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Abstract: Feature selection methods are often applied in the context of document 
classification. They are particularly important for processing large data sets that may contain 
millions of documents and are typically represented by a large number, possibly tens of 
thousands of features. Processing large data sets thus raises the issue of computational 
resources and we often have to find the right trade-off between the size of the feature set and 
the number of training data that we can taken into account. Furthermore, depending on the 
selected classification technique, different feature selection methods require different 
optimization approaches, raising the issue of compatibility between the two. We demonstrate 
an effective classifier training and feature selection method that is suitable for large data 
collections. We explore feature selection based on the weights obtained from linear classifiers 
themselves, trained on a subset of training documents. While most feature weighting schemes 
score individual features independently from each other, the weights of linear classifiers 
incorporate the relative importance of a feature for classification as observed for a given subset 
of documents thus taking the feature dependence into account. We investigate how these 
feature selection methods combine with various learning algorithms. Our experiments include a 
comparative analysis of three learning algorithms: Naïve Bayes, Perceptron, and Support 
Vector Machines (SVM) in combination with three feature weighting methods: Odds ratio, 
Information Gain, and weights from the linear SVM and Perceptron. We show that by 
regulating the size of the feature space (and thus the sparsity of the resulting vector representa-
tion of the documents) using an effective feature scoring, like linear SVM, we need only a half 
or even a quarter of the computer memory to train a classifier of almost the same quality as the 
one obtained from the complete data set. Feature selection using weights from the linear SVMs 
yields a better classification performance than other feature weighting methods when combined 
with the three learning algorithms. The results support the conjecture that it is the sophistication 
of the feature weighting method rather than its compatibility with the learning algorithm that 
improves the classification performance.  
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1 Introduction  

In classification of text documents, feature selection is typically used to achieve two 
objectives: (1) to reduce the size of the feature set used for data representation and 
thus optimize the use of computing resources and (2) to remove noise from the data in 
order to optimize the classification performance. A number of standard methods, such 
as stop word removal or linguistic normalization using stemming, are routinely 
applied and contribute to the reduction of the feature space, memory consumption, 
and processing time. In addition, further reduction is achieved by removing less 
‘relevant’ features. This is typically a two step process. First, the features are scored 
in accordance with a weighting scheme believed to reflect the importance of the 
feature for a given task and then a subset of features, typically the top N scored 
features, are used for further processing. 

A fundamental question that arises in practice is the relationship between the 
scoring method for feature selection and the classification model that further uses 
these features. Are there compatibility criteria that the two should satisfy in order to 
yield optimal classification performance? In a study of the Naïve Bayes text classifier 
[Mladenić, 99] the feature selection based on Odds ratio scores consistently lead to 
statistically significant improvements in comparison to the classification performance 
with the full feature set. This was attributed to the fact that the feature selection 
method was ‘compatible’ with the classification algorithm used. Indeed, the statistics 
used to compute Naïve Bayes and Odds ratio scores appear compatible in the sense 
that the features with the higher Odds ratio weights are expected to contribute more to 
the document scores assigned by the Naïve Bayes classifier. Thus, feature selection 
based on Odds ratio weights is expected to be effective in tuning the performance of  
Naïve Bayes. In order to gain more insight into this question, we explore whether for 
linear classifiers, for example, we can use the classifier itself to score and select 
features for classification [Mladenić, 04]. This approach has two advantages. First, it 
investigates the ultimate ‘compatibility’ between the feature weighting and document 
classification method since the selection and classification both use the same scoring. 
Second, it introduces a class of feature weighting functions which effectively take into 
account the whole set of features in the representation of documents and score the 
features relative to their contribution to the classification task. 

The second practical issue is processing of large datasets and optimizing 
available computing resources. Most research of classification and feature selection 
techniques has been evaluated on smaller data sets, such as Reuters-21578 comprising 
25 MB of text documents. Nowadays, operational systems have to deal with both 
large data sets and a wide range of computing platforms and devices, including those 
with limited computing resources. At the same time the efficiency of many learning 
algorithms relies upon the assumption that the data set is represented by a small 
feature set. Namely, in the internal representation of documents they use the fact that 
each document contains only a small subset of the whole vocabulary and thus the 
corresponding vector representation of this document (containing e.g. term 
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frequencies or TF-IDF weights) is sparse, i.e. most of its components have the values 
zero. For efficiency of processing, a sparse vector is commonly stored in a way such 
that only its nonzero components are represented explicitly (e.g., instead of having an 
array of dimension equal to the vocabulary size it is represented with a list of words 
that is much shorter than the vocabulary size). For the purposes of our discussion, we 
define the “sparsity” of a dataset as the average number of nonzero components in the 
vectors representing the documents of this dataset. Since only the nonzero 
components are stored and processed explicitly, one expects that it is the sparsity of 
the vector representation rather than the vocabulary size that influences the 
performance efficiency and the usage of the computing resources. Is there an effective 
way to select feature and optimize performance for the given computing resources? 
Using sparsity (defined as an estimated average number of non-zero vector 
components) to specify the cut-off criteria for feature selection is a natural step to take 
[Brank, 02]. 

Furthermore, in practice we often face the question: given a large collection of 
training data and a limited computing resource, what is the right trade-off between the 
size or sparsity of the feature space and the number of documents used for classifier 
training. In this paper we propose to deal with large document collections by using a 
subset of documents to select the features for representing the whole document 
collection. More precisely, we apply an iterative procedure that typically involves a 
subset of training data to train a classifier for the sole purpose of identifying a subset 
of useful features. The trained classifier is analysed to get the feature subset from the, 
classification model (for instance, nodes of the decision trees, normal of the linear 
models, features in the if-then rules). We have experimentally evaluated two linear 
classifiers: linear Support Vector Machines (SVM) and Perceptron. The weights of 
the generated linear model (i.e., the normal to the hyperplane that separates the 
classes) are used to rank features and select a smaller subset based on the sparsity 
requirement. In the second iteration the full set of data is represented in the reduced 
feature space and used to train the classifiers. The resulting classifiers are applied to 
the new test data. We observe how this type of feature selection method combines 
with its ‘own’ classification model and with others. Furthermore, we explore how 
feature selection methods can be used to make tradeoffs between the amount of 
training data and the sparsity of the document representation, given a fixed amount of 
system memory. Our experimental results show that selecting feature based on the 
linear-SVM model provides a suitable way of preserving the classification 
performance while significantly reducing the size of the feature space and increasing 
the sparsity of data. 

The main contributions of our work include: (1) a broader perspective on the 
feature selection task that involves using linear classifiers themselves to address that 
issue, (2) an iterative method for tuning document representation and classifier 
performance that is suitable for large data sets, and (3) empirical data about the 
behavior of learning methods when combined with various feature selection methods. 
These experimental data enable us to make an informed conjecture on the 
compatibility of feature selection methods and the learning algorithm. They suggest 
that it is the sophistication of the feature selection method rather than similarity with 
the underlying learning algorithm that plays the crucial role in optimizing the 
classification performance. In particular, methods such as feature selection using 
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weights of a linear SVM model, which take into account statistical properties of all 
the features and documents simultaneously, tend to perform generally better across all 
the learning algorithms that we examined. 

The paper is structured in the following way. We first give a brief description of 
the related work followed by the description of text classification methods and feature 
scoring that we use in our experiments. Then we describe the data, the data sampling 
strategy, and the experiment set-up. We discuss the experiment results and conclude 
with the summary of observations and an outline of the future work. 

2 Related Work 

Feature selection in Machine learning [Mitchell, 97] can be performed in different 
ways [Guyon, 03]. Simple filters, commonly used approach when dealing with a large 
number of features, involve pre-processing of the data to score each feature 
independently of each other and represent the data only by a subset of the top ranked 
features. 

Feature scoring is usually performed in a supervised way (taking the class value 
into account), for instance, by measuring the expected cross entropy between the 
feature and the class, but often ignoring the relation with other features. Numerous 
scoring measures have been proposed including information gain, odds ratio, χ2, term 
strength, etc. For detailed description of feature selection approaches and 
dimensionality reduction see [Mladenic, 06; Forman, 07]. 

It is important to note that feature scoring and selection can have a different effect 
on different classification models. Information gain, originally used in decision tree 
induction [Quinlan, 93] was reported to work well as a feature scoring with the k-
nearest-neighbor classification algorithm on textual data [Yang, 97], while it 
performed much worse with Naïve Bayes on the binary classification problems 
[Mladenic, 03]. Expected cross entropy (modified Information gain) seems to work 
well with Naïve Bayes [Koller, 97] and in some cases significantly outperforms 
Information gain [Mladenic, 03]. Fisher-index was proposed for scoring features in 
document retrieval [Chakrabarti, 98], but no experiments in document classification 
have been reported. There has also been an increase of interest in the combination of 
multiple feature scoring heuristics [Olsson, 06; Qiu, 08]. Odds ratio and an SVM-
based approach have also been applied to text classification for the purposes of 
literary study [Yu, 07]. 

Comparison of different feature selection measures in combination with the 
Support Vector Machines classification algorithm (SVM) has shown that using all or 
almost all the features usually yields the best performance [Brank, 02; Rogati, 02; 
Forman, 03], although in certain situations feature selection can also improve the 
performance of SVM. Thus [Gabrilovich, 04] found that feature selection helps in 
classification tasks where a small number of relevant terms are sufficient to classify 
the documents and the vast majority of terms are redundant or irrelevant; [Forman, 
03] reports that feature scoring using Bi-Normal Separation can improve the 
performance of SVM on problems with a highly unbalanced class distribution; [Qiu, 
08] reports improved performance of SVM with several variants of feature selection 
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based on the χ2-heuristics. Thus while the SVM does not generally benefit from 
feature selection, sometimes it can benefit from it nevertheless. 

Feature scoring and selection can be more or less coordinated with the 
classification model, in the sense that they may be governed by the same or distinct 
theoretical models. It has been a common practice to explore the impact of various 
feature selection methods in combination with different classification methods. For 
example, an approach for scoring features based on SVM has been proposed in 
[Gärtner, 01], where SVM is used with a special kernel to learn the weights of 
features for use with a Naïve Bayes classifier. Some feature scoring methods 
coordinate feature selection and classification by taking the performance of 
classification model based on a set of features as the scoring value of that set of 
feature (e.g., [John, 94]). However, this is a rather time consuming process where 
evaluation of each feature set requires construction of several classification models - 
cross validation is commonly used to obtain average performance). On the other hand, 
there were conscious attempts to create feature selection methods that are compatible 
with the feature scoring of a particular classifier. In that respect feature scoring using 
odds ratio is seen as a good match for the Naïve Bayes classifier and has been shown 
to improve its performance [Mladenic, 03]. While the idea of preserving the integrity 
of a theoretical framework is attractive, it is not feasible unless the framework 
includes an inherent mechanism for feature selection. This is typically not the case 
with classification methods (more specifically, it may often be possible to obtain a 
feature ranking or weighting, indicating which features may be preferable over others, 
but without clear guidelines on how many features to keep) and thus we are inevitably 
guided by external factors when designing the selection criteria. 

As already mentioned, the feature scoring measures that are usually applied on 
text, assign a score to a feature independently of the other features. Our work 
proposes a feature scoring based on an induced classifier that we see as more 
sophisticated, as it considers statistical properties of all the features and documents 
simultaneously (unlike many widely-used feature scoring heuristics, such as 
information gain and odds ratio, which evaluate each feature separately from other 
features). This can be considered as an alternative to the traditional higher-order 
feature selection methods, such as those based on mutual information [Bakus, 06]. We 
compare the effect of feature selection based on the proposed approach (using weights 
from a linear model) with two feature scoring measures that have been reported 
successful in text classification: information gain and odds ratio (see Section 3.2 for 
details on the scoring measures). These two scoring measures are interesting also 
because they seem to prefer different types of features: information gain is known for 
its tendency to prefer common features over extremely rare ones, while the odds ratio 
ranks rare features highly as long as they are exclusively characteristic of positive 
class instances. 

3 Feature Selection on Very Large Document Collections 

In situations where there is an abundance of training data it is conceivable that 
classifier training cannot be performed over the full set of data because of the limited 
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computing resources. The question then arises how to train a given classifier in a way 
that the whole training set is still taken into account. 

Here we present a simple procedure that has proven quite effective, as our 
experimental results show. We first train linear Support Vector Machines (SVM) or 
Perceptron on a subset of training data to create an initial classifier. Then we select a 
subset of features to achieve a sufficiently sparse representation of data that allows us 
to include the whole set of documents. Finally, we train a classifier in the reduced 
feature space and evaluate its performance on the test data, as commonly done in 
machine learning. 

In SVM and Perceptron models, each classifier is a hyperplane separating 
‘positive’ and ‘negative’ examples for the class. The hyperplane is represented by the 
normal, i.e., a vector perpendicular to the hyperplane. Each feature is included in the 
normal with a weight that contributes to the final document score and influences the 
classification. In the feature selection step, we rank all the features based on their 
weight in the normal and retain a subset by controlling the sparsity (which is defined 
as the average number of non-zero components in the vector representation of data, 
or, equivalently, the average number of terms used to represent documents). 

This approach takes advantage of the memory freed as a result of the increased 
data sparsity to include a larger training set while keeping the memory consumption 
constant. In the experimentation setting we evaluate the performance for various 
sparsity levels to identify the optimal tradeoff. In principle, the feature selection phase 
could include a separate validation set to suggest possible tradeoffs between sparsity 
and performance; alternatively, memory limitations may dictate what level of sparsity 
is necessary. Here we investigate the iterative feature selection for a spectrum of 
sparsity levels, focusing primarily on the interaction of feature selection and 
classification methods. 

4 Learning Algorithms and Feature Selection Methods 

In this study we investigate three learning algorithms: Naïve Bayes, Perceptron, and 
Support Vector Machines (SVM), and three feature scoring methods: Odds ratio, 
Information Gain, and weights from the linear models. In the case of the selected 
learning algorithms, feature selection can be considered a pre-processing phase and 
thus each of the feature scoring methods can be combined with each of the learning 
algorithms. While we are looking at a limited number of methods, we expect that 
studying their performance over large data sets will provide valuable insights into the 
nature of feature selection methods and their compatibility with classification models. 

4.1 Learning Algorithms 

4.1.1 Naïve Bayes 

We use the multinomial model as described by [McCallum, 98]. The predicted class 
for a given document d is the one that maximizes the posterior probability of the 
class, P(c|d) ∝ P(c) Πt P(t|c)TF(t, d), where P(c) is the prior probability that a document 
belongs to class c, P(t|c) is the probability that a word chosen randomly in a document 
from class c equals t, and TF(t, d) is the “term frequency”, or the number of occurren-
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ces of the word t in the document d. Where there are only two classes, say c+ and c–, 
maximizing P(c|d) is equivalent to taking the sign of ln P(c+|d)/P(c–|d), which is a 
linear combination of TF(t, d). Thus the Naïve Bayes classifier can be seen as a linear 
classifier as well. The training consists simply of estimating the probabilities P(t|c) 
and P(c) from the training documents, where we are using Laplace probability 
estimate. 

4.1.2 Perceptron 

The Perceptron algorithm [Rosenblatt, 88] trains a linear classifier in an incremental 
way as a neural unit using an additive update rule. The prediction for a document 
represented by the vector x is sgn(wTx), where w is a vector of weights obtained 
during training. Let xi be the i-th training vector, and yi its corresponding class label 
(yi = +1 for a positive document, yi = –1 for a negative one). The training starts with 
w = 0, then considers each training example xi in turn. If the present w classifies xi 
correctly it is left unchanged, otherwise it is updated according to the additive rule: 
w ← w + yixi. To implement a variable threshold in the classifier, we extend, before 
training, each vector with an additional component with the value of 1; the 
corresponding component of the weight vector w then functions as a threshold. 

4.1.3 Support Vector Machine 

The Support Vector Machine (SVM) [Cortes, 95], when used with a linear kernel, 
trains a linear classifier of the form prediction(x) = sgn(wTx + b). That is, the space of 
possible vectors x is divided by the hyperplane wTx + b = 0, where w is a normal of 
the hyperplane (i.e. a vector perpendicular to it), and b is a scalar which defines the 
plane’s location in space. Learning is posed as an optimization problem with the goal 
of maximizing the margin, i.e., the distance between the separating hyperplane 
wTx + b = 0 and the nearest training vectors. The vector of weights w = (w1,...,wd) can 
be computed and accessed directly. Geometrically, the predictor uses a hyperplane to 
separate the positive from the negative instances, and w is the normal to this 
hyperplane. An extension of this formulation, known as the soft margin, also allows 
for a wider margin at the cost of misclassifying some of the training examples. The 
dual form of this optimization task is a quadratic programming problem and can be 
solved numerically. We used the SvmLight program [Joachims, 99] to train the SVM 
models. This program is particularly suitable for our purposes because it is optimizied 
for computations with linear kernels. In all the experiments reported in this paper, we 
used the linear error cost (L1) formulation of SVM. (For Naive Bayes and Perceptron, 
we used our own implementation of these two learning algorithms.) 

We selected the linear version of the SVM and Perceptron models for our study 
because the existing literature indicates that for the text classification problem the 
nonlinear versions of these algorithms gain very little in terms of performance 
[Joachims, 98]. 

4.2 Feature Selection Methods  

The three feature selection methods that we consider in our study involve the same 
procedure: assigning a weight to each feature, ranking the features based on the 
weights, and retaining only a specified number of features. 
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4.2.1 Odds ratio 

Let P(t|c) be the probability of a randomly chosen word being t, given that the 
document it was chosen from belongs to a class c. Then odds(t|c) is defined as 
P(t|c)/[1–P(t|c)] and the odds ratio equals to 

OR(t) = ln[odds(t|c+)/odds(t|c–)]. 

This formula is not symmetric with respect to which class we select as positive c+ 
and which as negative c–. Obviously, this scoring measure favors features that occur 
in positive examples rather than in negative ones. As a result a feature that occurs 
very few times in positive documents but never in negative documents will get a 
relatively high score. Thus, many features that are rare among the positive will be 
ranked at the top of the feature list. In this manner rare rather than representative 
features of the positive documents obtain high scores. 

Odds ratio is known to work well with Naïve Bayes [Mladenic, 99] for 
categorizing web pages in a collection specially built for profiling web users 
[Mladenic, 02] and for classifying web pages into Yahoo! topic categories [Mladenic, 
03]. In the latter case, an increase in the F2 measure (from 0.13 to 0.6) was reported 
when only 0.2% to 5% of the original features were kept. Odds ratio has also been 
found to work particularly well in combination with bi-normal separation by Forman 
[Forman, 03]. A measure designed on similar principles, called “feature strength”, has 
been used in a semi-supervised setting by Fung et al. [Fung, 05]. In our experiments 
we used a smoothed version of the original formula avoiding singularities, as also 
used in [Mladenic, 99]; namely, if P(t|c) = 0, the value 1/n2 (where n is the number of 
documents in the training set) is used instead of 0 when computing the odds. Thus the 
resulting odds are always strictly between 0 and 1. 

4.2.2 Information gain 

In calculating the information gain score we treat both the class membership and the 
presence or absence of a particular term as random variables. We compute how much 
information about the class membership is gained by knowing the term presence or 
absence statistics (as is used in the decision tree induction, e.g., in Quinlan, 1993). 
Indeed, if the class membership is interpreted as a random variable C with two values, 
positive and negative, and a term is likewise seen as a random variable T with two 
values, present and absent, then using the information-theoretic definition of mutual 
information we may define information gain as: 

IG(t) = H(C) – H(C|T) = Στ,c P(C=c,T=τ) ln[P(C=c,T=τ)/P(C=c)P(T=τ)]. 

Here, τ ranges over {present, absent} and c ranges over {c+, c–}. As pointed out 
above, this is the amount of information about the class label C gained by knowing T, 
the presence or absence of a given word.  The entropy is defined as H(X) = ∑x P(X=x) 
ln P(X=x). 

The information gain therefore measures how much we learn about C by knowing 
T, since H(C|T) measures how much remains unknown about C if we know T; hence 
the term “information gain”. On the other hand, it is also equivalent to [H(C) + H(T)] 
– H(C, T), which can be interpreted as the amount of information that each of these 
variables C and T contains about the other one. For that reason this measure is also 
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known as (average) mutual information. It should not, however, be confused with 
log[P(t|c)/P(t)] or the maximum or average of this value over all c, which is 
sometimes also called mutual information. 

Information gain has been found to work well with several algorithm including 
the k-nearest-neighbor algorithm on the small Reuters-22173 collection and the 
OHSUMED collection [Yang, 97] and Naïve Bayes, decision trees and linear SVM 
on the Reuters-21578 collection [Dumais., 98]. 

4.2.3 Feature selection based on linear classifiers 

Using weights from the SVM classification model for feature selection was suggested 
in [Sindhwani, 01] and studied in detail for linear SVM in [Brank, 02] and used in 
[Guyon, 02; Guyon, 03]. Here we extend this idea to general linear classifiers and 
discuss the procedure by referring to linear SVM and Perceptron. 

Both SVM and Perceptron, as linear classifiers, output predictions of the form: 

prediction(x) = sgn(wTx + b) = sgn(Σj wjxj + b) 

where the vector w and scalar b are obtained during training. Thus, a feature j with the 
weight wj close to 0 has a smaller effect on the prediction than features with large 
absolute values of wj. The weight vector w can also be seen as the normal to the 
hyperplane used by the classifier to separate positive from negative instances. Thus 
we often refer to the procedure as the normal-based feature selection. One speculates 
that since features with small |wj| are not important for categorization they may also 
not be important for learning and, therefore, are good candidates for removal. Thus, in 
our feature selection approach we use the absolute value |wj| as the weight of a 
feature j. We retain features for which the value of |wj| exceeds the threshold value 
that is obtained from the data sparsity criteria (i.e. the threshold is set to such a value 
that a desired level of sparsity is obtained after discarding the features below the 
threshold). 

A theoretical justification for retaining the highest weighted features in the 
normal has been independently derived in a somewhat different context in [Shih, 02]. 
There a feature is considered important if it significantly influences the width of the 
margin of the resulting hyper-plane; this margin is inversely proportional to ||w||, the 
length of normal w. 

Due to the way the SVM algorithm works, the vector w in a linear SVM model is 
always of the form w = ∑i αi yi xi , where the sum goes over all training vectors (xi is 
the i’th training vector, and yi is its corresponding class label), and the multipliers αi 
are values that have been computed during the SVM learning process. From this 
observation we see that one can regard ||w||2 as a function of the training vectors 
x1, ..., xl, where xi = (xi1, ..., xid), and thus evaluate the influence of feature j on ||w||2 
by looking at absolute values of partial derivatives of ||w||2 with respect to xij (for 
various i) Of course this disregards the fact that if the training vectors change, the 
values of the multipliers αi would also change, but the approach roughly captures the 
essence of feature contributions. For the linear kernel, the sum of these partial 
derivatives turns out to be 

∑i | ∂||w||2 / ∂xij | = κ |wj| 
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where the sum is over all the support vectors and κ is a constant independent of j. 
Thus the features with the higher |wj| are more influential in determining the width of 
the margin. Analogous reasoning can also be used in the case of an SVM model based 
on a non-linear kernel, as ||w||2 can still be expressed using only the training vectors xi 
and the kernel function. When a kernel has been used that corresponds to mapping all 
vectors xi into new vectors φ(xi) in a new (possibly very high-dimensional) space, the 
normal vector w is now expressed as w = Σi αi yi φ(xi), and ||w||2 = wTw = Σi Σj αi αj yi 
yj K(xi, xj), where K is the kernel function. If we pretend for a moment that the αi 
multipliers can be held fixed while the training vectors xi change by a very small 
amount, and if we can compute the partial derivatives of K, we can then also express 
the partial derivatives of ||w||2 with respect to xij (see [Sindhwani, 01] for details). 

Note that the normal-based approach to feature weighting and selection involves 
an important issue: the selection of a set of instances over which one trains the 
normal w in order to arrive at the feature weights. Since training an SVM model 
requires a considerable amount of CPU time, and practically requires all the training 
vectors to be present in main memory at all times, it is desirable to use a subset of the 
training data in order to facilitate feature selection and then retrain the classifier over 
the full data set but using the reduced feature space. Furthermore, it is useful to 
explore how the selection of the training set affects feature selection and the 
performance of the final classifier. 

We illustrate these issues by using different samples of the data for initial 
training: the full set, one quarter and one sixteenth of the full data size. After the 
removal of a large number of features both the time and the memory requirements for 
processing the entire training set are reduced and thus make that task feasible. Of 
course, having used only a subset of data to score and select features may render a 
worse performance than methods that take into account the whole data set. However, 
reported experiments show encouraging results. For example, feature selection based 
on the SVM improves performance of the Naïve Bayes classifier [Mladenic, 04]: F1 
increases from 0.38 to 0.54 on the RCV1 collection, while using on average only 5 
features per document to capture its content, or equivalently, to keeping only about 
0.1% of the whole feature set. 

5 Data 

5.1 Training and test data 

For the experiments we use the Reuters Corpus Volume 1 collection (see Appendix A 
for details). The full Reuters corpus of 806,791 news articles amounts to over 2 GB of 
text data, dated from 20 August 1996 through 19 August 1997. We divided it into a 
“training period” that includes 504,468 articles, dated from 20 August 1996 through 
14 April 1997; and a “test period” with the remaining 302,323 documents. For 
training we used a sample of 118,294 documents from the training period and tested 
the classifiers on the complete document set from the test period.  

The training set was obtained using a partly stratified sampling approach (as 
described in detail in [Brank, 02]). From each category of RCV1, we selected a 
random set of up to 1600 documents (if the category contains less than 1600 
documents, all of them were selected). The union of these sets is the 118,294-
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document training set mentioned above; we will refer to it as Train-1600 in the 
subsequent discussion. As a result of this approach, the smaller categories are not as 
poorly represented in our training set as they would be if a completely unstratified 
sampling had been used; on the other hand, the largest categories tend to be somewhat 
underrepresented relative to the full corpus. This is illustrated on Figure 1, which 
shows, for each category, the percentage of documents that belong to it, either in the 
full corpus or in its various subsets. 
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Figure 1: Distribution of documents over categories for different subsets of the full 
RCV1 collection. There is a symbol for each category, the x-coordinate showing the 
percentage of RCV1 documents belonging to this category, and the y-coordinate 
showing the percentage of documents belonging to this category in a subset of 
Retuers-2000. The dotted line shows where the two percentages would be the same. 
As we can see from the figure, the smaller categories are slightly overrepresented in 
the subsets (relative to their frequency in the full dataset), and the largest few 
categories are slightly underrepresented.  

For the experimentation purposes we further selected sub-samples of the Train-
1600 set (of 118,924 documents) of size one half (referred to as Train-1/2), one quarter 
(Train-1/4), one eighth (Train-1/8), and one sixteenth (Train-1/16) of the full training 
set, respectively. For comparison, the category distribution on these subsets is also 
shown on Figure 1. 

Percentage of documents belonging to this category
in the full RCV1 collection 
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5.2 Category selection 

The Reuters collection uses 103 distinct categories to classify documents. However, 
training classifiers for all 103 Reuters categories over relatively large sets is a time 
consuming and process intensive task. Therefore we restricted our study to a sample 
of 16 categories that were selected in [Brank, 02] based on a preliminary document 
classification experiment that involved training the SVM over a smaller training set 
(19,213 documents) for the complete set of Reuters categories and classifying a test 
set of 9,596 documents.  The training set was constructed in exactly the same way as 
the Train-1600 except that we used only 200 documents per category (referred to as 
Train-200). The test set was also constructed in the same way, except that documents 
from the test period were used, and that only 100 random representatives of each 
category were taken; this resulted in a sample of 9,596 test documents, referred to as 
Test-100. 

The selection criterion was based on two characteristics of a category: the 
distribution of positive examples in the whole corpus and the precision-recall break-
even point for the category achieved in the preliminary experiment (on Train-200 and 
Test-100). These statistics for the selected subset of 16 categories approximately 
follows the distribution for all 103 categories (see Figure 2 and Appendix B for more 
details). The selected set of categories includes: godd, c313, gpol, ghea, c15, e121, 
gobit, m14, m143, gspo, e132, e13, c183, e21, e142, and c13. 

Size and Difficulty of the Reuters-2000 Categories
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Figure 2: Size and difficulty of categories shown in a 2-d histogram with the log scale 
for the document distribution and 0.2 interval partition of the break-even point range. 

6 Experiment Design 

In this section we describe in detail the experiments that we ran with samples of data 
from the RCV1 corpus (Reuters Corpus Volume 1, http://about.reuters.com/ 
researchandstandards/corpus/) and a sample of 16 categories from the set of 103 
categories that constitute the Reuters classification scheme (Section 5). The 

Size and Difficulty of the RCV1 Categories
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experiment design is similar to the study presented in [Brank, 02]. Our document 
representation is based on the bag-of-words model. We convert text of each document 
into lowercase, remove stop-words using a standard set of 523 stop-words, and 
eliminate words occurring in less than 4 training documents. Documents were 
represented using single word features weighted by the standard TF-IDF score [Salton, 
88]. Document vectors were normalized to unit length, except for the representation 
used for the Naïve Bayes classifier which involved only the TF term weighting. 

In order to control for memory consumption, we set an appropriate threshold on 
the number of features retained in order to obtain document vectors with a desired 
average number of nonzero components, i.e., desired sparsity. For each combination 
of the target category and the number of features to be kept, temporary copies of 
document vectors are made with the unwanted features removed; these copies are 
used for training. Finally, the models obtained during the training are used to classify 
the test documents. The test documents are represented using only the features kept 
after feature selection. 

6.1 Sparsity of data representation 

It has been shown in [Brank, 02] that the document vector sparsity varies significantly 
when the same number of features is retained for different feature weighting methods. 
Similarly, a fixed sparsity level yields features sets of very different sizes. This is a 
rather important observation since it is expected that the performance of the data 
processing algorithm will depend on the representation of individual documents. 
Namely the number of features that we use reflects the document representation on a 
level of vocabulary size of all the documents, while sparsity captures the average 
number of features in individual document representation. 

As an illustration, Figure 3 (lower chart) shows how specifying the sparsity levels 
for Odds ratio, Information Gain and linear classifier (Perceptron or SVM) based 
feature selection affects the performance of the SVM classifier on our data. Each 
sparsity level is, in turn, achieved by retaining a suitable number of highly scored 
features. We show the same performance results in two ways: with respect to the 
number of features retained (Figure 3, upper chart) and with respect to the average 
number of non-zero components in the training documents (Figure 3, lower chart) for 
each of the feature selection methods . 

The sparsity of document vectors, on the other hand, directly affects consumption 
of computing resources, both the memory for storing the sparse vectors and the time 
needed to perform calculations [Milić-Frayling et al.]. While reducing the total 
number of features is expected to make the vectors sparser (i.e. the average number of 
nonzero components in each feature vector will become smaller and smaller as more 
and more terms are being discarded), the rate at which this is achieved depends on the 
term weighting scheme or, ultimately, the corpus properties such as term distribution 
(i.e., number of documents in the corpus, or labelled by a particular class, that contain 
the term). For example, if the number of features to be retained is fixed, weighting 
schemes that lead to retaining rare features generally incur a low cost to data storage 
and calculations. The opposite is true for weighting schemes that favor features 
common across documents. Thus, just specifying a fixed number of features does not 
allow for a reliable control over resource consumption. For that reason, we propose to 
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work directly with the requirement on the sparsity level as the cut-off criterion for 
feature selection. 

6.2 Evaluation measures  

In our analyses we use standard evaluation measures from the area of information 
retrieval. Each class is regarded as a binary classification problem (does a document 
belong to this class or not?), and a separate binary classifier is trained for each class. 
When evaluating the classifier for a particular class c, we compute the contingency 
table by counting the number of test documents that fall into each of the following 
four groups: 
 

  Documents that... 
  Belong to c Do not belong to c 

positive TP (true positives) FP (false positives) The classifier’s 
prediction is negative FN (false negatives) TN (true negatives) 

Based on these values, the precision of the classifier is defined as p = TP/(TP + 
FP) and the recall is defined as r = TP/(TP + FN). To combine these two quantities, 
we use the well-known F1-measure, defined as F1 = 2pr/(p+r), i.e. the harmonic mean 
of precision and recall. Since the F1 measure incorporates both the recall and the 
precision, we report only the experimental statistics for the F1 measure.  

To obtain an overall measure of performance of a machine learning approach 
over several classes, macroaveraging and microaveraging are commonly used. A 
macroaverage is defined as simply the average value of a performance measure (e.g. 
F1) over all classes. The microaverage, on the other hand, is obtained by first adding 
up the contingency tables for all the classes into an aggregate contingency table (i.e. 
the aggregate TP is the sum of the TPs from all the individual contingency tables, 
etc.). The values of the aggregate contingency table are then used to compute 
precision, recall, and F1 using the same formulas as above; the resulting values are 
called microaveraged precision, recall, and F1. We found that analyses based on 
microaveraged statistics provide qualitatively similar results and thus we omit them 
from the paper. Instead we ensure that all the presented comparative analyses are 
accompanied with the evidence of statistical significance. Here we briefly discuss the 
approaches for establishing such evidence. 

In order to compare two classifiers, we randomly partition the test data set into 
ten disjoint subsets and record performance measures of the classifiers, such as 
macro- or microaveraged F1 statistics, separately for each subset of test data. Thus, to 
compare two classifiers, we can perform a paired t-test on the corresponding two 
groups of ten F1 values. 

Alternately, one may perform a separate t-test for each category and then count 
how many times one classifier has been found to be significantly better than the other, 
or vice versa, across categories. These values can be quite informative, but the 
downside is that the comparison of two methods is then described by two numbers 
rather than a single confidence value, as would be obtained from a single t-test. In 
principle, one could reach a single confidence value by applying some type of a sign 
test (e.g., a “macro sign test” from [Yang, 99]). 
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Another option is to compute, for each category, the value of F1 over the entire 
test set. This results in a sequence of as many values as there are categories. One can 
thus compare the two methods by taking a paired t-test over the corresponding two 
sequences. This approach, referred to as a “macro T-test” in [Yang, 99], has been 
often used, although criticized because it treats the performance values of different 
categories as random samples from a normal distribution [Lewis, 92]. 

In our experience, all these types of tests tended to give similar results. However, 
it is noticeable that the category-paired t-test is slightly more conservative than the t-
test on macroaveraged F1-values in the sense that it is less likely to declare the 
difference to be significant. In contrast, the t-test on microaveraged F1-values is much 
more liberal in considering differences to be significant. In the rest of this paper we 
report significance results from the t-tests based on macroaveraged F1 values. 

7 Results 

7.1 Effects of feature selection on classification performance 

We discuss the classification results for data representations obtained by feature 
ranking and selection using Odds ratio, Information gain, and normal based feature 
scoring from the linear SVM and Perceptron classifiers. For both the SVM and the 
Perceptron we apply the iterative method for classification: we train the classifier on a 
subset of training documents and use it to score and select features. The reduced 
feature space is then used for retraining the classifier over the entire document set. In 
order to observe the influence of the subset selection on the classification 
performance we defined three sets of training data: the full training set and randomly 
chosen subsets of 1/4 and 1/16 of the training documents. Training the classifiers on 
these sets results in three normal vectors for each method: svm-1, svm-1/4, and svm-1/16 
for the linear SVM and perceptron-1, perceptron-1/4, perceptron-1/16 for the 
Perceptron. These 6 feature rankings, together with the Odds ratio and Information 
gain, are considered for feature selection and training of three classifiers: Naïve 
Bayes, the linear SVM, and Perceptron.   

As already described, for each rank in the list of features we can calculate the 
average sparsity of vectors achieved if only features from that rank and above were 
retained. Similarly, given a sparsity requirement we can find the cut off rank below 
which the features are discarded in order to achieve the specified vector sparsity. It is 
interesting to note that specifying sparsity leads to non-uniform number of features 
across categories, depending on the distribution characteristics of features typical for 
the category. This is in contrast with the common practice of specifying a fixed 
number or percentage of top ranking features to be used for all categories. 
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Figure 3: Macroaverages of the F1 measure for the SVM classifier for various feature 
set sizes and different feature weighting methods. The upper chart shows the 
performance against the number of features while the lower one shows the same 
performance at various sparsity levels. We found that the sparsity-based charts allow 
for a more useful comparison of feature selection methods; e.g., Odds ratio is quite 
successful at very sparse representations, even though it uses a large vocabulary. 

The experiment design thus includes nine sets of features (Odds ratio, 
Information Gain, 3 from SVM normal, 3 from Perceptron normal) used for training 
the learning algorithms, Naïve Bayes, Perceptron, and linear SVM, over the full set of 
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training documents represented by the reduced set of features. We specify the 
reduction level in terms of the desired sparsity of vectors. 

The resulting classifiers are applied to the test data. Table 1 gives the result of 
Naïve Bayes for different feature selection methods for sparsity that yielded the best 
performance. More complete results for all three classification algorithms are shown 
in Figure 4, Figure 5, Figure 6 giving the macroaveraged F1 performance for specific 
levels of vector sparsity on the horizontal axes: 2, 2.5, 5, 10, 20, 40, and 80 terms per 
document, as well as for the sparsity of the full document vectors, about 88.3 terms 
per document on average. 

Feature 
selection/ranking 

method 

Sparsity which 
yielded the best 

performance 

Average 
number of 

features at that 
sparsity 

Naïve Bayes 
macroaveraged F1 

at that sparsity 

Odds ratio 20 10571 0.4683 
Information gain 2.5 67 0.4648 
SVM-1 5 259 0.5421 
Perceptron-1 10 910 0.5005 

Table 1: This table shows, for each feature selection method, the best Naïve Bayes 
classification performance, the sparsity at which it was achieved, and the number of 
features at that sparsity (averaged across all categories). 

7.1.1 Naïve Bayes 

Our experiments with Naïve Bayes confirm the known fact that Naïve Bayes benefits 
from the appropriate feature selection [Mladenic, 99]. Detailed analysis shows that 
this is particularly true for categories with a smaller number of training documents, 
while for the largest few categories there is little or no improvement from feature 
selection. 

Odds ratio seems to work well with Naïve Bayes when documents are made 
moderately sparse, 10 to 20 terms per document which, on average, requires 4000 to 
8000 of the best features to be retained. On the other hand, earlier research found that 
Odds ratio works well even if only a few hundred features were kept [Mladenic, 99]. 
Thus, it would be worth exploring whether sparsity is a more reliable parameter in 
predicting classifier performance than the number of features retained. 

Information gain, on the other hand, works well when documents retain around 
2.5 terms on average per document, which corresponds to keeping around 70 best 
features on average (the actual number varies considerably from one category to 
another, with e13 needing as few as 29 and ghea as many as 163). 
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Figure 4: Macroaveraged F1 of different feature selection methods in combination 
with Naïve Bayes. The horizontal axes refer to sparsity, the average number of 
nonzero components per training vector. In this case, this is the average number of 
terms per training document after terms rejected by feature selection have been 
removed. 

Still higher performance with Naïve Bayes can be achieved with feature selection 
based on Perceptron and linear SVM weights. For SVM, this is true even if much 
smaller data sets are used in the feature selection phase (using 1/16 of the training 
data to get SVM-normal ranking the features). Table 1 provides detailed performance 
results. However, as it can be seen from Figure 4, even with the best of the tested 
feature selection methods, Naïve Bayes cannot match the performance of the 
Perceptron and the linear SVM classifiers. 

7.1.2 Perceptron 

Our experiments show that the Perceptron learning algorithm does not combine well 
with the feature selection methods considered here. The only case in which perfor-
mance is actually improved is for the sparsity level of 80 terms per document with 
perceptron-1, thus a slight reduction in sparsity from 88.3 when all features are used. 
It is worth noting that this means the reduction of 8 features on average per document 
which corresponds to retaining less than 50% of the original features; more precisely 
around 32,500 out of 75,839 original features. The associated increase in F1, although 
statistically significant, is marginal (0.8 %). Otherwise, performance drops quickly 
and considerably as more and more features are discarded. 

When using SVM-based rankings, the performance is lower although the 
differences with respect to the Perceptron weighting are small. They are greatest when 
both feature selectors are allowed to inspect the full document set: perceptron-1 may 
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achieve F1 values up to 2.5 % above those achieved by svm-1 at the same sparsity. 
The differences between perceptron-1/4 and svm-1/4 and between perceptron-1/16 and 
svm-1/16 are smaller and often insignificant. Thus, in scenarios of limited computer 
resources, when it is desirable to reduce the feature set by first training linear models 
over smaller training data sets, the two feature scoring methods combine equally well 
with the Perceptron as the classifier. Furthermore, while the SVM-based feature 
rankings achieve lower precision and lower F1 values than the Perceptron ones, they 
tend to have higher recall and break-even point for the same subset of training 
documents. 

In combination with the Perceptron classifier, the feature ranking by the 
Information gain criterion usually performs worse than the rankings of linear 
classifiers. The difference is slight but statistically significant. On the other hand, the 
feature ranking by Odds ratio performs much worse (interestingly, it combines well 
with the SVM; see the next section). We speculate that the Perceptron type training, 
which considers individual documents sequentially, is negatively affected by the 
tendency of the Odds ratio to favor features characteristic of positive documents, in 
particular those that are rare and absent from negative documents. It would be inter-
esting to see whether Perceptron models with uneven margins are more robust in that 
respect [Krauth, 87]. 
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Figure 5: Macroaveraged F1 of different feature selection methods in combination 
with the Perceptron classifier. The horizontal axes refer to sparsity, the average 
number of nonzero components per training vector. In this case, this is the average 
number of terms per training document after terms rejected by feature selection have 
been removed. 
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7.1.3 Linear SVM 

Similarly to Perceptron, the linear SVM does not benefit from feature selection but is 
much less sensitive to the reduction of the feature space. Here one can reduce the 
feature set to 10 terms per document on average, while still losing only a few percent 
in terms of the F1 performance measure. As in the case of Perceptron, statistically 
significant (though rather small) improvements to the F1 performance in comparison 
to the full feature set are achieved only when using svm-1 or perceptron-1 feature 
sets, thus increasing the sparsity from 88.3 to 80 terms per document on average 
(using less than 50% of the original features). 

Odds ratio works well in combination with the linear SVM classifier, particularly 
when very sparse documents representations are required (e.g., to capture 
characteristic words/phrases for under-represented categories in a very large 
document collections). Indeed, at sparsity ≤ 20 it is significantly better than 
Information gain. There it also outperforms svm-1/16. At more extreme levels of 
sparsity it performs better than svm-1/4 and even svm-1 (for sparsity ≤ 2.5). 

An interesting observation is that the Perceptron-based feature weightings 
perform much worse with the SVM classifier than the SVM-based weightings. Both 
feature weighting methods performed quite similarly in combination with the 
Perceptron as the classifier (see previous section). In addition, perceptron-1 is 
generally not significantly better than perceptron-1/4, and for extremely sparse 
documents it is, in fact, significantly worse. 

Linear SVM, Macroaverages
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Figure 6: Macroaveraged F1 performance of different feature selection methods in 
combination with SVM. The horizontal axes refer to sparsity, the average number of 
nonzero components per training vector. In this case, this is the average number of 
terms per training document after terms rejected by feature selection have been 
removed. 
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Looking at the precision and the recall separately shows that Perceptron-based 
feature rankings have particularly poor recall. From the sparsity curves, which 
provide insight in how the density of document vectors increases with the number of 
features retained, we conclude that the Perceptron-based feature weighting has a 
greater preference for rare features than the SVM-based weighting (although not 
nearly so great as Odds ratio), especially for features typical of positive documents. 
We speculate that this may be the cause of poor recall (consequently, poor F1). 
Interestingly, Information gain tends to produce high precision but relatively low 
recall, whereas the opposite holds for Odds ratio. The SVM-based rankings, on the 
other hand, are good at both precision and recall, particularly the latter.  Details are 
given in appendix D. 

8 Conclusions 

Our experiments show that feature scoring and selection based on the normal vector 
of the hyperplane obtained by the linear SVM algorithm combines very well with all 
the classifiers considered in the study. In particular, in combination with the Naïve 
Bayes classifier it seems to be far more effective than Odds ratio for all levels of 
sparsity below 40 features per vector. Even the Perceptron produces much better 
feature rankings for Naïve Bayes than Odds ratio. This supports our conjecture that 
the sophistication of the feature weighting method is more important for performance 
than its compatibility with the learning algorithm. On the basis of this observation our 
conjecture is that, on our dataset, the complexity and sophistication of the feature 
scoring algorithm plays a larger role in the success of the feature selection method 
than its compatibility in design with the classifier. Indeed, at the first glance it seems 
that Odds ratio, which closely follows the feature scoring used within Naïve Bayes, 
should provide the best selection for that classifier. However, a method such as SVM 
that tunes the normal by taking into account all the features simultaneously (rather 
than one at a time, as in the case of Odds ratio) seems to be the most successful in 
scoring features. 

The SVM feature ranking combines relatively well with the Perceptron classifier 
considering the rather dramatic negative effect of feature selection on the Perceptron. 
One could argue that, because the perceptron-1 is the best performing feature ranking 
with the Perceptron classifier, the conjecture we proposed in Section 1 is weakened. 
However, when we consider smaller subsets of the training data (e.g., N/4) and look 
for higher performance levels (F1 > 0.45) of the Perceptron classifier we see that 
SVM-based and Perceptron-based feature selection have almost identical effect. This 
makes us believe that our conjecture is in the right direction. 

In the experiments with the memory constraint, we have seen that the Perceptron 
classifier does not allow for a trade-off since it is adversely affected by feature 
selection while Naïve Bayes always benefits from feature selection. The SVM 
classifier, on the other hand, can benefit from combining feature selection and 
adjustment of the training set to fit the memory constraint. Namely, although the 
SVM classifier does not improve with feature selection itself, it yields better 
performance if feature selection allows a larger training set to be used to train the final 
model after feature selection. 
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Sparsity of the vectors representing the data has been found to be useful for 
comparing different feature selection methods, particularly because some of the 
learning algorithms are more sensitive to sparsity rather than to the number of features 
as such. 

Finally, as has been found by other researchers in the field of text categorization, 
our experiments confirm that SVM outperforms Perceptron and Naive Bayes as a 
learning algorithm for text categorization. Our further work will expand this study to 
additional classifiers and data sets, including scenarios that do not necessary involve 
text data. We also conjecture that the selection of features obtained with the SVM-
based feature ranking would be useful in other applications, not just in document 
classification, but also e.g. in clustering; investigating this conjecture through 
experiments is another possible direction for future work. 
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Appendix A: About the RCV1 Corpus 

The RCV1 corpus, released on 3 November 2000 as “Reuters Corpus, Volume 1”, 
contains 806,791 Reuters news articles from the period 20 August 1996 through 19 
August 1997. They are distributed by Reuters in compressed form (ZIP files), 
occupying approximately 984 MB of space. Each document is a small XML file and 
when uncompressed these files have a total size of approximately 2,369 MB. 

We only consider the body of each document, i.e., the contents of the 〈text〉 
element in the XML file containing that document. The body of each document 
contains an average of 1,180.13 non-whitespace characters (median: 883), thus the 
total for the corpus is approximately 950 million characters (908 MB). Most of the 
difference between this and the 2,369 MB quoted above is due to the meta-data 
present in each file. 

There are on average approx. 206.8 words in the body of a document (median: 
150), or 118.8 (median: 88) if multiple occurrences of the same word in a document 
are treated as one. However, if we ignore stop words (from a list of 523 stop words, of 
which 519 actually appeared in the corpus), the average number of words in the body 
of a document is 118.47 (median: 88), or 88.4388 (median: 65) if multiple 
occurrences are treated as one. On the average, a term appears in 136.4 documents, or 
96.42 if stop words are ignored; the median is 2 in both cases (329,226 terms occur in 
only one document and 100,404 terms occur in only two documents). 

There are 103 categories, organized hierarchically. For example, ccat is the 
common super-category of all categories with names beginning in c; likewise there 
are ecat, gcat, and mcat. In addition, if one category name is the prefix of another, the 
latter category is a subcategory of the former. However, we did not take the 
hierarchical structure of the categories into account. The sizes of categories vary 
widely as can be seen in Table B1 in Appendix B. Further statistics of interest: a 
document belongs to 3.20 categories on average (the median value is 3); 2,364 
documents belong to no categories at all; 70% of the documents belong to 2 or 3 
categories; one document belongs to 17 categories, none belong to more than 17. 

Statistics such as these given here will of course depend somewhat on the 
procedure used to break documents into words. Our procedure is as follows: (1) 
convert the document into lowercase; (2) extract, from each paragraph, maximal 
contiguous subsequences of non-whitespace characters; (3) for each such 
subsequence: (3a) if it contains no alphabetic characters, discard it; (3b) otherwise, 
strip leading and trailing non-alphanumeric characters, and report the remainder as a 
term occurring in the current document. — This approach has the potentially welcome 
characteristic of treating compounds consisting of two words connected with a 
hyphen as single units but it would do the same for two words connected by a 
sequence of dots, which sometimes occurs when such punctuation is used to simulate 
tables in the documents. However, such occurrences are relatively rare.    
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Appendix B: Classification of 103 categories over Train-200 

This section presents the results of preliminary experiments on which our choice of 16 
categories for further work was based. 

For these preliminary experiments, a smaller training set, called Train-200, was 
prepared in the same way as the Train-1600 used elsewhere in this paper (see Section 
4.2.1). Similarly, a test set, called Test-100, was prepared from the test period data 
(analogously to the way Train-200 and Train-1600 were prepared from the training 
period) to evaluate the performance of the classifiers. Train-200 consists of 19213 
documents, and Test-100 consists of 9596 documents. 
 

 Category BEP Size   Category BEP Size Category BEP Size  
 c11 0.3552 24 , 325   e12 0.6671 27,078 g159 0.0000 40  
 c12 0.6299 11,944   e121 0.8051 2,182 gcat 0.8845 234,873  
 c13 0.5227 37,410   e13 0.8353 6,345 gcrim 0.7612 32,219  
 c14 0.6645 7,410   e131 0.7751 5,659 gdef 0.7169 8,842  
 c15 0.7412 150,164   e132 0.9083 939 gdip 0.6732 37,739  
 c151 0.7833 81,875   e14 0.8119 2,086 gdis 0.8106 8,657  
 c1511 0.7673 23,212   e141 0.7155 376 gent 0.7119 3,801  
 c152 0.5480 73,092   e142 0.8000 200 genv 0.6988 6,261  
 c16 0.7257 1,920   e143 0.8684 1,206 gfas 0.8350 313  
 c17 0.7557 41,829   e21 0.7243 43,128 ghea 0.6522 6,030  
 c171 0.6966 18,313   e211 0.6368 15,768 gjob 0.8101 17,241  
 c172 0.7600 11,487   e212 0.7596 27,405 gmil 0.0000 5  
 c173 0.6441 2,636   e31 0.8300 2,342 gobit 0.7752 844  
 c174 0.9262 5,871   e311 0.8101 1,701 godd 0.4394 2,802  
 c18 0.7585 51,480   e312 0.6500 52 gpol 0.6518 56,878  
 c181 0.6741 43,374   e313 0.9111 111 gpro 0.6740 5,498  
 c182 0.6154 4,671   e41 0.8030 16,900 grel 0.7778 2,849  
 c183 0.7484 7,406   e411 0.7246 2,136 gsci 0.7879 2,410  
 c21 0.4357 25,403   e51 0.6612 20,722 gspo 0.9302 35,317  
 c22 0.4306 6,119   e511 0.6798 2,933 gtour 0.8319 680  
 c23 0.5821 2,625   e512 0.6261 12,634 gvio 0.7003 32,615  
 c24 0.5396 32,153   e513 0.6522 2,290 gvote 0.7037 11,532  
 c31 0.5935 40,506   e61 0.9100 391 gwea 0.7847 3,878  
 c311 0.6911 4,299   e71 0.8818 5,270 gwelf 0.6967 1,869  
 c312 0.5902 6,648   ecat 0.8503 117,539 m11 0.7549 48,700  
 c313 0.4808 1,115   g15 0.8541 19,152 m12 0.7041 26,036  
 c32 0.7308 2,084   g151 0.5317 3,307 m13 0.7610 52,972  
 c33 0.6006 15,331   g152 0.4663 2,107 m131 0.7411 28,185  
 c331 0.8319 1,210   g153 0.7534 2,360 m132 0.6885 26,752  
 c34 0.7528 4,835   g154 0.8312 8,404 m14 0.8813 85,100  
 c41 0.7756 11,354   g155 0.3922 2,124 m141 0.8522 47,708  
 c411 0.7792 10,272   g156 0.6515 260 m142 0.8779 12,136  
 c42 0.6855 11,878   g157 0.7865 2,036 m143 0.8895 21,957  
 ccat 0.8711 374,316   g158 0.5767 4,300 mcat 0.8317 200,190  
 e11 0.5650 8,568         

Table B1: Category size and break-even-point performance statistics of the linear 
SVM model for 103 Reuters categories over Train-200 data set 

After discarding features occurring in less than 4 documents from Train-200, 
each document was represented by a normalized TF-IDF vector. Each category was 
treated as a two-class problem, and a linear SVM model was trained for it using the 
documents from Train-200. This model was then tested on Test-100, and the resulting 
precision-recall break-even point (BEP in the table below) was used as an indicator of 
how difficult or easy that individual category is. Table B1 below reports the break-
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even points for all categories as well as the size of each category, i.e., the number of 
the documents (from the full RCV1 corpus) that belong to the category. Note that the 
full corpus contains 806,791 documents. The names of the 16 categories chosen for 
further experiments are displayed in italics. 

The selected 16 categories are used in experiments that involve various sets of 
training and test data. The following table shows the names of the selected categories 
and the number (and percentage) of positive examples for each of these categories 
within several data sets. The document sets shown are: Train-1600 (the largest of the 
sets actually used for training); Train-1/4 and Train-1/16 (subsets of Train-1600; see 
Section 5.1 for details); the full training period (all documents dated 14 April 1997 or 
earlier); the full test period (all documents dated after 14 April 1997); and the entire 
RCV1 corpus. 

 
  

Train-1/16 
 

Train-1/4 
 

Train-1600 
 

Full training period 
 

Full test period 
 

Full RCV1 
 (7432 docs.) (29731 docs.) (118924 docs.) (504468 docs.) (302323 docs.) (806971 docs.) 

c13 702 (9.45%) 2,645 (8.90%) 9,895 (8.32%) 24,332 (4.82%) 13,078 (4.33%) 37,410 (4.64%) 
c15 515 (6.93%) 2,199 (7.40%) 9,272 (7.80%) 89,373 (17.72%) 60,791 (20.11%) 150,164 (18.61%) 
c183 128 (1.72%) 561 (1.89%) 2,240 (1.88%) 4,715 (0.93%) 2,691 (0.89%) 7,406 (0.92%) 
c313 50 (0.67%) 197 (0.66%) 741 (0.62%) 741 (0.15%) 374 (0.12%) 1,115 (0.14%) 
e121 101 (1.36%) 380 (1.28%) 1,444 (1.21%) 1,444 (0.29%) 738 (0.24%) 2,182 (0.27%) 
e13 217 (2.92%) 883 (2.97%) 3,053 (2.57%) 4,135 (0.82%) 2,210 (0.73%) 6,345 (0.79%) 
e132 47 (0.63%) 199 (0.67%) 602 (0.51%) 602 (0.12%) 337 (0.11%) 939 (0.12%) 
e142 16 (0.22%) 67 (0.23%) 135 (0.11%) 135 (0.03%) 65 (0.02%) 200 (0.02%) 
e21 510 (6.86%) 2,158 (7.26%) 8,484 (7.13%) 27,031 (5.36%) 16,097 (5.32%) 43,128 (5.35%) 
ghea 205 (2.76%) 733 (2.47%) 2,616 (2.20%) 3,963 (0.79%) 2,067 (0.68%) 6,030 (0.75%) 
gobit 44 (0.59%) 148 (0.50%) 551 (0.46%) 551 (0.11%) 293 (0.10%) 844 (0.10%) 
godd 120 (1.61%) 430 (1.45%) 1,642 (1.38%) 1,798 (0.36%) 1,004 (0.33%) 2,802 (0.35%) 
gpol 590 (7.94%) 2,385 (8.02%) 9,867 (8.30%) 36,650 (7.27%) 20,228 (6.69%) 56,878 (7.05%) 
gspo 100 (1.35%) 449 (1.51%) 1,931 (1.62%) 22,876 (4.53%) 12,441 (4.12%) 35,317 (4.38%) 
m14 557 (7.49%) 2,325 (7.82%) 9,812 (8.25%) 50,543 (10.02%) 34,557 (11.43%) 85,100 (10.55%) 
m143 133 (1.79%) 608 (2.05%) 2,649 (2.23%) 13,121 (2.60%) 8,836 (2.92%) 21,957 (2.72%) 

Table B2: Distribution of positive examples for the 16 selected Reuters categories 
in various data sets used in the experiments. 
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Appendix C: Number of features and sparsity statistics 

The following table shows the relationship between the number of features retained in 
the feature set and the sparsity, i.e., the average number of non-zero components in 
the corresponding vector representations of documents in a given set. The statistics 
presented here are obtained over the Train-1600 data set.   

 
Number of 

features Odds ratio Information 
gain svm-1/16 svm-1/4 svm-1 

10 0.002 0.542 0.271 0.270 0.301 
20 0.004 0.998 0.559 0.507 0.534 
30 0.005 1.446 0.786 0.796 0.777 
50 0.007 2.224 1.238 1.292 1.222 
75 0.009 3.172 1.772 1.804 1.733 

100 0.015 4.111 2.249 2.301 2.270 
200 0.037 7.123 4.187 4.266 4.328 
300 0.074 9.708 6.140 6.322 6.074 
500 0.152 14.040 9.674 9.703 9.132 
750 0.343 17.966 13.612 13.261 12.464 

1000 0.634 21.339 17.044 16.453 15.333 
2000 2.583 30.405 28.025 26.385 24.319 
3000 6.152 35.989 36.253 33.477 30.769 
5000 11.158 43.087 48.674 44.405 40.914 
7500 17.900 48.364 58.597 53.896 49.829 

10000 25.689 51.566 65.621 60.790 56.088 
20000 56.612 57.138 79.338 75.700 71.944 
30000 70.085 60.469 83.996 82.288 79.682 
40000 73.803 62.900 85.622 85.210 83.959 
50000 75.002 66.192 86.587 86.535 86.137 
60000 76.221 70.803 87.389 87.377 87.261 
70000 79.046 78.843 87.980 88.007 87.910 
75839 88.266 88.266 88.266 88.266 88.266 

Table C1: Sparsity levels achieved on the Train-1600 document set by retaining a 
given number of top ranked features for each of the five feature scoring methods. 

Each feature scoring method implies a ranking of features. Limiting the document 
representation to the highest scoring N features reduces the average number of terms 
that remain in a document and hence the average number of non-zero components in 
the vectors representing the documents. It is interesting to see the difference in the 
achieved sparsity of the document representations for the same number of features 
retained for each of the five considered feature ranking methods: odds ratio, 
information gain, and three normal based feature selections. 
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Appendix D: Detailed experimental results of SVM 

This appendix provides some details on experiments with SVM-based feature 
selection, as the best performing feature weighting measure and the linear SVM 
classifier, as the best performing algorithm. Figures D1, D2, D3, D4 contain graphs 
that show the SVM classification performance based on macro-averages of four 
measures: F1, break-even-point (BEP), precision, and recall (notice that the same 
graph for F1 as in Figure D2 is also given in the paper in Figure 6) . The test set has 
been divided into ten folds, and the macroaveraged value (i.e., average over all 
categories) of each performance measure has been calculated separately for each fold. 
The average of this over all ten folds is then shown in the charts. (Thus, references to 
“average precision” in the charts should not be confused with average 11-point 
precision, another popular performance measure, which however we have not 
employed in these experiments.) 
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Figure D1. Macroaveraged F1 performance of different feature selection methods in 
combination with the SVM classifier. The horizontal axes refer to sparsity, the 
average number of nonzero components per training vector. 
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Macroaveraged break-even point, full training set
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Figure D2. Macroaveraged break-even-point performance of different feature 
selection methods in combination with the SVM classifier. The horizontal axes refer to 
sparsity, the average number of nonzero components per training vector. 

Although the above results show that feature selection generally does not improve 
performance of the linear SVM classifier, we can see that the SVM normal-based 
feature selection with sparsity S = 80 does produce a statistically significant 
improvement over the performance of vectors with the complete feature set which 
corresponds to S = 88.3. 

Feature selection 
method 

Number and percentage of 
features retained at S = 80 

Macroaveraged 
F1 at S=80 

P-value from 
t-test 

Odds ratio 57,197 75.42 % 0.6857 ± 0.0053 0.119 
Information gain 60,234 79.42 % 0.6843 ± 0.0047 0.315 
Svm-1/16 20,316 26.79 % 0.6789 ± 0.0050 0.118 
Svm-1/8 22,274 29.37 % 0.6859 ± 0.0048 0.099 
Svm -1/4 24,338 32.09 % 0.6864 ± 0.0050 0.051 
Svm- 1/2 26,303 34.68 % 0.6894 ± 0.0050 0.002 
Svm -1 28,638 37.76 % 0.6904 ± 0.0050 0.003 
Full feature set 75,839 100.00 %  0.6837 ± 0.0049  

Table D1. Linear SVM performance with different feature selection methods at S = 80 

The test set has been split into ten folds and the macro-average of F1 computed 
for each fold. Averages and standard errors across these ten folds are shown. The last 

Average number of nonzero components per vector in the training set 
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column shows the p-value from the t-test comparing the performance of the linear 
SVM classifier for each feature weighting method at S = 80 with the performance for 
full document vectors (S = 88.3). We observe that at S = 80 the performance is 
never significantly worse and for svm-1/2 and svm -1 it is significantly better than the 
performance with full vectors. A more systematic analysis of this phenomenon, e.g., 
exploration of the effects of sparsities S = 85, 75, 70, etc., will be subject of future 
research. 
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Figure D3. Macroaveraged precision performance of different feature selection 
methods in combination with the SVM classifier. The horizontal axes refer to sparsity, 
the average number of nonzero components per training vector. 

Note that the number of features that needs to be retained to achieve a desired 
level of sparsity varies from category to category since each classifier gives rise to a 
different feature ranking. Shown here are averages across the 16 categories 
considered. 

The statistics in Table D1 show that the normal-based feature selection discards 
as many as 60% to 75% of features to achieve the sparsity of S = 80. In some cases, 
even greater sparsities can be reached without significantly decreasing the 
performance. This can be seen in Table D2, which shows that svm-1 at sparsity 40 
actually still performs significantly better than full vectors, while the performance of 
svm-1/2 and svm-1/4 at sparsity 40, and that of svm-1 at sparsity 20, is not significantly 
different from the performance of the full feature set. 

Average number of nonzero components per vector in the training set 
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Feature selection 
method 

 
Sparsity 

Number and percentage of 
features retained 

Macroaveraged 
F1 

P-value from 
t-test 

svm-1/4 40 4278 5.65 % 0.6831 ± 0.0056 0.409 

svm-1/2 40 4628 6.11 % 0.6842 ± 0.0042 0.436 

svm-1 20 1545 2.04 % 0.6786 ± 0.0037 0.124 

svm-1 40 5079 6.70 % 0.6905 ± 0.0045 0.030 

Full feature set 88.3 75839 100.00 %  0.6837 ± 0.0049  

Table D2. Linear SVM performance with different feature selection methods at S = 40 
and 20. 
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Figure D4. Macroaveraged recall performance of different feature selection methods 
in combination with the SVM classifier. The horizontal axes refer to sparsity, the 
average number of nonzero components per training vector. 

D1. Training on the full training period  

In the experiments presented so far, the largest training set, and the one used most of 
the time, was Train-1600, which consists of 118,924 documents, selected from the 
training period of documents dated 14 April 1997. However, the entire training period 
contains 504,468 documents, i.e., almost four times as many. Thus it is natural to ask 
how much we lose by limiting ourselves to training on the approximately 24% of the 
training documents (i.e., those included in Train-1600). Because it would be too time-

Average number of nonzero components per vector in the training set 
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consuming to conduct an exhaustive set of experiments on the full training period, we 
only trained one model for each category, without any feature selection. We compare 
the results with the performance of the linear SVM model trained on Train-1600, also 
without any feature selection applied. 

As can be seen from Table D3, training on Train-1600 tends to yield better 
performance for smaller categories but poorer for larger categories, while the contrary 
is true when training on the entire training period. The set of positive examples for 
small categories is in fact the same in both training sets, implying that it is the relative 
representation of the category within the training set that causes the difference in 
performance. Recall that the sampling procedure by which Train-1600 was obtained 
tends to make sure that smaller categories are well represented at the expense of the 
larger ones which may cover a relatively smaller proportion of documents than they 
do in the full training period. This also explains why the results over Train-1600 have 
a higher macroaveraged F1 but a lower microaveraged F1 than over the full training 
period. 

 
Category Train-1600 (118,924 docs.) Entire training period (504,468 docs.) 

name Size F1 BEP Size F1 BEP 
c13 9,895 (8.32%) 0.4891 0.5504 24,332 (4.82%) 0.5186 0.5873 
c15 9,272 (7.80%) 0.8956 0.9024 89,373 (17.72%) 0.9167 0.9169 

c183 2,240 (1.88%) 0.7469 0.7457 4,715 (0.93%) 0.7283 0.7572 
c313 741 (0.62%) 0.3467 0.3603 741 (0.15%) 0.0804 0.2935 
e121 1,444 (1.21%) 0.7442 0.7602 1,444 (0.29%) 0.7720 0.7585 
e13 3,053 (2.57%) 0.7917 0.9715 4,135 (0.82%) 0.8036 0.7961 

e132 602 (0.51%) 0.8109 0.8267 602 (0.12%) 0.8360 0.8453 
e142 135 (0.11%) 0.4632 0.5280 135 (0.03%) 0.3582 0.4920 
e21 8,484 (7.13%) 0.8129 0.8154 27,031 (5.36%) 0.8254 0.8315 

ghea 2,616 (2.20%) 0.6442 0.6497 3,963 (0.79%) 0.6269 0.6532 
gobit 551 (0.46%) 0.3838 0.4360 551 (0.11%) 0.1722 0.5157 
godd 1,642 (1.38%) 0.2687 0.3701 1,798 (0.36%) 0.0829 0.3807 
gpol 9,867 (8.30%) 0.7146 0.7260 36,650 (7.27%) 0.7437 0.7562 
gspo 1,931 (1.62%) 0.9653 0.9761 22,876 (4.53%) 0.9792 0.9802 
m14 9,812 (8.25%) 0.9398 0.9413 50,543 (10.02%) 0.9470 0.9478 

m143 2,649 (2.23%) 0.9224 0.9257 13,121 (2.60%) 0.9264 0.9285 
Macroaverage   0.6837 0.7178   0.6448 0.7150 
Microaverage   0.8461    0.8635  

Table D3. Comparison of the performance on test data of the SVM classifiers trained 
on Train-1600 and those trained on the full training period. No feature  selection was 
performed in either case. 

However, part of the extremely poor F1 performance of classifiers for some of the 
smaller categories (e.g., c313) when trained on the entire training period may also be 
due to a poorly chosen threshold b. Indeed, the breakeven point measure (also shown 
in Table D3), which involves calculating precision and recall of the document ranking 
based on scores that involve only the normal w, does not suffer such an extreme 
decrease when the full training period is involved. 

The time needed to train all 16 models (one for each category) was 2,435 s when 
working with Train-1600 and 15,769 s when working with the entire training period 
(these timings were obtained on a computer with a 700 MHz PIII processor and 1 GB 
main memory). 
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D1. Combining feature weightings from several training data subsets 

In comparing the sparsity behavior of the svm-1/16 weighting, obtained from a smaller 
set of documents (Train-1/16), with that of svm-1, obtained from the full Train-1600 
set, we have seen that part of the difference stems from the inability of svm-1/16 to 
consider more documents at the same time, but part of it also stems from the simple 
fact that many features from Train-1600 simply never occur in Train-1/16, hence svm-
1/16 has no good alternative but to assign them a weight of 0. This in turn affects the 
classification performance of models based on the resulting feature ranking. 

Since one of the objectives is to maximize the effectiveness of feature selection 
from smaller subsets of data, we explore the ways to increase the pool of features 
from which the final selection is made. (This will address the second of the two 
above-mentioned reasons of the poorer performance of weightings based on smaller 
subsets.) We consider the following extension of the feature weighting procedure: (1) 
obtain several subsets of the basic training set (i.e., subsets of Train-1600); (2) train a 
linear SVM model on each of the subsets; (3) from each model, assign a weight to each 
feature, equal to the absolute value of the corresponding component of the normal; (4) 
obtain the final weight of a feature by combining the weights obtained from models 
trained on individual subsets. In our preliminary experiments we used the average and 
the maximum as combining functions in step (4), and observed no significant 
differences between the two. Thus we decided to use the maximum in the following 
experiments. 

The rationale behind this approach is that it allows us to work within the same 
memory limits as by limiting ourselves to a single small subset of the training set, 
while it also permits us to process all the documents and give all the features a chance 
to obtain a weight. It also helps reduce bias that would be introduced by the choice of 
a single subset. 

To test this idea, we divided the Train-1600 into 16 random disjoint subsets, 
without any particular regard for the distribution of categories within each of the 16 
subsets. Thus, since the combined weightings approach needs to consider only one of 
the subsets at the same time, and because the subsets are approximately 1/16 the size of 
the full training set, its memory requirements should be similar to those for svm-1/16. 
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Figure D5. Macroaveraged precision performance of different feature selection 
methods in combination with the SVM classifier. The horizontal axes refer to sparsity, 
the average number of nonzero components per training vector. 

The chart on Figure D5 shows a performance comparison of the combined feature 
weighting approach as described above and the svm-1/16, svm-1/4, and svm-1 
weightings. As can be seen from the chart, the performance of the combined 
weightings approach is roughly halfway between those for svm-1/16 and svm-1, and is 
indeed comparable to the performance of svm-1/4. In addition, the combined 
weightings approach performs particularly well at lower sparsity levels, which 
suggests that combining several weightings is a comparably robust feature weighting 
method. 

Concerning the time requirements of the combined weighting approach, note that 
it actually takes less time to train n models on subsets 1/n the size of the full training 
set than to train one model on the full training set, because the training of an SVM 
model is not a linear-time algorithm. In order to obtain feature weightings for all 16 
categories used in our experiments, the combined weighting approach requires 
1,214 s, while svm-1 required 3,934 s; however, svm-1/4, which is comparable in 
performance to the combined weighting approach, only requires 546 s. Incidentally, 
these figures suggest that, for the version of SvmLight we were using, the running 
time of SVM training (for N training documents) is on the order of O(N1.43). 
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