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Abstract: This paper describes the development of an Intellectual Property (IP) core in VHDL 
able to implement a Multilayer Perceptron (MLP) artificial neural network (ANN) topology 
with up to 2 hidden layers, 128 neurons, and 31 inputs per neuron. Neural network models are 
usually developed by using programming languages, such as Matlab®. However, their 
implementation in configurable logic hardware requires the use of some other tools and 
hardware description languages, such as as VHDL. For easy migration, a Matlab Graphical 
User Interface (GUI) to automatically translate the ANN architecture to VHDL code has been 
developed. In addition, the use of an activation function based on fuzzy logic for the 
implementation of the MLP neural network simplifies the logic and improves the results. The 
environment was tested using a typical prediction problem, the Mackey-Glass series, where 
several ANN topologies were generated, tested and implemented in an FPGA. Results show the 
excellent agreement between the results provided by the software model and the hardware 
implementation.  
 
Keywords: neural networks, multilayer perceptron, fuzzy logic, VHDL, FPGA, programmable 
logic, configurable hardware, IP core 
Categories: B.6.3, B.7.1, C.1.3, I.2.3 

1 Introduction  

There exist different Neural Network types and different hardware implementations 
[Omondi, 06]. The Multilayer Perceptron (MLP) is the most frequently used artificial 
neural network (ANN) due to its ability to model non-linear systems and establish 
non-linear decision boundaries in classification or prediction problems. Furthermore, 
the MLP is a universal function approximator, which makes it a powerful tool in 
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several signal processing fields: pattern recognition, system modelling, control, etc 
[Haykin, 99], [Bishop, 96]. The MLP-ANN is formed by individual elements known 
as neurons, organized in highly interconnected layers, where all the neurons in one 
layer connect their output to all the neurons in the next layer.  
 

 

Figure 1: Scheme of a neuron and an MLP-ANN 

Figure 1 (top) shows the internal structure of a neuron, in which the inputs are 
combined as follows: 

y = w0 + wi ⋅ xi
i=1

N

∑  (1) 

where xi, i = 1,2,…,N, are the inputs to the neuron, wi are the synaptic weights (w0 is 
called the bias, i.e. a threshold value), y is the linear combination of the inputs 
(multiplied by the synaptic weights) and the bias. The activation function (non-linear 
function) is the processing element mapping the y value to a pre-specified range. 
Figure 1 (bottom) shows the general view of an ANN, organized in different layers, 
introducing the inputs to all the neurons in the first layer and connecting all the 
outputs of one layer to all the neurons in the next layer. 

The non-linear characteristics of the ANN come from the activation function, 
which is essential for proper operation of the neural network. The activation function 
must follow one basic property: it must be differentiable. Most non-linear functions 
satisfy this condition, but usually they are difficult to implement in hardware. 
Therefore, the main problem in hardware implementation of ANN is the non-linear 
activation function, because complex hardware needs to be developed to accurately 
represent such function. Many non-linear activation function implementations have 
been proposed in the bibliography, but most have problems. For example, the 
activation function could be approximated by several piecewise linear functions, but 
this solution is not differentiable. Another possibility is to use the Taylor series of the 
activation function [Mendil, 99], but its digital implementation leads to a loss of 
precision due to the finite bit-width of data. 
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Usually, the development and simulation of new algorithms is carried out using 
Personal Computer (PC) platforms and high level programming languages such as 
Matlab®. This fact makes it difficult to migrate the developed algorithms to specific 
hardware platforms for real-time applications, low power systems, portable, or any 
other specific need for these algorithms to run in an optimized platform where a PC is 
not a possibility because of the execution speed, size, external signal interface, etc.  

Artificial neural networks are intrinsically parallel, as all the neurons work at the 
same time and there exist massive interconnections, consuming a high number of 
logic resources for computing and interconnecting. As it is not an easy task, hardware 
implementation of ANN has been a hot topic for many years, mainly due to three 
aspects [Muthuramalingam, 08], [Granado, 06]:  

1. Accuracy: Integer operations use less space and run faster than floating point. 
It is usual to force integer implementations at the expense of precision and 
accuracy. The main focus is obtaining similar results with integers than 
floating point. 

2. Required space: There exists a trade-off between speed of operation and 
logic resources consumption. If used resources are low, mathematical 
operations must be done in a serial fashion, requiring numerous clock cycles 
to perform calculations. 

3. Processing speed. For fast generation of results, it is desirable to perform 
operations in parallel. Thus, a few clock cycles are required at the expense of 
high logic resources usage.  

 
Usually, only neural chips using microelectronic VLSI implementation were 

successful due to the amount of silicon area required, in some cases using analogue 
integrated circuits [Bo, 96]. However, during the last years, the capacity of 
reconfigurable devices has increased significantly [Zhu, 03], allowing the 
implementation of ANN structures in FPGA, which are widely used for rapid 
prototyping due to their excellent cost/performance ratio. 

Usually, hardware design of ANN in FPGA is done for specific applications 
[Cheung, 06], [Krips, 02]. However, since the design of an ANN in hardware 
complex, it is desirable to be able to generate different ANN hardware systems with a 
few modifications in the code [Torres-Huitzil, 07]. This direction has been explored 
[Bougrain, 08] in order to ease the work of migrating an ANN to specific hardware, 
but making a general approach is difficult and is not easy to link the software side 
with the hardware implementation side. 

In [Soria, 03], the authors proposed an expression of the activation function based 
on fuzzy logic and developed the algorithm for a single neuron system under Matlab. 
This paper develops an appropriate MPL-ANN hardware implementation taking 
advantage of the proposed activation function, which uses basic logic functions such 
as comparators, sign function, and arithmetic calculations like addition and 
multiplication. In particular, we focus on optimizing the performance leading to 
reduced logic usage and proposing an interface to easily migrate a Matlab-designed 
MLP neuronal system into VHDL code for straightforward hardware implementation. 
In order to achieve this goal, a generic hardware implementation of MLP neural 
networks using a parametric IP core and VHDL is proposed. This strategy guarantees 
implementation in any configurable hardware platform and provides further 
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integration with any other hardware functions and IP cores by using a simple data 
communication scheme. Using an IP core scheme, hardware independency and easy 
parameterization are achieved. This paper provides new results in terms of speed of 
operation, utilization of resources, and ease of use. 

The paper is outlined as follows. Section 2 shows the theoretical basis of the 
proposed activation function and ANN to be used. Section 3 deals with the 
description of the VHDL-IP core module, including the Matlab Graphical User 
Interface (GUI) to convert the ANN model obtained with Matlab into VHDL code. 
Finally, section 4 presents the results of a specific problem of time-series prediction, a 
chaotic series, leading to a comparison of several topologies and showing the 
implementation results for an FPGA device. 

2 Theoretical Development 

The most usual activation function in an ANN is the hyperbolic tangent due to the 
fulfilment of certain characteristics: 

1. Historically, the sign function has been widely used in pattern 
recognition to separate between two patterns. Hyperbolic tangent is an 
excellent approximation for the sign function.  

2. Opposite to the sign function, hyperbolic tangent is differentiable. This 
fact allows the usage of an essential weight update rule, the delta rule 
[Haykin, 99]. 

3. The usage of the hyperbolic tangent derivative is used to update weights 
in an optimized way.  

4. With respect to other functions, hyperbolic tangent provides a null mean 
value.  

However, all the advantages of this function are difficult to implement in 
hardware due to its complexity [Mendil, 99]. One of the most important drawbacks of 
implementing digital neural networks lies in the activation function. Different 
approaches have been proposed to substitute the traditional hyperbolic tangent as 
activation function [Ferreira, 07]. The activation function proposed by the authors in 
[Soria, 03] is based on modelling the hyperbolic tangent function using linguistic 
variables [Klir, 97]. The  linguistic variables used are shown in figure 2. 
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Figure 2: Linguistic variables used for modelling the hyperbolic tangent 
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According to figure 2 and the membership functions, the functions to be applied 
with x as a variable are expressed in equation 2, 
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where a is a constant factor representing the smoothness of the sigmoid at origin.  
It is important to note that the proposed modelling is different from the 

hyperbolic tangent only in the mid-segment, where linear modelling is proposed. In 
the context of fuzzy logic, if we suggest x as a linguistic variable, this will be defined 
by a series of membership functions [Klir, 97]. We will consider triangular functions 
due to their simplicity (figure 3) [Soria, 03]  
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Figure 3: Membership functions used 

The membership functions μ1, μ2 and μ3 refer to the low, medium, and high 
concepts, respectively (figure 3). Applying a Sugeno model [Klir, 97], the value of the 
function at a specific point, xo, is given by: 
 

f (x0) = (−1)μ1(x0) + aμ2(x0)x0 + (+1)μ3(x0)   (3) 
 

The function given in (3) must meet the continuity property at the end of the 
linguistic variables defined in (2) and figure 3. Thus, in ±L points, due to the 
definition given in (2), the function values are ±1 for the high and low values 
respectively, and additionally, the function in ±L must be a⋅(±L) for the medium 
values, leading to a=(1/L). Using this expression, the fuzzy sets defined in (2), figure 
3 and expression (3) [Soria, 03], expression (4) is obtained. 
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In terms of simplicity, the obtained function provides lower computational cost 
than the hyperbolic tangent with the same properties and results. This function leads 
to simpler hardware implementation, allowing more neurons to fit into the same 
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hardware capacity or incrementing the performance. 

3 VHDL IP core for ANN architecture generation 

Hardware implementation of the described neural network is carried out through an IP 
module specifically designed in VHDL for the task. The generated IP code is oriented 
to obtain a high parallelism among neurons maintaining moderate logic resources 
usage. In the proposed structure, every neuron performs internal calculations in a 
serial fashion so that logic resources do not increase dramatically, but every neuron 
makes calculations in parallel. This IP hardware module has evolved from previous 
work carried out by the authors in this field [Rosado, 98]. 

The IP core is composed of nine VHDL components corresponding to a 
hierarchical design where functional units are instantiated iteratively according to the 
parameters specified as “generic” in the VHDL code. This method allows dynamic 
generation of the hardware system according to the parameters entered in the IP core 
(figure 4). 

 
entity ANN is 
GENERIC (num_inputs_net  : integer := 2; -- number of inputs 

  num_layers    : integer := 1; -- 1 or 2 (only hidden layers) 
  num_neurons_layer1   : integer := 3; -- neurons of 1st layer 
  num_neurons_layer2   : integer := 0; -- neurons of 2nd layer 
  num_neurons_output   : integer := 1; -- neurons of out-layer 
  width_weights_layer1 : integer := 2;  

-- number of bits required to encode number of weights in layer 1 
  width_weights_layer 2: integer := 0;  

-- number of bits required to encode number of weights in layer 2 
  width_weights_output : integer := 2  ); 

-- number of bits required to encode number of weights in outputs 
PORT (NETIN      : in vector_inputs (num_inputs_net downto 1); 
      WEIGHT     : in dat_int;  -- weight value, default 18 bit  

   ID_NEURON : in std_logic_vector (13 downto 0);  
--(13..12)->Mode_neuron;(11..5)->num_neuron;(4..0)->num_weight; 
   CLOCK, RESET : in std_logic; 
   ENA  : in std_logic;  
   ENA_WEIGHT : in std_logic;  
-- ENA_WEIGHT must be '1' during weight update 
   ENDCAL  : out std_logic; 
   NETOUT : out vector_inputs (num_neurons_output-1 downto 0)); 

end ANN; 

Figure 4: Top Level entity structure of IP core allowing the definition of parameters 
for generation of different MLP-ANN 

Due to the proposed parameters and corresponding ranges, the developed IP core 
can be fully customised in order to be adapted to almost any application requiring a 
Multilayer Perceptron neural network topology where real-time hardware is needed. 
A VHDL package has been defined in order to easily adapt the design to other needs; 
the modification of these values would allow changing the bit-width of input data and 
the maximum number of allowable inputs and neurons. Neural network configuration 
parameters are: 
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1. Number of data inputs, i.e. variables for solving the classification or 
regression problem. A maximum of 31 inputs is allowed. By default, 16 bit 
width is used. 

2. Number of hidden layers. Typical problems where MLP-ANN are used do 
not need more than 2 hidden layers, thus only one or two hidden layers are 
allowed. 

3. Number of outputs. In this case, any number of outputs (up to 31) can be 
selected.  

4. Resolution of inputs and outputs. As a default, 16 bit width is used; this 
width is normalized to [-1, +1] values in order to be compatible with 
computer generated values for training and weighting. 

5. Resolution of weights. Typically, weights might have normalized values 
greater than unity in absolute value. Then, 18 bit width is chosen as a default 
in order to allow values ranging from [-3, +3].  

6. Specification of predefined weights and activation function for each neuron 
is possible but not compulsory. i.e., these values can be pre-programmed 
and/or fixed through the external interface once the system is running. 

 
Once the aforementioned parameters are chosen, the hardware implementation is 

carried out using the synthesis tool for the target hardware, generating the specified 
number of neurons and their associated interconnections. This is done due to a general 
VHDL description based on the “generate” instruction, allowing automatic and 
iterative generation of neurons and corresponding interconnections. Figure 5 shows an 
example of layer 1 automatic generation according to parameters. Doing this allows 
the generation of all the neurons in parallel, which means that calculations of every 
neuron will be performed at the same time, increasing global performance. 

 
-- Layer 1 generation  
G2: if (k < num_neurons_layer1) generate begin 
 neur_in : neuron generic map (num_inputs => num_inputs_net,     
     width_weights => width_weights_layer1) 

      port map( INPUTS => NETIN,  
          WEIGHT => WEIGHT, 
           MODE_NEURON => mode_neuron, 
    NUM_WEIGHT => num_weight, 
    CLOCK => CLOCK, 
    RESET => RESET, 
    ENA => ENA, 
    ENA_WEIGHT => ena_weight_int(k), 
    ENDCAL => endcal_int(k), 
    OUTPUT => out_int(k) ); 

end generate G2; 

Figure 5: VHDL code for the automatic generation of first layer in an ANN 

The neural network has two modes of operation: Configuration and Operation. 
When working in operation mode, data inputs are read, calculations performed and 
the output is obtained. During configuration mode, weights and activation function for 
each neuron are programmed, overriding previous values and allowing to solve a  
different problem with the implemented ANN. Through this interface (the port 
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description in figure 4), the activation function of each neuron can also be specified 
according to three predefined functions: fuzzy, sign, and transparent function. 

The external inputs and outputs of the neural network interface are shown in 
figure 4. These signals can be divided into two groups: configuration and operation 
mode interface. 

1. Configuration mode interface. The proposed system does not include the 
possibility of self-training for weight updating, requiring external 
connection in case of modification of weights. This is done using a group 
of signals containing weight and neuron configuration information by an 
address and data. This set of signals is intended for the connection of a 
host system in charge of downloading the weight values and activation 
function of each neuron. The host system can be a microprocessor, a PC, 
or an external memory (RAM or ROM) where values are stored and can 
also be easily modified. The configuration interface consists of a 32-bit 
bus as default, allowing easy interfacing with standard 32-bit 
microprocessors. This group of signals can be divided into two sets: a) 
WEIGHT (18 bit), which specifies the value of certain weight, and b) 
ID_NEURON (14 bit), containing different information: 

i) The activation function for every neuron (MODE_NEURON, 2 bit, 
selecting fuzzy “00”, sign “01” or transparent function “11”). 

ii) Selected neuron (NUM_NEURON, 7 bit) to address the neuron to be 
configured.  

iii) Weight number address for the selected neuron (NUM_WEIGHT, 5 
bit).  

This data structure means that a maximum of 128 neurons can be 
specified, and a maximum of 31 inputs per neuron is allowable. The IP 
core assigns a number to each generated neuron (numbers are 
automatically assigned from the input layer to the output layer) so that the 
user knows how to address the neurons of the neural network when 
transferring configuration. Control signals required for configuration mode 
are CLOCK and ENA_WEIGHT. CLOCK latches the 32-bit value into the 
device, storing the new weight value in an internal RAM according to the 
ID_NEURON indications. While ENA_WEIGHT is active, only 
configuration mode is enabled, ignoring all the operation mode signals. 

2. Operation mode interface. All the inputs to the ANN are parallel, using 16 
bit per input as default. Inputs are synchronized by the ENA signal, which 
indicates that input values (NETIN_1,…,NETIN_n) are valid and can be 
latched into the circuit in the next rising edge of the clock to start 
calculations. The ENA signal must be active during at least one clock 
cycle, and the neural network will not admit any other input values until 
the calculation of the first layer is finished. The end of calculation is 
indicated by the ENDCAL signal, which is active during one clock cycle, 
and indicates that the ANN output value NETOUT is valid; this value 
remains valid until a new ENA signal starts a new calculation process. All 
the neurons of the same layer work in parallel and each layer is calculated 
separatedly, allowing pipelining.  
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Due to pipelining, it is not necessary to wait until the end of the neural network 
calculation to launch a new calculation process (taking into account that a latency 
time appears). Once the first layer has finished and passed the values to the next layer, 
new data can be accepted. The delay for each layer is equal to the number of inputs 
plus three clock cycles; equation (5) shows the clock cycle delay Δ according to the 
number of layers (given in clock cycle units). Thus, due to pipelining, the minimum 
time for the next input to be applied would be the maximum among (ni+3), (nh1+3) 
and (nh2+3), where ni is the number of inputs to the ANN, nh1 is the number of 
neurons in the first hidden layer, and nh2 is the number of neurons in the second 
hidden layer. Therefore, a maximum sampling frequency of 1/Δ could be achieved.  
 

⎩
⎨
⎧

+++
++

=Δ
 layershidden  2for  ))3(),3(),3max((

layerhidden  1for  ))3(),3max((

21

1

hhi

hi

nnn
nn

  (5) 

3.1 Neuron description 

The neural network is based on a flexible neuron description. The neuron can be 
configured in multiple ways so that it can be adapted to any position in the network or 
to any network topology. Its input and output signals are shown in figure 6. Internally, 
every neuron contains a state machine to control the math calculations, an arithmetic 
unit consisting of a single multiplier and an addition unit, a RAM memory for weight 
storage and some additional logic to control and synchronize the system. As only one 
multiplier and one addition unit are used, serial calculations are performed internally, 
which greatly simplifies the logic occupation, allowing the implementation of a 
complex neural network in a relatively low logic area. On the other hand, several 
clock cycles are needed to perform calculations. With regard to the external interface, 
apart from INPUTS and OUTPUT, all neurons receive the same CLOCK, RESET, 
WEIGHT, ID_NEURON (only MODE_NEURON and NUM_WEIGHT parts) 
configuration signal. During configuration, only ENA_WEIGHT of each neuron is 
activated individually when the neuron is addressed. NUM_NEURON (the last part of 
ID_NEURON) is not fed into each neuron because it remains only in the main ANN 
structure for neuron addressing. ENA signal is the same for every neuron in the same 
layer; for the first layer, ENA corresponds to the external ENA input signal. For the 
second and output layers, the ENA signal is connected to the ENDCAL signal of the 
previous layer in a chained way. This procedure makes possible to have a pipeline in 
the system. 

Additionally, the neuron description has been developed using a generic 
definition so that the same VHDL code can generate neurons with different input 
number, and thus, different weight number. The generic parameters NUM_INPUTS 
and WIDTH_WEIGHTS are used for this purpose as can be observed in the example 
given in figure 5. 
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Figure 6: Input and output signals of a single neuron 

3.2 Graphical User Interface 

All the network configuration parameters for the MLP-ANN generation can be 
introduced by hand in a text file by modifying the generic part of the code shown in 
figure 4. However, in order to automate the generation of VHDL code for different 
neural network structures and ease the migration of Matlab designed ANN structures 
and weights, a Matlab Graphical User Interface (GUI) [Marchand, 02] has been built 
(figure 7), assisting the user in specifying the ANN structure and generating the 
VHDL code for both the neural network implementation (by automatic fulfilment of 
the generic part of figure 4), weight initialisation (this part is optional) and the VHDL 
simulation test bench. Basically, The GUI helps the user in setting the appropriate 
parameters of the IP core for the generation of the VHDL neural network architecture, 
number of inputs, number of layers, number of neurons per layer, weight values, etc. 
The GUI can also generate a data test file including initialization weights and 
activation function for each neuron, which can be used for VHDL simulation 
purposes and initial ANN values. The GUI can generate the VHDL parameters for the 
neural network structure and configuration values from a Matlab .mat file containing 
a previously trained neural network or from a neural network generated by the user 
through the graphical interface. Furthermore, for testing purposes, the general VHDL 
code is able to read input data files generated from the Matlab GUI, allowing VHDL 
simulation to test the automatically generated VHDL code. Once simulated, the 
results can also be compared with Matlab generated results in order to evaluate the 
accuracy of the hardware implementation (see section 5). 
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Figure 7: Matlab GUI interface for the VHDL code generation 

4 Implementation results 

For comparison purposes, different neural network structures were synthesized for a 
Xilinx Spartan 3 FPGA using XST under Xilinx ISE 9 software. Table 1 shows 
implementation results for different ANN structures containing several neurons, from 
a single neuron with two inputs to a complex ANN with eight inputs, two hidden 
layers with 28 neurons each one and a single output neuron, all of them implemented 
in the same Xilinx Spartan 3 device XC3s4000fg900-4. Table 1 gives a comparison 
between different ANN structures in logic occupation and speed of operation, where 
ANN W-X-Y-Z stands for W:number of inputs, X:number of neurons in the first layer, 
Y:number of neurons in the second layer, Z:number of neurons in the output layer. 

As it can be seen from the number of slices (basic measure of logic occupation in 
Xilinx devices), the occupation level of a neural network is proportional to the 
number of neurons; a neural network with 5 neurons occupies 899 slices, which gives 
a ratio of 179 slices per neuron, a value similar to the occupation level of a single 
neuron (177 slices). Every neuron requires a single multiplier; it can be seen in the 
“multiplier” column of Table 1, giving the total number of neurons in every ANN. As 
the number of internal neurons and inputs grow, more slices are required and the 
clock speed decreases, mainly due to the exponential increment of interconnections. 
This table also shows that an increment in the number of inputs requires more slice 
usage, increasing the slices per neuron rate. 

The obtained results vary slightly depending on the selected device and family. 
Spartan 3 is a low cost device, with the simplest device (XC3s50) containing 768 
slices, allowing a 4 neuron ANN to be implemented. If we consider that a typical 
classification or regression problem requires no more than 30 neurons, a medium size, 
moderate cost device in Spartan 3 family such as XC3s1000 could fit the design 
running at a 65MHz clock rate. Other FPGA families such as Virtex 4 or Virtex 5 
contain up to 89,000 slices, meaning that an approximate number of 300 neurons 
could be implemented into a single FPGA (the exact number of neurons depends on 
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the number of inputs and outputs). However, the present implementation can use a 
maximum of 128 neurons, requiring less logic area than those offered by devices. 
 

ANN W-X-Y-Z device slices multipliers clock freq. sampling freq. 
Single neuron 177 1 71.8 MHz 14.36 MHz 
ANN 2-4-0-1 899 5 71.8 MHz 10.26 MHz 
ANN 4-8-8-1 3538 17 71.8 MHz 6.55 MHz 
ANN 6-15-15-1 7973 31 65.7 MHz 3.65 MHz 
ANN 8-28-28-1 19810 57 61,8 MHz 501 kHz 

Table 1: Occupied resources and speed of operation for different ANN structures 
implemented in a Spartan3 XC3s4000 device 

Regarding speed of operation, Table 1 shows the clock speed that could be 
achieved by different ANN structures. As observed, a data input sampling frequency 
in the order of MHz can be used for most of the ANN structures; however, most of 
the ANN applications do not require such high frequencies.  

Additionally, if implementation were made in last generation Xilinx Virtex5 
device, a complex ANN implementation with 30 inputs, two layers 31 neurons each, 
and 31 outputs would require a medium-size device (for example the 
xc5vlx110ff1760). This ANN implementation would run at a 73MHz clock frequency 
(2.1 MHz sampling rate). 

5 Application results 

As stated before, logic occupation, performance, and precision are the most important 
topics when implementing algorithms in specific hardware. Logic occupation and 
performance were analyzed in section 4. In order to test the precision of the proposed 
system, several neural network topologies were generated to solve a typical time 
series problem: the one-step forward prediction of the Mackey-Glass series generated 
according to the non-linear differential equation given in equation 6.  
 

dx(t)
dt

= −0.1⋅ x(t) +
0.2 ⋅ x t − τ( )
1+ x10 t − τ( )

for τ =17  (6) 

The problem consists in predicting next input value x(t+1) from actual and 
previous values x(t), x(t-1), x(t-2), etc. This problem was chosen because Mackey-
Glass is a chaotic series with a high non-linearity, which is a non-simple prediction 
problem. Optimized non-linear models, like neural networks, may give a prediction 
error that is three orders of magnitude lower than the error given for an optimized 
linear model [Svarer, 83]. 

The main aim of using this prediction series was the comparison of results 
between the same ANN model for an implementation in software (MATLAB) and 
hardware (FPGA using VHDL) to evaluate accuracy. The input time series has been 
processed so that it meets zero mean and a standard deviation of 1. The number of 
inputs was taken as two; thus, the problem lies in predicting x(t+1) from x(t) and x(t-
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1). A set of 1200 points, without the validation set, was taken. For comparison 
purposes, different ANN consisting of two input neurons, a variable number of hidden 
neurons and a single output neuron were implemented. 

The quality of the modelling can be deduced from figure 8, which shows the 
Mean value of the Absolute Error (MAE) and the Root Mean Square of the Error 
(RMSE) of the model for different number of neurons in the hidden layer. These error 
estimations are calculated between the theoretical Mackey-Glass series (equation 6) 
and the Matlab simulated ANN model prediction output. As it can be seen, the 
prediction problem is not easy and even using the floating point precision calculus 
made with Matlab in a PC, the ANN shows significant errors.  
 

 

Figure 8: MAE and RMSE of the difference between the theoretical Mackey-Glass 
series and the ANN model in Matlab. 

With respect to the hardware implementation, once the ANN was trained in 
Matlab, weight values and ANN structure were translated into VHDL code using the 
proposed GUI tool. Figure 9 shows Modelsim VHDL simulation results for a two 
input (x(t) and x(t-1)) ANN with one hidden layer containing three neurons and one 
single output (x(t+1)). All the external signals and configuration parameters are 
shown in this figure. In the simulation diagram, a 10 MHz clock is used. After the 
initial reset, predefined weights are introduced in the system through the external 
configuration interface (ENA_WEIGHT signal active), followed by the start of the 
operation mode, first input set is sampled (ENA signal active) and the output result 
for the prediction is generated. The procedure of entering new inputs and obtaining 
the corresponding prediction is repeated. Figure 9 also shows the first output result 
generated 12 clock cycles after ENA signal is activated. This time is reduced to 6 
cycles after the second sample, due to the pipeline system. 
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Figure 9: VHDL Simulation results for the initialisation of weights and output 
calculation for a 2 input, 3 neuron, 1 output ANN 

For the specific neural network consisting of two inputs, one hidden layer with 3 
neurons and one output neuron, figure 10 shows the results obtained for a test set of 
200 input samples: the ideal signal for the Mackey-Glass series according to equation 
6 (Ideal), the prediction obtained with the proposed ANN in Matlab floating point 
precision (Matlab), and the prediction result of the hardware implemented network in 
16 bit precision (FPGA). Simulation results are stored in a file so that they can be 
compared with the Matlab® generated results.  
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Figure 10: Comparison among Mackey-Glass series equation (Ideal), prediction 
results obtained by the ANN in Matlab (Matlab) and ANN hardware implementation 
(FPGA) 

In order to evaluate the error obtained by the hardware implementation, some 
parameters were measured. Table 2 shows the MAE and RMSE of the difference 
between results obtained by Matlab using floating point precision and the hardware 
implementation of the ANN using signed 16 bit integer. 
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Hidden 
Neurons 3 4 5 6 7 8 9 

MAE 6,29E-06 4,45E-06 2,20E-06 1,03E-05 9,91E-06 4,96E-06 9,32E-06 

RMSE 2,08E-04 1,47E-04 6,16E-05 3,46E-04 3,29E-04 1,62E-04 3,03E-04 

Table 2: Mean value of the MAE and RMSE of the difference between the results 
obtained by Matlab and the hardware implementation ANN prediction 

The hardware implementation used signed 16 bit precision, which means that the 
quantization error is 3.052e-5. However, as shown in figure 8 and table 2, the errors 
due to hardware implementation (table 2) can be neglected compared with the 
difference due to the ANN modelling and Ideal series (figure 8). It is noticeable that 
the error of the hardware implementation is about 2 orders of magnitude lower than 
the error of the modelling.  

Regarding the behaviour of the modelling for different number of neurons, the 
error magnitude is quite similar for all the structures, despite the number of hidden 
neurons. It is also important to note that a greater number of neurons do not 
necessarily means better results (lower error) for the prediction. In that sense, table 2 
shows that independently of the number of neurons, the comparison error between 
hardware configurable logic and Matlab is always kept at a low value. 

6 Conclusions 

The proposed system offers new advantages and eases the hardware implementation 
procedure of a complex system such as neural networks. Due to the new proposed 
fuzzy activation function, it is possible to keep hardware consumption low, allowing a 
parallel calculation system for the neurons in the same layer and increasing 
performance without sacrificing logic occupation. 

The proposed system also includes a graphical interface to translate Matlab 
generated neural networks into VHDL making use of the automatic IP core parameter 
configuration. Very little knowledge of VHDL is needed to generate fully functional 
hardware neural networks, because the developed IP core automates the conversion. 

In addition, due to the pipelining and parallelization of neuron calculation in the 
same layer, the implemented hardware system is able to run at clock frequency rates 
up to 70.1 MHz, which for the described example would allow a 10.7 MHz data 
sampling rate. Thus, using the IP core proposed in this paper, MLP neural network 
systems can be easily migrated from software design environments such as Matlab 
into specific hardware platforms (configurable hardware) for real time applications in 
a few steps, achieving an excellent ratio between logic resources and speed of 
operation, maintaining the accuracy. 

This work is self contained and can be used as it is. Currently, the work intends to 
provide the same tool for other types of ANN, not only Multilayer Perceptron, and 
moreover, introduce the possibility of incorporating the learning process in the 
hardware, which would increase the range of applications where an ANN hardware 
system could be used. 
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