routinely
applied and contribute to the reduction of the feature space, memory consumption,
and processing time. In addition, further reduction is achieved by removing less
‘relevant’ features. This is typically a two step process. First, the features are scored
in accordance with a weighting scheme believed to reflect the importance of the
feature for a given task and then a subset of features, typically the top N scored
features, are used for further processing.

A fundamental question that arises in practice is the relationship between the
scoring method for feature selection and the classification model that further uses
these features. Are there compatibility criteria that the two should satisfy in order to
yield optimal classification performance? In a study of the Naïve Bayes text classifier
[Mladenić, 99] the feature selection based on Odds ratio scores consistently lead to
statistically significant improvements in comparison to the classification performance
with the full feature set. This was attributed to the fact that the feature selection
method was ‘compatible’ with the classification algorithm used. Indeed, the statistics
used to compute Naïve Bayes and Odds ratio scores appear compatible in the sense
that the features with the higher Odds ratio weights are expected to contribute more to
the document scores assigned by the Naïve Bayes classifier. Thus, feature selection
based on Odds ratio weights is expected to be effective in tuning the performance of
Naïve Bayes. In order to gain more insight into this question, we explore whether for
linear classifiers, for example, we can use the classifier itself to score and select
features for classification [Mladenić, 04]. This approach has two advantages. First, it
investigates the ultimate ‘compatibility’ between the feature weighting and document
classification method since the selection and classification both use the same scoring.
Second, it introduces a class of feature weighting functions which effectively take into
account the whole set of features in the representation of documents and score the
features relative to their contribution to the classification task.

The second practical issue is processing of large datasets and optimizing
available computing resources. Most research of classification and feature selection
techniques has been evaluated on smaller data sets, such as Reuters-21578 comprising
25 MB of text documents. Nowadays, operational systems have to deal with both
large data sets and a wide range of computing platforms and devices, including those
with limited computing resources. At the same time the efficiency of many learning
algorithms relies upon the assumption that the data set is represented by a small
feature set. Namely, in the internal representation of documents they use the fact that
each document contains only a small subset of the whole vocabulary and thus the
corresponding vector representation of this document (containing e.g. term

1563Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

frequencies or TF-IDF weights) is sparse, i.e. most of its components have the values
zero. For efficiency of processing, a sparse vector is commonly stored in a way such
that only its nonzero components are represented explicitly (e.g., instead of having an
array of dimension equal to the vocabulary size it is represented with a list of words
that is much shorter than the vocabulary size). For the purposes of our discussion, we
define the “sparsity” of a dataset as the average number of nonzero components in the
vectors representing the documents of this dataset. Since only the nonzero
components are stored and processed explicitly, one expects that it is the sparsity of
the vector representation rather than the vocabulary size that influences the
performance efficiency and the usage of the computing resources. Is there an effective
way to select feature and optimize performance for the given computing resources?
Using sparsity (defined as an estimated average number of non-zero vector
components) to specify the cut-off criteria for feature selection is a natural step to take
[Brank, 02].

Furthermore, in practice we often face the question: given a large collection of
training data and a limited computing resource, what is the right trade-off between the
size or sparsity of the feature space and the number of documents used for classifier
training. In this paper we propose to deal with large document collections by using a
subset of documents to select the features for representing the whole document
collection. More precisely, we apply an iterative procedure that typically involves a
subset of training data to train a classifier for the sole purpose of identifying a subset
of useful features. The trained classifier is analysed to get the feature subset from the,
classification model (for instance, nodes of the decision trees, normal of the linear
models, features in the if-then rules). We have experimentally evaluated two linear
classifiers: linear Support Vector Machines (SVM) and Perceptron. The weights of
the generated linear model (i.e., the normal to the hyperplane that separates the
classes) are used to rank features and select a smaller subset based on the sparsity
requirement. In the second iteration the full set of data is represented in the reduced
feature space and used to train the classifiers. The resulting classifiers are applied to
the new test data. We observe how this type of feature selection method combines
with its ‘own’ classification model and with others. Furthermore, we explore how
feature selection methods can be used to make tradeoffs between the amount of
training data and the sparsity of the document representation, given a fixed amount of
system memory. Our experimental results show that selecting feature based on the
linear-SVM model provides a suitable way of preserving the classification
performance while significantly reducing the size of the feature space and increasing
the sparsity of data.

The main contributions of our work include: (1) a broader perspective on the
feature selection task that involves using linear classifiers themselves to address that
issue, (2) an iterative method for tuning document representation and classifier
performance that is suitable for large data sets, and (3) empirical data about the
behavior of learning methods when combined with various feature selection methods.
These experimental data enable us to make an informed conjecture on the
compatibility of feature selection methods and the learning algorithm. They suggest
that it is the sophistication of the feature selection method rather than similarity with
the underlying learning algorithm that plays the crucial role in optimizing the
classification performance. In particular, methods such as feature selection using

1564 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

weights of a linear SVM model, which take into account statistical properties of all
the features and documents simultaneously, tend to perform generally better across all
the learning algorithms that we examined.

The paper is structured in the following way. We first give a brief description of
the related work followed by the description of text classification methods and feature
scoring that we use in our experiments. Then we describe the data, the data sampling
strategy, and the experiment set-up. We discuss the experiment results and conclude
with the summary of observations and an outline of the future work.

2 Related Work

Feature selection in Machine learning [Mitchell, 97] can be performed in different
ways [Guyon, 03]. Simple filters, commonly used approach when dealing with a large
number of features, involve pre-processing of the data to score each feature
independently of each other and represent the data only by a subset of the top ranked
features.

Feature scoring is usually performed in a supervised way (taking the class value
into account), for instance, by measuring the expected cross entropy between the
feature and the class, but often ignoring the relation with other features. Numerous
scoring measures have been proposed including information gain, odds ratio, χ2, term
strength, etc. For detailed description of feature selection approaches and
dimensionality reduction see [Mladenic, 06; Forman, 07].

It is important to note that feature scoring and selection can have a different effect
on different classification models. Information gain, originally used in decision tree
induction [Quinlan, 93] was reported to work well as a feature scoring with the k-
nearest-neighbor classification algorithm on textual data [Yang, 97], while it
performed much worse with Naïve Bayes on the binary classification problems
[Mladenic, 03]. Expected cross entropy (modified Information gain) seems to work
well with Naïve Bayes [Koller, 97] and in some cases significantly outperforms
Information gain [Mladenic, 03]. Fisher-index was proposed for scoring features in
document retrieval [Chakrabarti, 98], but no experiments in document classification
have been reported. There has also been an increase of interest in the combination of
multiple feature scoring heuristics [Olsson, 06; Qiu, 08]. Odds ratio and an SVM-
based approach have also been applied to text classification for the purposes of
literary study [Yu, 07].

Comparison of different feature selection measures in combination with the
Support Vector Machines classification algorithm (SVM) has shown that using all or
almost all the features usually yields the best performance [Brank, 02; Rogati, 02;
Forman, 03], although in certain situations feature selection can also improve the
performance of SVM. Thus [Gabrilovich, 04] found that feature selection helps in
classification tasks where a small number of relevant terms are sufficient to classify
the documents and the vast majority of terms are redundant or irrelevant; [Forman,
03] reports that feature scoring using Bi-Normal Separation can improve the
performance of SVM on problems with a highly unbalanced class distribution; [Qiu,
08] reports improved performance of SVM with several variants of feature selection

1565Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

based on the χ2-heuristics. Thus while the SVM does not generally benefit from
feature selection, sometimes it can benefit from it nevertheless.

Feature scoring and selection can be more or less coordinated with the
classification model, in the sense that they may be governed by the same or distinct
theoretical models. It has been a common practice to explore the impact of various
feature selection methods in combination with different classification methods. For
example, an approach for scoring features based on SVM has been proposed in
[Gärtner, 01], where SVM is used with a special kernel to learn the weights of
features for use with a Naïve Bayes classifier. Some feature scoring methods
coordinate feature selection and classification by taking the performance of
classification model based on a set of features as the scoring value of that set of
feature (e.g., [John, 94]). However, this is a rather time consuming process where
evaluation of each feature set requires construction of several classification models -
cross validation is commonly used to obtain average performance). On the other hand,
there were conscious attempts to create feature selection methods that are compatible
with the feature scoring of a particular classifier. In that respect feature scoring using
odds ratio is seen as a good match for the Naïve Bayes classifier and has been shown
to improve its performance [Mladenic, 03]. While the idea of preserving the integrity
of a theoretical framework is attractive, it is not feasible unless the framework
includes an inherent mechanism for feature selection. This is typically not the case
with classification methods (more specifically, it may often be possible to obtain a
feature ranking or weighting, indicating which features may be preferable over others,
but without clear guidelines on how many features to keep) and thus we are inevitably
guided by external factors when designing the selection criteria.

As already mentioned, the feature scoring measures that are usually applied on
text, assign a score to a feature independently of the other features. Our work
proposes a feature scoring based on an induced classifier that we see as more
sophisticated, as it considers statistical properties of all the features and documents
simultaneously (unlike many widely-used feature scoring heuristics, such as
information gain and odds ratio, which evaluate each feature separately from other
features). This can be considered as an alternative to the traditional higher-order
feature selection methods, such as those based on mutual information [Bakus, 06]. We
compare the effect of feature selection based on the proposed approach (using weights
from a linear model) with two feature scoring measures that have been reported
successful in text classification: information gain and odds ratio (see Section 3.2 for
details on the scoring measures). These two scoring measures are interesting also
because they seem to prefer different types of features: information gain is known for
its tendency to prefer common features over extremely rare ones, while the odds ratio
ranks rare features highly as long as they are exclusively characteristic of positive
class instances.

3 Feature Selection on Very Large Document Collections

In situations where there is an abundance of training data it is conceivable that
classifier training cannot be performed over the full set of data because of the limited

1566 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

computing resources. The question then arises how to train a given classifier in a way
that the whole training set is still taken into account.

Here we present a simple procedure that has proven quite effective, as our
experimental results show. We first train linear Support Vector Machines (SVM) or
Perceptron on a subset of training data to create an initial classifier. Then we select a
subset of features to achieve a sufficiently sparse representation of data that allows us
to include the whole set of documents. Finally, we train a classifier in the reduced
feature space and evaluate its performance on the test data, as commonly done in
machine learning.

In SVM and Perceptron models, each classifier is a hyperplane separating
‘positive’ and ‘negative’ examples for the class. The hyperplane is represented by the
normal, i.e., a vector perpendicular to the hyperplane. Each feature is included in the
normal with a weight that contributes to the final document score and influences the
classification. In the feature selection step, we rank all the features based on their
weight in the normal and retain a subset by controlling the sparsity (which is defined
as the average number of non-zero components in the vector representation of data,
or, equivalently, the average number of terms used to represent documents).

This approach takes advantage of the memory freed as a result of the increased
data sparsity to include a larger training set while keeping the memory consumption
constant. In the experimentation setting we evaluate the performance for various
sparsity levels to identify the optimal tradeoff. In principle, the feature selection phase
could include a separate validation set to suggest possible tradeoffs between sparsity
and performance; alternatively, memory limitations may dictate what level of sparsity
is necessary. Here we investigate the iterative feature selection for a spectrum of
sparsity levels, focusing primarily on the interaction of feature selection and
classification methods.

4 Learning Algorithms and Feature Selection Methods

In this study we investigate three learning algorithms: Naïve Bayes, Perceptron, and
Support Vector Machines (SVM), and three feature scoring methods: Odds ratio,
Information Gain, and weights from the linear models. In the case of the selected
learning algorithms, feature selection can be considered a pre-processing phase and
thus each of the feature scoring methods can be combined with each of the learning
algorithms. While we are looking at a limited number of methods, we expect that
studying their performance over large data sets will provide valuable insights into the
nature of feature selection methods and their compatibility with classification models.

4.1 Learning Algorithms

4.1.1 Naïve Bayes

We use the multinomial model as described by [McCallum, 98]. The predicted class
for a given document d is the one that maximizes the posterior probability of the
class, P(c|d) ∝ P(c) Πt P(t|c)TF(t, d), where P(c) is the prior probability that a document
belongs to class c, P(t|c) is the probability that a word chosen randomly in a document
from class c equals t, and TF(t, d) is the “term frequency”, or the number of occurren-

1567Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

ces of the word t in the document d. Where there are only two classes, say c+ and c–,
maximizing P(c|d) is equivalent to taking the sign of ln P(c+|d)/P(c–|d), which is a
linear combination of TF(t, d). Thus the Naïve Bayes classifier can be seen as a linear
classifier as well. The training consists simply of estimating the probabilities P(t|c)
and P(c) from the training documents, where we are using Laplace probability
estimate.

4.1.2 Perceptron

The Perceptron algorithm [Rosenblatt, 88] trains a linear classifier in an incremental
way as a neural unit using an additive update rule. The prediction for a document
represented by the vector x is sgn(wTx), where w is a vector of weights obtained
during training. Let xi be the i-th training vector, and yi its corresponding class label
(yi = +1 for a positive document, yi = –1 for a negative one). The training starts with
w = 0, then considers each training example xi in turn. If the present w classifies xi
correctly it is left unchanged, otherwise it is updated according to the additive rule:
w ← w + yixi. To implement a variable threshold in the classifier, we extend, before
training, each vector with an additional component with the value of 1; the
corresponding component of the weight vector w then functions as a threshold.

4.1.3 Support Vector Machine

The Support Vector Machine (SVM) [Cortes, 95], when used with a linear kernel,
trains a linear classifier of the form prediction(x) = sgn(wTx + b). That is, the space of
possible vectors x is divided by the hyperplane wTx + b = 0, where w is a normal of
the hyperplane (i.e. a vector perpendicular to it), and b is a scalar which defines the
plane’s location in space. Learning is posed as an optimization problem with the goal
of maximizing the margin, i.e., the distance between the separating hyperplane
wTx + b = 0 and the nearest training vectors. The vector of weights w = (w1,...,wd) can
be computed and accessed directly. Geometrically, the predictor uses a hyperplane to
separate the positive from the negative instances, and w is the normal to this
hyperplane. An extension of this formulation, known as the soft margin, also allows
for a wider margin at the cost of misclassifying some of the training examples. The
dual form of this optimization task is a quadratic programming problem and can be
solved numerically. We used the SvmLight program [Joachims, 99] to train the SVM
models. This program is particularly suitable for our purposes because it is optimizied
for computations with linear kernels. In all the experiments reported in this paper, we
used the linear error cost (L1) formulation of SVM. (For Naive Bayes and Perceptron,
we used our own implementation of these two learning algorithms.)

We selected the linear version of the SVM and Perceptron models for our study
because the existing literature indicates that for the text classification problem the
nonlinear versions of these algorithms gain very little in terms of performance
[Joachims, 98].

4.2 Feature Selection Methods

The three feature selection methods that we consider in our study involve the same
procedure: assigning a weight to each feature, ranking the features based on the
weights, and retaining only a specified number of features.

1568 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

4.2.1 Odds ratio

Let P(t|c) be the probability of a randomly chosen word being t, given that the
document it was chosen from belongs to a class c. Then odds(t|c) is defined as
P(t|c)/[1–P(t|c)] and the odds ratio equals to

OR(t) = ln[odds(t|c+)/odds(t|c–)].

This formula is not symmetric with respect to which class we select as positive c+
and which as negative c–. Obviously, this scoring measure favors features that occur
in positive examples rather than in negative ones. As a result a feature that occurs
very few times in positive documents but never in negative documents will get a
relatively high score. Thus, many features that are rare among the positive will be
ranked at the top of the feature list. In this manner rare rather than representative
features of the positive documents obtain high scores.

Odds ratio is known to work well with Naïve Bayes [Mladenic, 99] for
categorizing web pages in a collection specially built for profiling web users
[Mladenic, 02] and for classifying web pages into Yahoo! topic categories [Mladenic,
03]. In the latter case, an increase in the F2 measure (from 0.13 to 0.6) was reported
when only 0.2% to 5% of the original features were kept. Odds ratio has also been
found to work particularly well in combination with bi-normal separation by Forman
[Forman, 03]. A measure designed on similar principles, called “feature strength”, has
been used in a semi-supervised setting by Fung et al. [Fung, 05]. In our experiments
we used a smoothed version of the original formula avoiding singularities, as also
used in [Mladenic, 99]; namely, if P(t|c) = 0, the value 1/n2 (where n is the number of
documents in the training set) is used instead of 0 when computing the odds. Thus the
resulting odds are always strictly between 0 and 1.

4.2.2 Information gain

In calculating the information gain score we treat both the class membership and the
presence or absence of a particular term as random variables. We compute how much
information about the class membership is gained by knowing the term presence or
absence statistics (as is used in the decision tree induction, e.g., in Quinlan, 1993).
Indeed, if the class membership is interpreted as a random variable C with two values,
positive and negative, and a term is likewise seen as a random variable T with two
values, present and absent, then using the information-theoretic definition of mutual
information we may define information gain as:

IG(t) = H(C) – H(C|T) = Στ,c P(C=c,T=τ) ln[P(C=c,T=τ)/P(C=c)P(T=τ)].

Here, τ ranges over {present, absent} and c ranges over {c+, c–}. As pointed out
above, this is the amount of information about the class label C gained by knowing T,
the presence or absence of a given word. The entropy is defined as H(X) = ∑x P(X=x)
ln P(X=x).

The information gain therefore measures how much we learn about C by knowing
T, since H(C|T) measures how much remains unknown about C if we know T; hence
the term “information gain”. On the other hand, it is also equivalent to [H(C) + H(T)]
– H(C, T), which can be interpreted as the amount of information that each of these
variables C and T contains about the other one. For that reason this measure is also

1569Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

known as (average) mutual information. It should not, however, be confused with
log[P(t|c)/P(t)] or the maximum or average of this value over all c, which is
sometimes also called mutual information.

Information gain has been found to work well with several algorithm including
the k-nearest-neighbor algorithm on the small Reuters-22173 collection and the
OHSUMED collection [Yang, 97] and Naïve Bayes, decision trees and linear SVM
on the Reuters-21578 collection [Dumais., 98].

4.2.3 Feature selection based on linear classifiers

Using weights from the SVM classification model for feature selection was suggested
in [Sindhwani, 01] and studied in detail for linear SVM in [Brank, 02] and used in
[Guyon, 02; Guyon, 03]. Here we extend this idea to general linear classifiers and
discuss the procedure by referring to linear SVM and Perceptron.

Both SVM and Perceptron, as linear classifiers, output predictions of the form:

prediction(x) = sgn(wTx + b) = sgn(Σj wjxj + b)

where the vector w and scalar b are obtained during training. Thus, a feature j with the
weight wj close to 0 has a smaller effect on the prediction than features with large
absolute values of wj. The weight vector w can also be seen as the normal to the
hyperplane used by the classifier to separate positive from negative instances. Thus
we often refer to the procedure as the normal-based feature selection. One speculates
that since features with small |wj| are not important for categorization they may also
not be important for learning and, therefore, are good candidates for removal. Thus, in
our feature selection approach we use the absolute value |wj| as the weight of a
feature j. We retain features for which the value of |wj| exceeds the threshold value
that is obtained from the data sparsity criteria (i.e. the threshold is set to such a value
that a desired level of sparsity is obtained after discarding the features below the
threshold).

A theoretical justification for retaining the highest weighted features in the
normal has been independently derived in a somewhat different context in [Shih, 02].
There a feature is considered important if it significantly influences the width of the
margin of the resulting hyper-plane; this margin is inversely proportional to ||w||, the
length of normal w.

Due to the way the SVM algorithm works, the vector w in a linear SVM model is
always of the form w = ∑i αi yi xi , where the sum goes over all training vectors (xi is
the i’th training vector, and yi is its corresponding class label), and the multipliers αi
are values that have been computed during the SVM learning process. From this
observation we see that one can regard ||w||2 as a function of the training vectors
x1, ..., xl, where xi = (xi1, ..., xid), and thus evaluate the influence of feature j on ||w||2
by looking at absolute values of partial derivatives of ||w||2 with respect to xij (for
various i) Of course this disregards the fact that if the training vectors change, the
values of the multipliers αi would also change, but the approach roughly captures the
essence of feature contributions. For the linear kernel, the sum of these partial
derivatives turns out to be

∑i | ∂||w||2 / ∂xij | = κ |wj|

1570 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

where the sum is over all the support vectors and κ is a constant independent of j.
Thus the features with the higher |wj| are more influential in determining the width of
the margin. Analogous reasoning can also be used in the case of an SVM model based
on a non-linear kernel, as ||w||2 can still be expressed using only the training vectors xi
and the kernel function. When a kernel has been used that corresponds to mapping all
vectors xi into new vectors φ(xi) in a new (possibly very high-dimensional) space, the
normal vector w is now expressed as w = Σi αi yi φ(xi), and ||w||2 = wTw = Σi Σj αi αj yi
yj K(xi, xj), where K is the kernel function. If we pretend for a moment that the αi
multipliers can be held fixed while the training vectors xi change by a very small
amount, and if we can compute the partial derivatives of K, we can then also express
the partial derivatives of ||w||2 with respect to xij (see [Sindhwani, 01] for details).

Note that the normal-based approach to feature weighting and selection involves
an important issue: the selection of a set of instances over which one trains the
normal w in order to arrive at the feature weights. Since training an SVM model
requires a considerable amount of CPU time, and practically requires all the training
vectors to be present in main memory at all times, it is desirable to use a subset of the
training data in order to facilitate feature selection and then retrain the classifier over
the full data set but using the reduced feature space. Furthermore, it is useful to
explore how the selection of the training set affects feature selection and the
performance of the final classifier.

We illustrate these issues by using different samples of the data for initial
training: the full set, one quarter and one sixteenth of the full data size. After the
removal of a large number of features both the time and the memory requirements for
processing the entire training set are reduced and thus make that task feasible. Of
course, having used only a subset of data to score and select features may render a
worse performance than methods that take into account the whole data set. However,
reported experiments show encouraging results. For example, feature selection based
on the SVM improves performance of the Naïve Bayes classifier [Mladenic, 04]: F1
increases from 0.38 to 0.54 on the RCV1 collection, while using on average only 5
features per document to capture its content, or equivalently, to keeping only about
0.1% of the whole feature set.

5 Data

5.1 Training and test data

For the experiments we use the Reuters Corpus Volume 1 collection (see Appendix A
for details). The full Reuters corpus of 806,791 news articles amounts to over 2 GB of
text data, dated from 20 August 1996 through 19 August 1997. We divided it into a
“training period” that includes 504,468 articles, dated from 20 August 1996 through
14 April 1997; and a “test period” with the remaining 302,323 documents. For
training we used a sample of 118,294 documents from the training period and tested
the classifiers on the complete document set from the test period.

The training set was obtained using a partly stratified sampling approach (as
described in detail in [Brank, 02]). From each category of RCV1, we selected a
random set of up to 1600 documents (if the category contains less than 1600
documents, all of them were selected). The union of these sets is the 118,294-

1571Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

document training set mentioned above; we will refer to it as Train-1600 in the
subsequent discussion. As a result of this approach, the smaller categories are not as
poorly represented in our training set as they would be if a completely unstratified
sampling had been used; on the other hand, the largest categories tend to be somewhat
underrepresented relative to the full corpus. This is illustrated on Figure 1, which
shows, for each category, the percentage of documents that belong to it, either in the
full corpus or in its various subsets.

Category distribution in different sets of documents

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%
0.001% 0.010% 0.100% 1.000% 10.000% 100.000%

Percentage of documents belonging to this category
in the full Reuters 2000 collection

Pe
rc

en
ta

ge
 o

f d
oc

um
en

ts
 b

el
on

gi
ng

 to
 th

is
 c

at
eg

or
y

in
 o

th
er

 s
et

s
of

 d
oc

um
en

ts

Train-1/16 Train-1/4 Entire training set Full Reuters-2000

Figure 1: Distribution of documents over categories for different subsets of the full
RCV1 collection. There is a symbol for each category, the x-coordinate showing the
percentage of RCV1 documents belonging to this category, and the y-coordinate
showing the percentage of documents belonging to this category in a subset of
Retuers-2000. The dotted line shows where the two percentages would be the same.
As we can see from the figure, the smaller categories are slightly overrepresented in
the subsets (relative to their frequency in the full dataset), and the largest few
categories are slightly underrepresented.

For the experimentation purposes we further selected sub-samples of the Train-
1600 set (of 118,924 documents) of size one half (referred to as Train-1/2), one quarter
(Train-1/4), one eighth (Train-1/8), and one sixteenth (Train-1/16) of the full training
set, respectively. For comparison, the category distribution on these subsets is also
shown on Figure 1.

Percentage of documents belonging to this category
in the full RCV1 collection

1572 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

5.2 Category selection

The Reuters collection uses 103 distinct categories to classify documents. However,
training classifiers for all 103 Reuters categories over relatively large sets is a time
consuming and process intensive task. Therefore we restricted our study to a sample
of 16 categories that were selected in [Brank, 02] based on a preliminary document
classification experiment that involved training the SVM over a smaller training set
(19,213 documents) for the complete set of Reuters categories and classifying a test
set of 9,596 documents. The training set was constructed in exactly the same way as
the Train-1600 except that we used only 200 documents per category (referred to as
Train-200). The test set was also constructed in the same way, except that documents
from the test period were used, and that only 100 random representatives of each
category were taken; this resulted in a sample of 9,596 test documents, referred to as
Test-100.

The selection criterion was based on two characteristics of a category: the
distribution of positive examples in the whole corpus and the precision-recall break-
even point for the category achieved in the preliminary experiment (on Train-200 and
Test-100). These statistics for the selected subset of 16 categories approximately
follows the distribution for all 103 categories (see Figure 2 and Appendix B for more
details). The selected set of categories includes: godd, c313, gpol, ghea, c15, e121,
gobit, m14, m143, gspo, e132, e13, c183, e21, e142, and c13.

Size and Difficulty of the Reuters-2000 Categories

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000 10000 100000 1000000

Number of documents

B
re

ak
ev

en
 p

oi
nt

 in

pr
el

im
in

ar
y

ex
pe

rim
en

ts

All Categories Categories selected for further experiments

Figure 2: Size and difficulty of categories shown in a 2-d histogram with the log scale
for the document distribution and 0.2 interval partition of the break-even point range.

6 Experiment Design

In this section we describe in detail the experiments that we ran with samples of data
from the RCV1 corpus (Reuters Corpus Volume 1, http://about.reuters.com/
researchandstandards/corpus/) and a sample of 16 categories from the set of 103
categories that constitute the Reuters classification scheme (Section 5). The

Size and Difficulty of the RCV1 Categories

1573Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

experiment design is similar to the study presented in [Brank, 02]. Our document
representation is based on the bag-of-words model. We convert text of each document
into lowercase, remove stop-words using a standard set of 523 stop-words, and
eliminate words occurring in less than 4 training documents. Documents were
represented using single word features weighted by the standard TF-IDF score [Salton,
88]. Document vectors were normalized to unit length, except for the representation
used for the Naïve Bayes classifier which involved only the TF term weighting.

In order to control for memory consumption, we set an appropriate threshold on
the number of features retained in order to obtain document vectors with a desired
average number of nonzero components, i.e., desired sparsity. For each combination
of the target category and the number of features to be kept, temporary copies of
document vectors are made with the unwanted features removed; these copies are
used for training. Finally, the models obtained during the training are used to classify
the test documents. The test documents are represented using only the features kept
after feature selection.

6.1 Sparsity of data representation

It has been shown in [Brank, 02] that the document vector sparsity varies significantly
when the same number of features is retained for different feature weighting methods.
Similarly, a fixed sparsity level yields features sets of very different sizes. This is a
rather important observation since it is expected that the performance of the data
processing algorithm will depend on the representation of individual documents.
Namely the number of features that we use reflects the document representation on a
level of vocabulary size of all the documents, while sparsity captures the average
number of features in individual document representation.

As an illustration, Figure 3 (lower chart) shows how specifying the sparsity levels
for Odds ratio, Information Gain and linear classifier (Perceptron or SVM) based
feature selection affects the performance of the SVM classifier on our data. Each
sparsity level is, in turn, achieved by retaining a suitable number of highly scored
features. We show the same performance results in two ways: with respect to the
number of features retained (Figure 3, upper chart) and with respect to the average
number of non-zero components in the training documents (Figure 3, lower chart) for
each of the feature selection methods .

The sparsity of document vectors, on the other hand, directly affects consumption
of computing resources, both the memory for storing the sparse vectors and the time
needed to perform calculations [Milić-Frayling et al.]. While reducing the total
number of features is expected to make the vectors sparser (i.e. the average number of
nonzero components in each feature vector will become smaller and smaller as more
and more terms are being discarded), the rate at which this is achieved depends on the
term weighting scheme or, ultimately, the corpus properties such as term distribution
(i.e., number of documents in the corpus, or labelled by a particular class, that contain
the term). For example, if the number of features to be retained is fixed, weighting
schemes that lead to retaining rare features generally incur a low cost to data storage
and calculations. The opposite is true for weighting schemes that favor features
common across documents. Thus, just specifying a fixed number of features does not
allow for a reliable control over resource consumption. For that reason, we propose to

1574 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

work directly with the requirement on the sparsity level as the cut-off criterion for
feature selection.

6.2 Evaluation measures

In our analyses we use standard evaluation measures from the area of information
retrieval. Each class is regarded as a binary classification problem (does a document
belong to this class or not?), and a separate binary classifier is trained for each class.
When evaluating the classifier for a particular class c, we compute the contingency
table by counting the number of test documents that fall into each of the following
four groups:

 Documents that...
 Belong to c Do not belong to c

positive TP (true positives) FP (false positives) The classifier’s
prediction is negative FN (false negatives) TN (true negatives)

Based on these values, the precision of the classifier is defined as p = TP/(TP +
FP) and the recall is defined as r = TP/(TP + FN). To combine these two quantities,
we use the well-known F1-measure, defined as F1 = 2pr/(p+r), i.e. the harmonic mean
of precision and recall. Since the F1 measure incorporates both the recall and the
precision, we report only the experimental statistics for the F1 measure.

To obtain an overall measure of performance of a machine learning approach
over several classes, macroaveraging and microaveraging are commonly used. A
macroaverage is defined as simply the average value of a performance measure (e.g.
F1) over all classes. The microaverage, on the other hand, is obtained by first adding
up the contingency tables for all the classes into an aggregate contingency table (i.e.
the aggregate TP is the sum of the TPs from all the individual contingency tables,
etc.). The values of the aggregate contingency table are then used to compute
precision, recall, and F1 using the same formulas as above; the resulting values are
called microaveraged precision, recall, and F1. We found that analyses based on
microaveraged statistics provide qualitatively similar results and thus we omit them
from the paper. Instead we ensure that all the presented comparative analyses are
accompanied with the evidence of statistical significance. Here we briefly discuss the
approaches for establishing such evidence.

In order to compare two classifiers, we randomly partition the test data set into
ten disjoint subsets and record performance measures of the classifiers, such as
macro- or microaveraged F1 statistics, separately for each subset of test data. Thus, to
compare two classifiers, we can perform a paired t-test on the corresponding two
groups of ten F1 values.

Alternately, one may perform a separate t-test for each category and then count
how many times one classifier has been found to be significantly better than the other,
or vice versa, across categories. These values can be quite informative, but the
downside is that the comparison of two methods is then described by two numbers
rather than a single confidence value, as would be obtained from a single t-test. In
principle, one could reach a single confidence value by applying some type of a sign
test (e.g., a “macro sign test” from [Yang, 99]).

1575Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Another option is to compute, for each category, the value of F1 over the entire
test set. This results in a sequence of as many values as there are categories. One can
thus compare the two methods by taking a paired t-test over the corresponding two
sequences. This approach, referred to as a “macro T-test” in [Yang, 99], has been
often used, although criticized because it treats the performance values of different
categories as random samples from a normal distribution [Lewis, 92].

In our experience, all these types of tests tended to give similar results. However,
it is noticeable that the category-paired t-test is slightly more conservative than the t-
test on macroaveraged F1-values in the sense that it is less likely to declare the
difference to be significant. In contrast, the t-test on microaveraged F1-values is much
more liberal in considering differences to be significant. In the rest of this paper we
report significance results from the t-tests based on macroaveraged F1 values.

7 Results

7.1 Effects of feature selection on classification performance

We discuss the classification results for data representations obtained by feature
ranking and selection using Odds ratio, Information gain, and normal based feature
scoring from the linear SVM and Perceptron classifiers. For both the SVM and the
Perceptron we apply the iterative method for classification: we train the classifier on a
subset of training documents and use it to score and select features. The reduced
feature space is then used for retraining the classifier over the entire document set. In
order to observe the influence of the subset selection on the classification
performance we defined three sets of training data: the full training set and randomly
chosen subsets of 1/4 and 1/16 of the training documents. Training the classifiers on
these sets results in three normal vectors for each method: svm-1, svm-1/4, and svm-1/16
for the linear SVM and perceptron-1, perceptron-1/4, perceptron-1/16 for the
Perceptron. These 6 feature rankings, together with the Odds ratio and Information
gain, are considered for feature selection and training of three classifiers: Naïve
Bayes, the linear SVM, and Perceptron.

As already described, for each rank in the list of features we can calculate the
average sparsity of vectors achieved if only features from that rank and above were
retained. Similarly, given a sparsity requirement we can find the cut off rank below
which the features are discarded in order to achieve the specified vector sparsity. It is
interesting to note that specifying sparsity leads to non-uniform number of features
across categories, depending on the distribution characteristics of features typical for
the category. This is in contrast with the common practice of specifying a fixed
number or percentage of top ranking features to be used for all categories.

1576 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Macroaveraged F1, full training set

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

10 100 1000 10000 100000

Number of features retained after feature selection

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain svm-1 perceptron-1
M acroaveraged F1, full training set

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain svm-1 perceptron-1

Figure 3: Macroaverages of the F1 measure for the SVM classifier for various feature
set sizes and different feature weighting methods. The upper chart shows the
performance against the number of features while the lower one shows the same
performance at various sparsity levels. We found that the sparsity-based charts allow
for a more useful comparison of feature selection methods; e.g., Odds ratio is quite
successful at very sparse representations, even though it uses a large vocabulary.

The experiment design thus includes nine sets of features (Odds ratio,
Information Gain, 3 from SVM normal, 3 from Perceptron normal) used for training
the learning algorithms, Naïve Bayes, Perceptron, and linear SVM, over the full set of

1577Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

training documents represented by the reduced set of features. We specify the
reduction level in terms of the desired sparsity of vectors.

The resulting classifiers are applied to the test data. Table 1 gives the result of
Naïve Bayes for different feature selection methods for sparsity that yielded the best
performance. More complete results for all three classification algorithms are shown
in Figure 4, Figure 5, Figure 6 giving the macroaveraged F1 performance for specific
levels of vector sparsity on the horizontal axes: 2, 2.5, 5, 10, 20, 40, and 80 terms per
document, as well as for the sparsity of the full document vectors, about 88.3 terms
per document on average.

Feature
selection/ranking

method

Sparsity which
yielded the best

performance

Average
number of

features at that
sparsity

Naïve Bayes
macroaveraged F1

at that sparsity

Odds ratio 20 10571 0.4683
Information gain 2.5 67 0.4648
SVM-1 5 259 0.5421
Perceptron-1 10 910 0.5005

Table 1: This table shows, for each feature selection method, the best Naïve Bayes
classification performance, the sparsity at which it was achieved, and the number of
features at that sparsity (averaged across all categories).

7.1.1 Naïve Bayes

Our experiments with Naïve Bayes confirm the known fact that Naïve Bayes benefits
from the appropriate feature selection [Mladenic, 99]. Detailed analysis shows that
this is particularly true for categories with a smaller number of training documents,
while for the largest few categories there is little or no improvement from feature
selection.

Odds ratio seems to work well with Naïve Bayes when documents are made
moderately sparse, 10 to 20 terms per document which, on average, requires 4000 to
8000 of the best features to be retained. On the other hand, earlier research found that
Odds ratio works well even if only a few hundred features were kept [Mladenic, 99].
Thus, it would be worth exploring whether sparsity is a more reliable parameter in
predicting classifier performance than the number of features retained.

Information gain, on the other hand, works well when documents retain around
2.5 terms on average per document, which corresponds to keeping around 70 best
features on average (the actual number varies considerably from one category to
another, with e13 needing as few as 29 and ghea as many as 163).

1578 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Naive Bayes, Macroaverages

0.34

0.39

0.44

0.49

0.54

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain svm-1/16 svm-1/4
svm-1 perceptron-1/16 perceptron-1/4 perceptron-1

Figure 4: Macroaveraged F1 of different feature selection methods in combination
with Naïve Bayes. The horizontal axes refer to sparsity, the average number of
nonzero components per training vector. In this case, this is the average number of
terms per training document after terms rejected by feature selection have been
removed.

Still higher performance with Naïve Bayes can be achieved with feature selection
based on Perceptron and linear SVM weights. For SVM, this is true even if much
smaller data sets are used in the feature selection phase (using 1/16 of the training
data to get SVM-normal ranking the features). Table 1 provides detailed performance
results. However, as it can be seen from Figure 4, even with the best of the tested
feature selection methods, Naïve Bayes cannot match the performance of the
Perceptron and the linear SVM classifiers.

7.1.2 Perceptron

Our experiments show that the Perceptron learning algorithm does not combine well
with the feature selection methods considered here. The only case in which perfor-
mance is actually improved is for the sparsity level of 80 terms per document with
perceptron-1, thus a slight reduction in sparsity from 88.3 when all features are used.
It is worth noting that this means the reduction of 8 features on average per document
which corresponds to retaining less than 50% of the original features; more precisely
around 32,500 out of 75,839 original features. The associated increase in F1, although
statistically significant, is marginal (0.8 %). Otherwise, performance drops quickly
and considerably as more and more features are discarded.

When using SVM-based rankings, the performance is lower although the
differences with respect to the Perceptron weighting are small. They are greatest when
both feature selectors are allowed to inspect the full document set: perceptron-1 may

1579Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

achieve F1 values up to 2.5 % above those achieved by svm-1 at the same sparsity.
The differences between perceptron-1/4 and svm-1/4 and between perceptron-1/16 and
svm-1/16 are smaller and often insignificant. Thus, in scenarios of limited computer
resources, when it is desirable to reduce the feature set by first training linear models
over smaller training data sets, the two feature scoring methods combine equally well
with the Perceptron as the classifier. Furthermore, while the SVM-based feature
rankings achieve lower precision and lower F1 values than the Perceptron ones, they
tend to have higher recall and break-even point for the same subset of training
documents.

In combination with the Perceptron classifier, the feature ranking by the
Information gain criterion usually performs worse than the rankings of linear
classifiers. The difference is slight but statistically significant. On the other hand, the
feature ranking by Odds ratio performs much worse (interestingly, it combines well
with the SVM; see the next section). We speculate that the Perceptron type training,
which considers individual documents sequentially, is negatively affected by the
tendency of the Odds ratio to favor features characteristic of positive documents, in
particular those that are rare and absent from negative documents. It would be inter-
esting to see whether Perceptron models with uneven margins are more robust in that
respect [Krauth, 87].

Perceptron, Macroaverages

0.05

0.15

0.25

0.35

0.45

0.55

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain svm-1/16 svm-1/4
svm-1 perceptron-1/16 perceptron-1/4 perceptron-1

Figure 5: Macroaveraged F1 of different feature selection methods in combination
with the Perceptron classifier. The horizontal axes refer to sparsity, the average
number of nonzero components per training vector. In this case, this is the average
number of terms per training document after terms rejected by feature selection have
been removed.

1580 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

7.1.3 Linear SVM

Similarly to Perceptron, the linear SVM does not benefit from feature selection but is
much less sensitive to the reduction of the feature space. Here one can reduce the
feature set to 10 terms per document on average, while still losing only a few percent
in terms of the F1 performance measure. As in the case of Perceptron, statistically
significant (though rather small) improvements to the F1 performance in comparison
to the full feature set are achieved only when using svm-1 or perceptron-1 feature
sets, thus increasing the sparsity from 88.3 to 80 terms per document on average
(using less than 50% of the original features).

Odds ratio works well in combination with the linear SVM classifier, particularly
when very sparse documents representations are required (e.g., to capture
characteristic words/phrases for under-represented categories in a very large
document collections). Indeed, at sparsity ≤ 20 it is significantly better than
Information gain. There it also outperforms svm-1/16. At more extreme levels of
sparsity it performs better than svm-1/4 and even svm-1 (for sparsity ≤ 2.5).

An interesting observation is that the Perceptron-based feature weightings
perform much worse with the SVM classifier than the SVM-based weightings. Both
feature weighting methods performed quite similarly in combination with the
Perceptron as the classifier (see previous section). In addition, perceptron-1 is
generally not significantly better than perceptron-1/4, and for extremely sparse
documents it is, in fact, significantly worse.

Linear SVM, Macroaverages

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain svm-1/16 svm-1/4
svm-1 perceptron-1/16 perceptron-1/4 perceptron-1

Figure 6: Macroaveraged F1 performance of different feature selection methods in
combination with SVM. The horizontal axes refer to sparsity, the average number of
nonzero components per training vector. In this case, this is the average number of
terms per training document after terms rejected by feature selection have been
removed.

1581Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Looking at the precision and the recall separately shows that Perceptron-based
feature rankings have particularly poor recall. From the sparsity curves, which
provide insight in how the density of document vectors increases with the number of
features retained, we conclude that the Perceptron-based feature weighting has a
greater preference for rare features than the SVM-based weighting (although not
nearly so great as Odds ratio), especially for features typical of positive documents.
We speculate that this may be the cause of poor recall (consequently, poor F1).
Interestingly, Information gain tends to produce high precision but relatively low
recall, whereas the opposite holds for Odds ratio. The SVM-based rankings, on the
other hand, are good at both precision and recall, particularly the latter. Details are
given in appendix D.

8 Conclusions

Our experiments show that feature scoring and selection based on the normal vector
of the hyperplane obtained by the linear SVM algorithm combines very well with all
the classifiers considered in the study. In particular, in combination with the Naïve
Bayes classifier it seems to be far more effective than Odds ratio for all levels of
sparsity below 40 features per vector. Even the Perceptron produces much better
feature rankings for Naïve Bayes than Odds ratio. This supports our conjecture that
the sophistication of the feature weighting method is more important for performance
than its compatibility with the learning algorithm. On the basis of this observation our
conjecture is that, on our dataset, the complexity and sophistication of the feature
scoring algorithm plays a larger role in the success of the feature selection method
than its compatibility in design with the classifier. Indeed, at the first glance it seems
that Odds ratio, which closely follows the feature scoring used within Naïve Bayes,
should provide the best selection for that classifier. However, a method such as SVM
that tunes the normal by taking into account all the features simultaneously (rather
than one at a time, as in the case of Odds ratio) seems to be the most successful in
scoring features.

The SVM feature ranking combines relatively well with the Perceptron classifier
considering the rather dramatic negative effect of feature selection on the Perceptron.
One could argue that, because the perceptron-1 is the best performing feature ranking
with the Perceptron classifier, the conjecture we proposed in Section 1 is weakened.
However, when we consider smaller subsets of the training data (e.g., N/4) and look
for higher performance levels (F1 > 0.45) of the Perceptron classifier we see that
SVM-based and Perceptron-based feature selection have almost identical effect. This
makes us believe that our conjecture is in the right direction.

In the experiments with the memory constraint, we have seen that the Perceptron
classifier does not allow for a trade-off since it is adversely affected by feature
selection while Naïve Bayes always benefits from feature selection. The SVM
classifier, on the other hand, can benefit from combining feature selection and
adjustment of the training set to fit the memory constraint. Namely, although the
SVM classifier does not improve with feature selection itself, it yields better
performance if feature selection allows a larger training set to be used to train the final
model after feature selection.

1582 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Sparsity of the vectors representing the data has been found to be useful for
comparing different feature selection methods, particularly because some of the
learning algorithms are more sensitive to sparsity rather than to the number of features
as such.

Finally, as has been found by other researchers in the field of text categorization,
our experiments confirm that SVM outperforms Perceptron and Naive Bayes as a
learning algorithm for text categorization. Our further work will expand this study to
additional classifiers and data sets, including scenarios that do not necessary involve
text data. We also conjecture that the selection of features obtained with the SVM-
based feature ranking would be useful in other applications, not just in document
classification, but also e.g. in clustering; investigating this conjecture through
experiments is another possible direction for future work.

Acknowledgements

This work was supported by the Slovenian Research Agency, Microsoft Research and
the IST Programme of the European Community under NeOn (IST-2006-027595),
TAO (IST-2004-026460), PASCAL2 Network of Excellence (ICT-216886-NOE).
This publication only reflects the authors' views.

References

[Bakus, 06] Bakus, J., Kamel, M. S. “Higher order feature selection for text classification”.
Knowledge and Information Systems, 9(4):468–91, April 2006.

[Brank, 02] Brank, J., Grobelnik, M., Milić-Frayling, N, Mladenic, D. “Feature selection using
support vector machines”. Proc. of the 3rd Int. Conf. on Data Mining Methods and Databases
for Engineering, Finance, and Other Fields, Bologna, Italy, September 2002.

[Chakrabarti, 98] Chakrabarti, S., Dom, B., Agrawal, R., Raghavan, P. “Scalable feature
selection, classification and signature generation for organizing large text databases into
hierarchical topic taxonomies”. The VLDB Journal, 7, pp.163-178, Spinger-Verlag, 1998.

[Cortes, 95] Cortes, C., Vapnik, V.: “Support-vector networks”. Machine Learning, 20(3):273–
297, September 1995.

[Dumais, 98] Dumais, S., Platt, J., Heckerman, D., Sahami, M. “Inductive learning algorithms
and representations for text categorization”, Proceedings of 7th International Conference on
Information and Knowledge Management, 1998

[Fung, 05] Fung, G. P. C., Yu, J. X., Lu, H., Yu, P. S. “Text classification without labeled
negative documents”. Proceedings of the 21st International Conference on Data Engineering
(ICDE-2005), pp. 594–605.

[Forman, 03] Forman, G. “An Extensive Empirical Study of Feature Selection Metrics for Text
Classification”, Journal of Machine Learning Research 3, pp.1289–1305, 2003.

[Forman, 07] Forman, G. “Feature selection for text classification”. In Liu, H., Motoda, H.,
(Eds.), “Computational Methods of Feature Selection”, Chapman & Hall / CRC, 2007.

[Gabrilovich, 04] Gabrilovich, E., Markovitch, S. “Text categorization with many redundant
features: using aggressive feature selection to make SVMs competitive with C4.5”. Proceedings

1583Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

of the 21st International Conference on Machine Learning (ICML 2004), Banff, Alberta,
Canada, 2004.

[Gärtner, 01] Gärtner, T., Flach, P. A. “WBCSVM: Weighted Bayesian classification based on
support vector machines”. Proceedings of the 18th International Conference on Machine
Learning (ICML 2001), Williamstown, Massachusetts, USA, pp. 154–161, 2001.

[Guyon, 02] Guyon, I., Weston, J., Barnhill, S., Vapnik, V. “Gene selection for cancer
classification using support vector machines”. Machine Learning, 46(1–3):389–422, 2002.

[Guyon, 03] Guyon, I., Elisseeff, A. “An Introduction to Variable and Feature Selection.”
Journal of Machine Learning Research 3, pp. 1157-1182, 2003.

[Joachims, 98] Joachims, T. “Text categorization with support vector machines: Learning with
many relevant features”. Proceedings of the 10th European Conference on Machine Learning
(ECML-98), pp. 137–42.

[Joachims, 99] Joachims, T. “Making large-scale support vector machine learning practical”. In
B. Schölkopf et al. (Eds.), “Advances in kernel methods: Support vector learning”. MIT Press,
1999, pp. 169–184.

[John, 94] John, G.H., Kohavi, R., Pfleger, K. “Irrelevant Features and the Subset Selection
Problem”. Proceedings of the 11th International Conference on Machine Learning (ICML94),
pp. 121-129, 1994.

[Koller, 97] Koller, D., and Sahami, M. “Hierarchically classifying documents using very few
words”. Proceedings of the 14th International Conference on Machine Learning (ICML-97),
pp. 170-178, 1997.

[Krauth, 87] Krauth, W., Mézard, M. “Learning algorithms with optimal stability in neural
networks”. Jour. Physics A 20, L745–L752, August 1987.

[Lewis, 92] Lewis, D.D. “An evaluation of phrasal and clustered representations on a text
categorization task”. Proceedings of the 15th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, June 21–24, 1992, Copenhagen,
Denmark, pp. 37–50.

[McCallum, 98] McCallum, A., Nigam, K. “A comparison of event models for Naïve Bayes
text categorization”. AAAI Workshop on Learning for Text Categorization (pp. 41–48). AAAI
Press, 1998.

[Milic-Frayling] Milic-Frayling, N., Mladenic, D., Brank, J., Grobelnik, M. “Sparsity analysis
of term weighting schemes: Application to Feature Selection” (in review).

[Mitchell, 97] Mitchell, T.M., “Machine Learning”. The McGraw-Hill Companies, Inc. 1997.

[Mladenic, 02] Mladenic, D. “Web browsing using machine learning on text data”. In (P. S.
Szczepaniak, ed.), “Intelligent exploration of the web”, 111, Physica-Verlag, pp. 288–303,
2002.

[Mladenic, 04] Mladenic, D., Brank, J., Grobelnik, M., Milić-Frayling, N. “Feature Selection
using Linear Classifier Weights: Interaction with Classification Models”. Proceedings of the
27th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR-2004), Sheffield, UK, 2004, pp. 234–241.

[Mladenic, 99] Mladenic, D., Grobelnik, M. “Feature selection for unbalanced class distribution
and Naïve Bayes”. Proc. of the 16th Int. Conference on Machine Learning (ICML 1999). San
Francisco: Morgan Kaufmann, pp. 258–267, 1999.

1584 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

[Mladenic, 03] Mladenic, D., Grobelnik, M. “Feature selection on hierarchy of web
documents”. Journal of Decision support systems, 35, pp. 45-87, 2003.

[Mladenic, 06] Mladenic, D. “Feature Selection for Dimensionality Reduction”. In Craig, S. et.
al. (eds.), “Susbspace Latent Structure and Feature Selection techniques: Statistical and
Optimisation perspectives”, Springer Lecture Notes in Computer Science, vol. 3940, pp. 84-
102, 2006.

[Olsson, 06] Olsson, J. S., Oard, D. W. “Combining feature selectors for text classification”.
Proceeding of the 15th ACM International Conference on Information and Knowledge
Management (CIKM 2006), Arlington, VA, USA, pp. 798–799.

[Qiu, 08] Qiu, L.-Q., Zhao, R.-Y., Zhou, G., Yi, S.-W. “An extensive empirical study of feature
selection for text categorization”. Proceedings of the 7th IEEE/ACIS International Conference
on Computer and Information Science (ICIS 2008), Portland, OR, USA, May 14–16, 2008.

[Quinlan, 93] Quinlan, J.R.. “Constructing decision trees”. In: “C4.5: Programs for machine
learning”, pp. 17–26. Morgan Kaufmann, 1993.

[Rogati, 02] Rogati, M., Yang, Y. “High-performing feature selection for text classification”.
Proceedings of the 11th Conference on Information and Knowledge Management (CIKM-02),
McLean, VA, USA, 2002, pp. 659–661.

[Rosenblatt, 88] Rosenblatt, F.. “The Perceptron: A probabilistic model for information storage
and organization in the brain”. Psych. Review 65(6), 386-408, 1958. Reprinted in: J. A. D.
Anderson, E. Rosenfeld (Eds.), “Neurocomputing: foundations of research”. Cambridge, MA:
MIT Press, 1988.

[Salton, 88] Salton, G. and Buckley, C. “Term-weighting approaches in automatic text
retrieval”. Information Processing and Management, 24(5), pp.513–523, 1988.

[Schuetze, 95] Schuetze, H., Hull, D.A., Pedersen, O. J. “A comparison of classifiers and
document representations for the routing problem”. Proceedings of the 18th annual
international ACM SIGIR conference on Research and development in information retrieval
(SIGIR-95), pp. 229-237, ACM Press, 1995

[Sindhwani, 01] Sindhwani, V., Bhattacharya, P., Rakshit, S. “Information theoretic feature
crediting in multiclass Support Vector Machines”. Proceedings of the 1st SIAM International
Conference on Data Mining. SIAM, 2001.

[Shih, 02] Shih, L., Chang, Y., Rennie, J., Karger, D. “Not too hot, not too cold: The Bundled-
SVM is just right!” Workshop on Text Learning (TextML-2002), ICML, Sydney, Australia,
July 8, 2002.

[Yang, 97] Yang, Y., and Pedersen, J.O. “A Comparative Study on Feature Selection in Text
Categorization”. Proceedings of the 14th International Conference on Machine Learning
(ICML-97), pp. 412-420, 1997.

[Yang, 99] Yang, Y., Liu, X. “A re-examination of text categorization methods”. Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval SIGIR 1999, August 15–19, 1999, Berkeley, CA, USA, pp. 42–49.

[Yu, 07] Yu, B., Unsworth, J. “An evaluation of text classification methods for literary study”.
Digital Humanities 2007, University of Illinois, Urbana-Champaign, IL, USA, June 2007.

1585Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Appendix A: About the RCV1 Corpus

The RCV1 corpus, released on 3 November 2000 as “Reuters Corpus, Volume 1”,
contains 806,791 Reuters news articles from the period 20 August 1996 through 19
August 1997. They are distributed by Reuters in compressed form (ZIP files),
occupying approximately 984 MB of space. Each document is a small XML file and
when uncompressed these files have a total size of approximately 2,369 MB.

We only consider the body of each document, i.e., the contents of the 〈text〉
element in the XML file containing that document. The body of each document
contains an average of 1,180.13 non-whitespace characters (median: 883), thus the
total for the corpus is approximately 950 million characters (908 MB). Most of the
difference between this and the 2,369 MB quoted above is due to the meta-data
present in each file.

There are on average approx. 206.8 words in the body of a document (median:
150), or 118.8 (median: 88) if multiple occurrences of the same word in a document
are treated as one. However, if we ignore stop words (from a list of 523 stop words, of
which 519 actually appeared in the corpus), the average number of words in the body
of a document is 118.47 (median: 88), or 88.4388 (median: 65) if multiple
occurrences are treated as one. On the average, a term appears in 136.4 documents, or
96.42 if stop words are ignored; the median is 2 in both cases (329,226 terms occur in
only one document and 100,404 terms occur in only two documents).

There are 103 categories, organized hierarchically. For example, ccat is the
common super-category of all categories with names beginning in c; likewise there
are ecat, gcat, and mcat. In addition, if one category name is the prefix of another, the
latter category is a subcategory of the former. However, we did not take the
hierarchical structure of the categories into account. The sizes of categories vary
widely as can be seen in Table B1 in Appendix B. Further statistics of interest: a
document belongs to 3.20 categories on average (the median value is 3); 2,364
documents belong to no categories at all; 70% of the documents belong to 2 or 3
categories; one document belongs to 17 categories, none belong to more than 17.

Statistics such as these given here will of course depend somewhat on the
procedure used to break documents into words. Our procedure is as follows: (1)
convert the document into lowercase; (2) extract, from each paragraph, maximal
contiguous subsequences of non-whitespace characters; (3) for each such
subsequence: (3a) if it contains no alphabetic characters, discard it; (3b) otherwise,
strip leading and trailing non-alphanumeric characters, and report the remainder as a
term occurring in the current document. — This approach has the potentially welcome
characteristic of treating compounds consisting of two words connected with a
hyphen as single units but it would do the same for two words connected by a
sequence of dots, which sometimes occurs when such punctuation is used to simulate
tables in the documents. However, such occurrences are relatively rare.

1586 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Appendix B: Classification of 103 categories over Train-200

This section presents the results of preliminary experiments on which our choice of 16
categories for further work was based.

For these preliminary experiments, a smaller training set, called Train-200, was
prepared in the same way as the Train-1600 used elsewhere in this paper (see Section
4.2.1). Similarly, a test set, called Test-100, was prepared from the test period data
(analogously to the way Train-200 and Train-1600 were prepared from the training
period) to evaluate the performance of the classifiers. Train-200 consists of 19213
documents, and Test-100 consists of 9596 documents.

 Category BEP Size Category BEP Size Category BEP Size
 c11 0.3552 24 , 325 e12 0.6671 27,078 g159 0.0000 40
 c12 0.6299 11,944 e121 0.8051 2,182 gcat 0.8845 234,873
 c13 0.5227 37,410 e13 0.8353 6,345 gcrim 0.7612 32,219
 c14 0.6645 7,410 e131 0.7751 5,659 gdef 0.7169 8,842
 c15 0.7412 150,164 e132 0.9083 939 gdip 0.6732 37,739
 c151 0.7833 81,875 e14 0.8119 2,086 gdis 0.8106 8,657
 c1511 0.7673 23,212 e141 0.7155 376 gent 0.7119 3,801
 c152 0.5480 73,092 e142 0.8000 200 genv 0.6988 6,261
 c16 0.7257 1,920 e143 0.8684 1,206 gfas 0.8350 313
 c17 0.7557 41,829 e21 0.7243 43,128 ghea 0.6522 6,030
 c171 0.6966 18,313 e211 0.6368 15,768 gjob 0.8101 17,241
 c172 0.7600 11,487 e212 0.7596 27,405 gmil 0.0000 5
 c173 0.6441 2,636 e31 0.8300 2,342 gobit 0.7752 844
 c174 0.9262 5,871 e311 0.8101 1,701 godd 0.4394 2,802
 c18 0.7585 51,480 e312 0.6500 52 gpol 0.6518 56,878
 c181 0.6741 43,374 e313 0.9111 111 gpro 0.6740 5,498
 c182 0.6154 4,671 e41 0.8030 16,900 grel 0.7778 2,849
 c183 0.7484 7,406 e411 0.7246 2,136 gsci 0.7879 2,410
 c21 0.4357 25,403 e51 0.6612 20,722 gspo 0.9302 35,317
 c22 0.4306 6,119 e511 0.6798 2,933 gtour 0.8319 680
 c23 0.5821 2,625 e512 0.6261 12,634 gvio 0.7003 32,615
 c24 0.5396 32,153 e513 0.6522 2,290 gvote 0.7037 11,532
 c31 0.5935 40,506 e61 0.9100 391 gwea 0.7847 3,878
 c311 0.6911 4,299 e71 0.8818 5,270 gwelf 0.6967 1,869
 c312 0.5902 6,648 ecat 0.8503 117,539 m11 0.7549 48,700
 c313 0.4808 1,115 g15 0.8541 19,152 m12 0.7041 26,036
 c32 0.7308 2,084 g151 0.5317 3,307 m13 0.7610 52,972
 c33 0.6006 15,331 g152 0.4663 2,107 m131 0.7411 28,185
 c331 0.8319 1,210 g153 0.7534 2,360 m132 0.6885 26,752
 c34 0.7528 4,835 g154 0.8312 8,404 m14 0.8813 85,100
 c41 0.7756 11,354 g155 0.3922 2,124 m141 0.8522 47,708
 c411 0.7792 10,272 g156 0.6515 260 m142 0.8779 12,136
 c42 0.6855 11,878 g157 0.7865 2,036 m143 0.8895 21,957
 ccat 0.8711 374,316 g158 0.5767 4,300 mcat 0.8317 200,190
 e11 0.5650 8,568

Table B1: Category size and break-even-point performance statistics of the linear
SVM model for 103 Reuters categories over Train-200 data set

After discarding features occurring in less than 4 documents from Train-200,
each document was represented by a normalized TF-IDF vector. Each category was
treated as a two-class problem, and a linear SVM model was trained for it using the
documents from Train-200. This model was then tested on Test-100, and the resulting
precision-recall break-even point (BEP in the table below) was used as an indicator of
how difficult or easy that individual category is. Table B1 below reports the break-

1587Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

even points for all categories as well as the size of each category, i.e., the number of
the documents (from the full RCV1 corpus) that belong to the category. Note that the
full corpus contains 806,791 documents. The names of the 16 categories chosen for
further experiments are displayed in italics.

The selected 16 categories are used in experiments that involve various sets of
training and test data. The following table shows the names of the selected categories
and the number (and percentage) of positive examples for each of these categories
within several data sets. The document sets shown are: Train-1600 (the largest of the
sets actually used for training); Train-1/4 and Train-1/16 (subsets of Train-1600; see
Section 5.1 for details); the full training period (all documents dated 14 April 1997 or
earlier); the full test period (all documents dated after 14 April 1997); and the entire
RCV1 corpus.

Train-1/16

Train-1/4

Train-1600

Full training period

Full test period

Full RCV1
 (7432 docs.) (29731 docs.) (118924 docs.) (504468 docs.) (302323 docs.) (806971 docs.)

c13 702 (9.45%) 2,645 (8.90%) 9,895 (8.32%) 24,332 (4.82%) 13,078 (4.33%) 37,410 (4.64%)
c15 515 (6.93%) 2,199 (7.40%) 9,272 (7.80%) 89,373 (17.72%) 60,791 (20.11%) 150,164 (18.61%)
c183 128 (1.72%) 561 (1.89%) 2,240 (1.88%) 4,715 (0.93%) 2,691 (0.89%) 7,406 (0.92%)
c313 50 (0.67%) 197 (0.66%) 741 (0.62%) 741 (0.15%) 374 (0.12%) 1,115 (0.14%)
e121 101 (1.36%) 380 (1.28%) 1,444 (1.21%) 1,444 (0.29%) 738 (0.24%) 2,182 (0.27%)
e13 217 (2.92%) 883 (2.97%) 3,053 (2.57%) 4,135 (0.82%) 2,210 (0.73%) 6,345 (0.79%)
e132 47 (0.63%) 199 (0.67%) 602 (0.51%) 602 (0.12%) 337 (0.11%) 939 (0.12%)
e142 16 (0.22%) 67 (0.23%) 135 (0.11%) 135 (0.03%) 65 (0.02%) 200 (0.02%)
e21 510 (6.86%) 2,158 (7.26%) 8,484 (7.13%) 27,031 (5.36%) 16,097 (5.32%) 43,128 (5.35%)
ghea 205 (2.76%) 733 (2.47%) 2,616 (2.20%) 3,963 (0.79%) 2,067 (0.68%) 6,030 (0.75%)
gobit 44 (0.59%) 148 (0.50%) 551 (0.46%) 551 (0.11%) 293 (0.10%) 844 (0.10%)
godd 120 (1.61%) 430 (1.45%) 1,642 (1.38%) 1,798 (0.36%) 1,004 (0.33%) 2,802 (0.35%)
gpol 590 (7.94%) 2,385 (8.02%) 9,867 (8.30%) 36,650 (7.27%) 20,228 (6.69%) 56,878 (7.05%)
gspo 100 (1.35%) 449 (1.51%) 1,931 (1.62%) 22,876 (4.53%) 12,441 (4.12%) 35,317 (4.38%)
m14 557 (7.49%) 2,325 (7.82%) 9,812 (8.25%) 50,543 (10.02%) 34,557 (11.43%) 85,100 (10.55%)
m143 133 (1.79%) 608 (2.05%) 2,649 (2.23%) 13,121 (2.60%) 8,836 (2.92%) 21,957 (2.72%)

Table B2: Distribution of positive examples for the 16 selected Reuters categories
in various data sets used in the experiments.

1588 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Appendix C: Number of features and sparsity statistics

The following table shows the relationship between the number of features retained in
the feature set and the sparsity, i.e., the average number of non-zero components in
the corresponding vector representations of documents in a given set. The statistics
presented here are obtained over the Train-1600 data set.

Number of

features Odds ratio Information
gain svm-1/16 svm-1/4 svm-1

10 0.002 0.542 0.271 0.270 0.301
20 0.004 0.998 0.559 0.507 0.534
30 0.005 1.446 0.786 0.796 0.777
50 0.007 2.224 1.238 1.292 1.222
75 0.009 3.172 1.772 1.804 1.733

100 0.015 4.111 2.249 2.301 2.270
200 0.037 7.123 4.187 4.266 4.328
300 0.074 9.708 6.140 6.322 6.074
500 0.152 14.040 9.674 9.703 9.132
750 0.343 17.966 13.612 13.261 12.464

1000 0.634 21.339 17.044 16.453 15.333
2000 2.583 30.405 28.025 26.385 24.319
3000 6.152 35.989 36.253 33.477 30.769
5000 11.158 43.087 48.674 44.405 40.914
7500 17.900 48.364 58.597 53.896 49.829

10000 25.689 51.566 65.621 60.790 56.088
20000 56.612 57.138 79.338 75.700 71.944
30000 70.085 60.469 83.996 82.288 79.682
40000 73.803 62.900 85.622 85.210 83.959
50000 75.002 66.192 86.587 86.535 86.137
60000 76.221 70.803 87.389 87.377 87.261
70000 79.046 78.843 87.980 88.007 87.910
75839 88.266 88.266 88.266 88.266 88.266

Table C1: Sparsity levels achieved on the Train-1600 document set by retaining a
given number of top ranked features for each of the five feature scoring methods.

Each feature scoring method implies a ranking of features. Limiting the document
representation to the highest scoring N features reduces the average number of terms
that remain in a document and hence the average number of non-zero components in
the vectors representing the documents. It is interesting to see the difference in the
achieved sparsity of the document representations for the same number of features
retained for each of the five considered feature ranking methods: odds ratio,
information gain, and three normal based feature selections.

1589Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Appendix D: Detailed experimental results of SVM

This appendix provides some details on experiments with SVM-based feature
selection, as the best performing feature weighting measure and the linear SVM
classifier, as the best performing algorithm. Figures D1, D2, D3, D4 contain graphs
that show the SVM classification performance based on macro-averages of four
measures: F1, break-even-point (BEP), precision, and recall (notice that the same
graph for F1 as in Figure D2 is also given in the paper in Figure 6) . The test set has
been divided into ten folds, and the macroaveraged value (i.e., average over all
categories) of each performance measure has been calculated separately for each fold.
The average of this over all ten folds is then shown in the charts. (Thus, references to
“average precision” in the charts should not be confused with average 11-point
precision, another popular performance measure, which however we have not
employed in these experiments.)

Macroaveraged F1, full training set

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Figure D1. Macroaveraged F1 performance of different feature selection methods in
combination with the SVM classifier. The horizontal axes refer to sparsity, the
average number of nonzero components per training vector.

1590 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Macroaveraged break-even point, full training set

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Axis Title

A
ve

ra
ge

 b
re

ak
-e

ve
n

po
in

t o
ve

r t
he

 te
st

 s
et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Figure D2. Macroaveraged break-even-point performance of different feature
selection methods in combination with the SVM classifier. The horizontal axes refer to
sparsity, the average number of nonzero components per training vector.

Although the above results show that feature selection generally does not improve
performance of the linear SVM classifier, we can see that the SVM normal-based
feature selection with sparsity S = 80 does produce a statistically significant
improvement over the performance of vectors with the complete feature set which
corresponds to S = 88.3.

Feature selection
method

Number and percentage of
features retained at S = 80

Macroaveraged
F1 at S=80

P-value from
t-test

Odds ratio 57,197 75.42 % 0.6857 ± 0.0053 0.119
Information gain 60,234 79.42 % 0.6843 ± 0.0047 0.315
Svm-1/16 20,316 26.79 % 0.6789 ± 0.0050 0.118
Svm-1/8 22,274 29.37 % 0.6859 ± 0.0048 0.099
Svm -1/4 24,338 32.09 % 0.6864 ± 0.0050 0.051
Svm- 1/2 26,303 34.68 % 0.6894 ± 0.0050 0.002
Svm -1 28,638 37.76 % 0.6904 ± 0.0050 0.003
Full feature set 75,839 100.00 % 0.6837 ± 0.0049

Table D1. Linear SVM performance with different feature selection methods at S = 80

The test set has been split into ten folds and the macro-average of F1 computed
for each fold. Averages and standard errors across these ten folds are shown. The last

Average number of nonzero components per vector in the training set

1591Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

column shows the p-value from the t-test comparing the performance of the linear
SVM classifier for each feature weighting method at S = 80 with the performance for
full document vectors (S = 88.3). We observe that at S = 80 the performance is
never significantly worse and for svm-1/2 and svm -1 it is significantly better than the
performance with full vectors. A more systematic analysis of this phenomenon, e.g.,
exploration of the effects of sparsities S = 85, 75, 70, etc., will be subject of future
research.

Macroaveraged precision, full training set

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 10 100

Axis Title

A
ve

ra
ge

 p
re

ci
si

on
 o

ve
r t

he
 te

st
 s

et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Figure D3. Macroaveraged precision performance of different feature selection
methods in combination with the SVM classifier. The horizontal axes refer to sparsity,
the average number of nonzero components per training vector.

Note that the number of features that needs to be retained to achieve a desired
level of sparsity varies from category to category since each classifier gives rise to a
different feature ranking. Shown here are averages across the 16 categories
considered.

The statistics in Table D1 show that the normal-based feature selection discards
as many as 60% to 75% of features to achieve the sparsity of S = 80. In some cases,
even greater sparsities can be reached without significantly decreasing the
performance. This can be seen in Table D2, which shows that svm-1 at sparsity 40
actually still performs significantly better than full vectors, while the performance of
svm-1/2 and svm-1/4 at sparsity 40, and that of svm-1 at sparsity 20, is not significantly
different from the performance of the full feature set.

Average number of nonzero components per vector in the training set

1592 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Feature selection
method

Sparsity

Number and percentage of
features retained

Macroaveraged
F1

P-value from
t-test

svm-1/4 40 4278 5.65 % 0.6831 ± 0.0056 0.409

svm-1/2 40 4628 6.11 % 0.6842 ± 0.0042 0.436

svm-1 20 1545 2.04 % 0.6786 ± 0.0037 0.124

svm-1 40 5079 6.70 % 0.6905 ± 0.0045 0.030

Full feature set 88.3 75839 100.00 % 0.6837 ± 0.0049

Table D2. Linear SVM performance with different feature selection methods at S = 40
and 20.

Macroaveraged recall, full training set

0.48

0.53

0.58

0.63

0.68

1 10 100

Axis Title

A
ve

ra
ge

 re
ca

ll
ov

er
 th

e
te

st
 s

et

odds ratio information gain normal-1/16 normal-1/8
normal-1/4 normal-1/2 normal-1

Figure D4. Macroaveraged recall performance of different feature selection methods
in combination with the SVM classifier. The horizontal axes refer to sparsity, the
average number of nonzero components per training vector.

D1. Training on the full training period

In the experiments presented so far, the largest training set, and the one used most of
the time, was Train-1600, which consists of 118,924 documents, selected from the
training period of documents dated 14 April 1997. However, the entire training period
contains 504,468 documents, i.e., almost four times as many. Thus it is natural to ask
how much we lose by limiting ourselves to training on the approximately 24% of the
training documents (i.e., those included in Train-1600). Because it would be too time-

Average number of nonzero components per vector in the training set

1593Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

consuming to conduct an exhaustive set of experiments on the full training period, we
only trained one model for each category, without any feature selection. We compare
the results with the performance of the linear SVM model trained on Train-1600, also
without any feature selection applied.

As can be seen from Table D3, training on Train-1600 tends to yield better
performance for smaller categories but poorer for larger categories, while the contrary
is true when training on the entire training period. The set of positive examples for
small categories is in fact the same in both training sets, implying that it is the relative
representation of the category within the training set that causes the difference in
performance. Recall that the sampling procedure by which Train-1600 was obtained
tends to make sure that smaller categories are well represented at the expense of the
larger ones which may cover a relatively smaller proportion of documents than they
do in the full training period. This also explains why the results over Train-1600 have
a higher macroaveraged F1 but a lower microaveraged F1 than over the full training
period.

Category Train-1600 (118,924 docs.) Entire training period (504,468 docs.)

name Size F1 BEP Size F1 BEP
c13 9,895 (8.32%) 0.4891 0.5504 24,332 (4.82%) 0.5186 0.5873
c15 9,272 (7.80%) 0.8956 0.9024 89,373 (17.72%) 0.9167 0.9169

c183 2,240 (1.88%) 0.7469 0.7457 4,715 (0.93%) 0.7283 0.7572
c313 741 (0.62%) 0.3467 0.3603 741 (0.15%) 0.0804 0.2935
e121 1,444 (1.21%) 0.7442 0.7602 1,444 (0.29%) 0.7720 0.7585
e13 3,053 (2.57%) 0.7917 0.9715 4,135 (0.82%) 0.8036 0.7961

e132 602 (0.51%) 0.8109 0.8267 602 (0.12%) 0.8360 0.8453
e142 135 (0.11%) 0.4632 0.5280 135 (0.03%) 0.3582 0.4920
e21 8,484 (7.13%) 0.8129 0.8154 27,031 (5.36%) 0.8254 0.8315

ghea 2,616 (2.20%) 0.6442 0.6497 3,963 (0.79%) 0.6269 0.6532
gobit 551 (0.46%) 0.3838 0.4360 551 (0.11%) 0.1722 0.5157
godd 1,642 (1.38%) 0.2687 0.3701 1,798 (0.36%) 0.0829 0.3807
gpol 9,867 (8.30%) 0.7146 0.7260 36,650 (7.27%) 0.7437 0.7562
gspo 1,931 (1.62%) 0.9653 0.9761 22,876 (4.53%) 0.9792 0.9802
m14 9,812 (8.25%) 0.9398 0.9413 50,543 (10.02%) 0.9470 0.9478

m143 2,649 (2.23%) 0.9224 0.9257 13,121 (2.60%) 0.9264 0.9285
Macroaverage 0.6837 0.7178 0.6448 0.7150
Microaverage 0.8461 0.8635

Table D3. Comparison of the performance on test data of the SVM classifiers trained
on Train-1600 and those trained on the full training period. No feature selection was
performed in either case.

However, part of the extremely poor F1 performance of classifiers for some of the
smaller categories (e.g., c313) when trained on the entire training period may also be
due to a poorly chosen threshold b. Indeed, the breakeven point measure (also shown
in Table D3), which involves calculating precision and recall of the document ranking
based on scores that involve only the normal w, does not suffer such an extreme
decrease when the full training period is involved.

The time needed to train all 16 models (one for each category) was 2,435 s when
working with Train-1600 and 15,769 s when working with the entire training period
(these timings were obtained on a computer with a 700 MHz PIII processor and 1 GB
main memory).

1594 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

D1. Combining feature weightings from several training data subsets

In comparing the sparsity behavior of the svm-1/16 weighting, obtained from a smaller
set of documents (Train-1/16), with that of svm-1, obtained from the full Train-1600
set, we have seen that part of the difference stems from the inability of svm-1/16 to
consider more documents at the same time, but part of it also stems from the simple
fact that many features from Train-1600 simply never occur in Train-1/16, hence svm-
1/16 has no good alternative but to assign them a weight of 0. This in turn affects the
classification performance of models based on the resulting feature ranking.

Since one of the objectives is to maximize the effectiveness of feature selection
from smaller subsets of data, we explore the ways to increase the pool of features
from which the final selection is made. (This will address the second of the two
above-mentioned reasons of the poorer performance of weightings based on smaller
subsets.) We consider the following extension of the feature weighting procedure: (1)
obtain several subsets of the basic training set (i.e., subsets of Train-1600); (2) train a
linear SVM model on each of the subsets; (3) from each model, assign a weight to each
feature, equal to the absolute value of the corresponding component of the normal; (4)
obtain the final weight of a feature by combining the weights obtained from models
trained on individual subsets. In our preliminary experiments we used the average and
the maximum as combining functions in step (4), and observed no significant
differences between the two. Thus we decided to use the maximum in the following
experiments.

The rationale behind this approach is that it allows us to work within the same
memory limits as by limiting ourselves to a single small subset of the training set,
while it also permits us to process all the documents and give all the features a chance
to obtain a weight. It also helps reduce bias that would be introduced by the choice of
a single subset.

To test this idea, we divided the Train-1600 into 16 random disjoint subsets,
without any particular regard for the distribution of categories within each of the 16
subsets. Thus, since the combined weightings approach needs to consider only one of
the subsets at the same time, and because the subsets are approximately 1/16 the size of
the full training set, its memory requirements should be similar to those for svm-1/16.

1595Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

Macroaveraged F1, full training set

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 10 100

Average number of nonzero components per vector over the training set

A
ve

ra
ge

 F
1

ov
er

 th
e

te
st

 s
et

normal-1/16 normal-1/4 normal-1 Combined weightings

Figure D5. Macroaveraged precision performance of different feature selection
methods in combination with the SVM classifier. The horizontal axes refer to sparsity,
the average number of nonzero components per training vector.

The chart on Figure D5 shows a performance comparison of the combined feature
weighting approach as described above and the svm-1/16, svm-1/4, and svm-1
weightings. As can be seen from the chart, the performance of the combined
weightings approach is roughly halfway between those for svm-1/16 and svm-1, and is
indeed comparable to the performance of svm-1/4. In addition, the combined
weightings approach performs particularly well at lower sparsity levels, which
suggests that combining several weightings is a comparably robust feature weighting
method.

Concerning the time requirements of the combined weighting approach, note that
it actually takes less time to train n models on subsets 1/n the size of the full training
set than to train one model on the full training set, because the training of an SVM
model is not a linear-time algorithm. In order to obtain feature weightings for all 16
categories used in our experiments, the combined weighting approach requires
1,214 s, while svm-1 required 3,934 s; however, svm-1/4, which is comparable in
performance to the combined weighting approach, only requires 546 s. Incidentally,
these figures suggest that, for the version of SvmLight we were using, the running
time of SVM training (for N training documents) is on the order of O(N1.43).

1596 Brank J., Mladenic D., Grobelnik M., Milic-Frayling N.: Feature Selection ...

