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Abstract: In this article we present an architecture for the integration of tutoring
approaches and process scaffolds into existing collaborative applications. The archi-
tecture allows to combine existing research on explicit representations of collaborative
learning processes with the availability of existing and tested collaborative learning
environments. The architecture allows to control the learning environments either by
a human or a pedagogic agent and thus enables adaptation of the tools to the current
state of the learning process. Both types of tutors are using a so-called remote control
component using the same set of control primitives. To prove the soundness of the archi-
tecture and the flexibility of its implementation two example scenarios are shown that
use IMS LD learning process definitions with the Coppercore learning design engine
controlling our collaborative environments.
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1 Introduction – Structuring and Scaffolding Collaboration

Collaboration has become an important factor in learning activities, especially
in disciplines that require substantial phases of working in teams, such as com-
puter science, communication sciences etc. This can be seen in the emergence
of the research field Computer-Supported Collaborative Learning (CSCL) in
the last decade. Yet, just reducing the computer-based support to the provi-
sion of the suitable technological means to communicate, is most often not suf-
ficient to promote the collaborative learning activity. Studies like Weinberger
[Weinberger 2003] showed that collaboration does not happen effectively in ev-
ery situation just by initiating the collaborative situation.

The two approaches of scaffolds [Quintana et al. 2002] respectively collabo-
ration scripts [O’Donnell et al. 1992] are means to structure the learning activity
and to support the learners in organizing their activities or acquiring the skills
to collaborate effectively. Thus their use in computer-based learning support
environments (LSE) is a major topic of recent research in the CSCL commu-
nity ([Weinberger et al. 2005a]; [Harrer et al. 2005]). At the moment the term
”script” is used in a highly ambiguous way: The pedagogical rationale of a col-
laborative learning activity, that shapes the general context and sequence of the
whole activity is called a CSCL script. An example for this is the stimulation
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of collaboration by splitting the task so that interaction happens at the split
(cf. [Dillenbourg 2007]). Yet the same term is used as well for the fine-grained
prescription how argumentation should happen in complete argumentative se-
quences (cf. [Leitao 2000]).

Interestingly a parallel discussion occurs also in a field of computer-supported
learning that has evolved independently of CSCL, the discipline of Intelligent
Tutoring Systems (ITS): The support of the learners by the system to promote
them in the learning process is often called tutoring or interventions. The com-
ponents called ”intelligent tutors” or ”pedagogical agents” are used comparably
ambiguous as the term ”script” in CSCL with respect to the granularity and
competencies the tutor/agent should provide.

It is obvious that the expertise and experiences of these two fields should
be combined in collaborative computer-supported learning activities. One of the
grand challenges for the shared interest between the communities will be the
representation and implementation of scaffolds respectively tutoring processes
for collaborative scenarios. The definition of formal models for collaboration
support results in the explication of the pedagogical and psychological rationale
for the scientific exchange between researchers and practitioners, but also in the
practical application of the models in computer-based learning environments.

This article will present our approach of combining aspects from CSCL, ped-
agogical design, and ITS in an integrated architecture to support collaborative
learning activities. For that end we discuss in section 2 the desirability of ex-
plicit and formal models for learning processes to make the pedagogical ratio-
nale that is represented within these models re-usable more efficiently. Section 3
presents our proposal for the combination of existing collaborative applications
with engines for the execution of learning processes conceptually and in the fol-
lowing a flexible architectural design for this approach. The implementation of
this approach is described in section 4 using the third-party learning design en-
gine CopperCore and our collaborative modelling applications Cool Modes and
FreeStyler. In section 5 we show the expressiveness and scope of potential us-
ages for learning scenarios by the description of a complex adaptive scenario for
scientific inquiry learning and a collaborative scenario involving variation based
on the result of a group decision. Several challenges for the research field and
our approach with respect to the usage of heterogeneous learning tools and the
re-use of learning products are discussed in section 6, before our conclusions and
future directions are presented in section 7.

2 Formal Models of Learning Processes and Collaborative
Applications

Up to now complex learning support environments and explicit scaffolding/tu-
toring models are largely unrelated and co-exist, but do not co-operate. On
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the one hand LSEs, such as WISE [WISE], CoLab [van Joolingen et al. 2004]
or Belvedere [Suthers et al. 1995], either have a specific (”hard-wired”) process
model embedded or do not have an explicit learning process model at all. On
the other hand environments that use explicit process models for supporting the
learning process, typically fall short in at least one of these two criteria:

1. Re-usability of the process model in other contexts: most systems using a
formal model for structuring the interaction between the learner(s) and the
system define their own proprietary model for the learning process which is
not understandable and thus re-usable by other applications: this may hap-
pen because of proprietary formats that cannot be mapped to other formal
approaches, a lack of explicitness of the operational semantics of the model,
or a lack of explicitness of the model itself, which is often deeply intertwined
with the graphical user interface. Among the explicit models for defining the
learning process are production rule systems [Aleven et al. 2004], automata-
based [Martens 2004] and flow-oriented models [Dawabi and Wessner 2004].

2. Expressiveness for complex learning processes: systems that have explicit
mechanisms for structuring activities usually tend to have a very narrow
focus, such as sequencing the presentation of learning material in web-based
hypertext systems or intervening on the first deviation from an ”ideal” learn-
ing path [Anderson et al. 1995]. Especially more coarse-grained learning ac-
tivities, such as experimentation, model construction, and argumentation
are usually not scaffolded in these systems. There are very few approaches,
that explicitly try to scaffold collaboration with adaptive approaches: coming
from the ITS area, the ”Collaborative Tutor” approach [McLaren et al. 2005]
attempts to support the fine grained level of user actions in relatively small
problem-oriented tasks, such as object-oriented modelling. The GridCOLE
approach [Bote-Lorenzo et al. 2004], that is rooted in the CSCL field, com-
bines the explicit description of coarse-grained learning activities with the
launching of services suitable for the specific activity. IMS Learning De-
sign [Koper and Tattersall 2005] (IMS LD or short LD) can be considered
a formal approach with explicit representation of both the models and the
operational semantics, even though both aspects could be discussed even
more precisely as proposed in [Amorim et al. 2005]. Comparable approaches
for modelling of learning scenarios are the Learning Activity Management
System [Dalziel 2006] (LAMS) that allows definition and execution of learn-
ing processes by a drag-and-drop definition of processes via a set of defined
activity tools or the Learning Design Language [Martel et al. 2006] (LDL)
that uses a graphical notation to specify learning processes and automatically
execute them in a built-in runtime mode. Surprisingly up to now learning
design documents as process scaffolds or ”scripts” are usually oriented to-
wards delivery of web-content and some simple services, such as conference
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tools. Yet, making the learning processes explicit in a formal specification,
such as IMS LD, offers also the possibility to re-use the pedagogical rationale
that is reflected within the specification and to define more complex learning
activities than just sequenced content delivery.

We also assume that the formal character of IMS LD or similar languages
can be utilized to scaffold and apply tutoring support for pre-existing LSEs.
The availability of learning design engines (LDE), such as CopperCore1 or the
Learning Design Infrastructure (LDI) associated with the LDL approach, can
provide explicit process support without having to implement a process model
from scratch for each individual environment, if we can meet the challenge of
integrating pre-existing LSEs and LDEs in a flexible, interoperable architecture.

In the next section we will present our approach to achieve this synergy
between the both lines of computer-based learning CSCL and ITS manifested
in an architecture supporting this approach. In the subsequent section we will
discuss both the re-use of pre-existing learning support environments and the
re-use of artefacts within a learning process in an implementation utilizing the
IMS-LD standard for learning processes and an IMS-LD engine for the execution
of complex learning processes in external learning support environments.

3 A Flexible Architecture for Tutoring in Collaborative
Settings

We propose an approach that aims at a clear separation of the learning design
engine together with the specification and implementation of the learning flow
(as LD documents) and the collaborative learning environments. In this proposal
we assume that the learners interact exclusively with the LSE without having
to know anything about being ”scripted” or ”scaffolded” by the LDE respec-
tively the LD document. According to Vogten, Koper, Martens, and Tattersall
[Vogten et al. 2005] learning design engines can be represented as a collection of
finite state machines that react to changes of properties with state transitions
by sending events of a specific output alphabet. In the loosely-coupled connec-
tion of an engine with a learning support environment presented in figure 1, the
engine controls the learning environment with output events (such as ”start a
new phase”, event 1.), defined as a vocabulary for a set of environments, that
are mapped by the environment to its existing functionality (such as ”create new
workspace”, the configuration of the LSE through event 1.1).

Since the LDE interacts closely with the LSE, the LSE is – in relation to
the IMS LD proposal – more than an IMS LD service which is not monitored
and controlled by the LDE during the activity. The learners interacting with
1 CopperCore — The IMS Learning Design Engine, http://coppercore.
sourceforge.net
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Figure 1: UML communication diagram for interaction schema between LDE
and LSE

the learning support environment create events (user action 2.), such as ”phase
is completed” (either directly or monitored by the LSE), that map to the in-
put alphabet of the engine’s state machines and are propagated to the LDE
(message 2.1). The triggered state transition (message 2.2) causes the learning
process to advance and will again trigger control messages (event 3.) to be ac-
cepted by the LSE. In that way we get the regulation cycle of figure 1 with the
LDE and the LSE influencing each other’s state. Using a generic vocabulary of
communication primitives between the LDE and LSE has the advantage, that
the learning process model can be used with a variety of different LSEs without
any changes to the document, given that the LSE can make use of primitives of
the vocabulary.

For the concrete realization of our approach we defined an architecture that
brings together LSEs and LDEs without having to make substantial changes
in either of the two components: This is achieved by introducing an intermedi-
ary generic component, called remote control, that loosely couples the LSE and
LDE by means of abstracting from specific dialects of the learning design and
of the learning support environments using a defined vocabulary (see below).
The schematic overview of the architecture can be found in figure 2 and the
components introduced have the following function:

Engine Extension (CopperCore Extension): this component extends the
event propagation mechanism of the learning design engine, so that on state
transitions within the engine, events are sent to the LSE to remotely control
the learning process according to the LD document’s description. This event
is sent indirectly to the LSE via the Remote Control Component to provide
less coupling and more flexibility between LSEs and LDEs (see below). For
the concrete realization of the architecture we aimed to use a third-party
LDE that uses both an expressive learning design dialect and also provides
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Figure 2: Remote Control Architecture for interaction between LDE and LSE

access to its interfaces and / or source code to allow for the extensions neces-
sary to our approach. The CopperCore engine is an open source LDE for the
IMS LD language, which satisfies the availability criterion and the expres-
siveness criterion to a wide extent [Hernandez-Leo et al. 2005]. Alternatives,
such as the LDI / LDL combination are not freely available, or in the case
of LAMS require substantial changes for the learning tools to be integrated
as new activity tools. Thus our technical approach is based on the use of a
modified CopperCore engine.

Remote Control Component: this component is the mediator between LDE
and LSE; it maps events coming as messages of the specific LD dialect from
the LDE into one or more communication primitives, that build the vocabu-
lary for remotely controlling learning support environments, such as CoLab,
FreeStyler, or Cool Modes [Pinkwart 2005]. Using this vocabulary allows for
a flexible exchange of both LSE and LDE, because their communication
is not tied to specific dialects of learning flow specifications, i.e. the LSE
does not have to understand a specific learning process specification. These
abstract ”commands” are then sent to the ”remote API” of the specific LSE.

LSE Remote API (Translator): this interface accepts communication prim-
itives that have been defined for a variety of different LSEs and maps these
primitives to the specific functionality available in the concrete LSE. For
example the communication primitive ”Show workspace for voting phase”
could be mapped to calling the functionality ”Make visible a workspace with
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title ’Decision on Solution’ and add a Voting Plugin” in the Cool Modes en-
vironment (see figure 4). The primitive that has been sent out from the
Remote Control Component to the subscribers of this primitive (all LSEs
that understand the primitive) is then translated to a call of the respective
functionality of the LSE; thus this can be considered a remote call of the LSE
functionality by the Remote Control Component. Similarly, actions taking
place in the LSE that are relevant for the LDE to monitor the state of the
learning process, are propagated be the Translator so that the LDE can up-
date its state accordingly (message 2.1 in figure 3). To integrate an LSE into
the proposed architecture, a translator mapping the command primitives to
the LSE in question and to propagated LSE events has to be implemented,
i.e. there is a one-to-one relation between an LSE and a Translator.

An interesting feature of this architecture is, that besides our main purpose,
i.e. the realization of collaboration scaffolds in pre-existing learning support en-
vironments, the remote control can be used by a variety of different actors (in
the socio-technical sense of actors being both humans and technical systems):

– A virtual agent/tutor, that has some model for scaffolding/tutoring the
learning, such as in [Martens and Uhrmacher 2004], if it uses messages that
can be mapped by the remote control to the communication primitives of
LSEs. The LDE component can be considered our standardized type of such
a virtual agent using the IMS LD dialect, but it could be replaced by a full-
fledged intelligent tutoring agent regulating the learning process adaptively
using the remote control vocabulary. Other types of tutors, such as the Cog-
nitive Tutors [Anderson et al. 1995], would then be usable, given that they
comply to a design similar to the tool-and-tutor architecture discussed in
[Ritter and Koedinger 1996].

– A human teacher, who can react at runtime to the learning situation and
give hints, additional tools, and / or instructions, as she or he thinks are
appropriate. This intended use-case of the remote control can be seen in the
lower right of figure 2, where the teacher has a dedicated user-interface. This
is especially useful in ill-defined domains, such as argumentation, law, and
other domains that are hardly analyzable automatically [Aleven et al. 2006].
Here it is possible to let a teacher participate in the learning activity as
a moderator like in the Argunaut project2, a recent EU-funded research
and development project aiming at the support of moderators of electronic
discussions.

– A human administrator, who can use the remote control with a similar user
interface to the teacher’s to setup collaborative sessions, assign rights and

2 www.argunaut.org
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roles to the students. Such an interface can substantially reduce the ad-
ministrative effort in setting up experiments and practical use of learning
support environments, as was prototypically shown in an early version of
our architecture in [Kuhn et al. 2005].

Of course the remote control can be used by several actors at the same time
(e.g. a teacher and a virtual agent), but this might produce inconsistencies in
the regulation of the process by the agent. This is the case when the teacher
intervenes into the collaboration without the agent being able to interpret this
intervention, thus reaching an undefined or incorrect state. On the other hand
this provides a convenient way for the teacher to react to unforeseen situations
in the learning activity, such as breakdowns of groups or tools, where an agent
would not be able to help anyway. In the next section we will present some details
of our concrete prototypical implementation of the Remote Control Approach
and architecture.

4 Prototypical Implementation

As a proof of our concept we chose to combine the collaborative applications Cool
Modes and FreeStyler with the CopperCore Engine, currently the most advanced
IMS LD engine and the Reload LD Player3, a graphical interface for run-time
configuration of learning designs. Cool Modes [Pinkwart 2005] and FreeStyler are
applications that allow graphical modelling and handwriting in individual and
collaborative use. Among the graphical models used are formal representations,
such as finite automata, system dynamics [Forrester 1968], and also flexibly us-
able representations, e.g. for mindmapping, brainstorming etc. Examples for the
usage of these applications in conjunction with our scripting approach can be
found in section 5. CopperCore and the Reload Player both are third-party ap-
plications with well-defined interfaces, so they can be adapted to the specifics of
our proposed approach.

The prototypical implementation of our architecture will be described in
three steps: In the first step we will describe the extensions of the CopperCore
engine, in the second step we will sketch the implementation of the Remote
Control plus an extension of the Reload IMS LD Player as a teacher’s frontend
and in the third step the extension of the Cool Modes translator (cf. figure 2)
will be explained.

4.1 CopperCore

Since the CopperCore engine shall be used as an agent that uses the Remote
Control, it is essential to be able to receive events from the engine. This is done
3 RELOAD Project – Learning Design Player http://www.reload.ac.uk/ldplayer.
html
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Figure 3: UML-like diagram for extensions of the CopperCore engine

by adding an EventPublisher to the CopperCore engine that notifies the Re-
mote Control when changes of CopperCore’s inner state machine occur. Another
possible approach would have been to poll the CopperCore’s inner state contin-
uously. Although this approach may have avoided changes to the CopperCore
engine completely, we decided to implement the first option to avoid the re-
source consuming polling requests of Remote Control Component. CopperCore
already provides an event propagation mechanism managed by an EventDis-
patcher which is used internally to calculate the consequences of advancements in
the Learning Design script (e.g. if a learning-activity is completed, a role-part is
completed). The given set of expressions and actions of the original CopperCore
engine were extended by introducing the conditions Started and InActivityTree
as well as a class called SendEvent that notifies the Remote Control Component
via the EventPublisher. These two new conditions help us to synchronize the
Remote Control with the CopperCore engine and to distinguish which collabo-
rative application has to be contacted because of the particular change in the
activity tree.

The parser of CopperCore has been extended to fire the SendEvent whenever
an activity ends. This was necessary to ensure that the SendEvent is executed if
the state changes are of interest (e.g. if an act has been made visible). Whenever
a SendEvent occurs, an appropriate EventObject (e.g. a NewActivityEvent) is
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created and sent to the Remote Control (see figure 3). The communication be-
tween the CopperCore engine and the Remote Control component, as well as
the communication to and from the LSE, is realized via Java Message Service4

(JMS), because it was convenient for the presented combination of LSE and
LDE. Nevertheless it is possible or even necessary, depending on the controlled
LSEs, to exchange the communication channel with other techniques in the fu-
ture. For the communication format we chose XML, since IMS Learning Design
is specified in XML and CopperCore makes already extensive use of it. If an
EventObject is created all relevant data is collected from the CopperCore en-
gine and an XML string is constructed. This string is sent by the EventPublisher
via a JMS TextMessage to the Remote Control. If a message arrives at the Re-
mote Control the EventObject is re-constructed by parsing the received XML
string. EventObject is used here as a placeholder for a family of concrete events
like the above mentioned NewActivityEvent. These events are subclasses of the
EventObject as shown in figure 3.

4.2 Remote Control

The Remote Control is the intermediate device between the learning process
management and the collaborative applications. It should be able to run either
without human interaction, monitored and operated by a pedagogic (computer)
agent or operated by a human. Both types of actors shall be enabled to inter-
act with the learners through the connected LSEs. Concerning the idea of using
IMS LD documents to scaffold the learning process we wanted to provide an
intuitive and easy-to-use (teacher) interface to configure the LDE (i.e. manage
learning scripts, create users, assign them as appropriate etc.). Since the Reload
LD Player [Reload] already has a quite intuitive UI and supports to start the
CopperCore server we used this application as a starting point to add some func-
tionality. First of all the user management has to combine the internal users of
the CopperCore engine and the users sitting in front of the LSEs. The Remote
Control maps the Copper Core’s participants to the users of the learning envi-
ronments. In our example the information about the LSE users is provided by
the MatchMaker [Jansen 2003] server that is used as a collaboration server for
the Cool Modes and FreeStyler environments.

The assignment of users to units of learning can either be done by humans
like it was already possible in the original Reload LD Player or by an agent
which notices new users and assigns them automatically to a script and starts it
afterwards. The human actor on the one hand has the option to create users and
assign them from the beginning (e.g. while preparing a lecture) and on the other
hand he can wait for the users to start their LSEs, so they will automatically
show up in the Remote Control and assign them to a specific script on the fly.
4 Java Message Service (JMS) http://java.sun.com/products/jms
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Figure 4: Overview of the Remote Control implementation using Cool Modes

As for the communication primitives, that are created from events in the LDE
and then sent to the LSE, we started out with a small set of events described
above, such as ”New Activity”, ”Voting”, and ”New Tool”. A similar approach of
mapping tools to learning activities that uses ontologies for the mapping has been
developed in the OntoolCole project [Vega-Gorgojo et al. 2006]. After a review
of literature in the field of collaboration scripts, e.g. [Weinberger et al. 2005b],
[Kollar et al. 2005], [Mäkitalo et al. 2005], and tutoring interventions such as
[Ritter and Koedinger 1996], we extended this set with primitives for ”Prompt-
ing”, ”Text scaffolds”, ”Awareness information”, ”Highlighting”, and ”Point-
ing”. While the initial primitives can be considered as means to shape the learn-
ing process at a coarse-grained level (i.e. macro-level CSCL scripts), the latter
primitives aim at a rather fine-grained granularity of scaffold and support, which
could also be used by tutor agents for immediate feedback interventions (i.e. ITS-
typical support). The flexible combination of both types of interventions provides
a vast potential to support learning processes at different levels of feedback and
scaffolding.
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4.3 Application specific extensions

As stated above our goal is to support a wide range of existing applications,
so we conceptualized a Translator which shall be loosely attached to each LSE.
Those classes that ”translate” the command primitives sent by the remote con-
trol to application-specific events or method calls implement the specified Trans-
lator interface. These classes are also responsible to ”translate” the application
specific results to primitives the remote control can handle. Depending on the
specific LSE this can be done with more or less effort. In general we think that
applications that support collaborative learning should be easily adaptable to
be remotely controlled, because in most cases there already are events to be
distributed among other clients of the LSE. To make a first proof of this as-
sumption we created a Translator for the FreeStyler application after the initial
Cool Modes translator [Harrer et al. 2006], which was very similar to implement.
In our examples the Translator can act as an additional client in the collabora-
tive environment. If it is possible to implement the translator in such a way, the
LSEs are not required to know anything about the whole learning process and
just react to the instructions of the Remote Control, which are again based on
the Learning Design engine. So the Translator behaves like a tutoring agent giv-
ing instructions how to adapt the LSE to the learning flow from the perspective
of the LSE.

Figure 5: The Cool Modes learning environment before (left) and after (right)
transmission of the communication primitive ”ShowWorkspace for VotingPhase”
from CopperCore Engine. In the right part the voting plugin was added (small
icon in top right corner) and an additional window appeared to conduct the
voting.

For example during a collaboration session with the goal to model a stochas-
tic experiment (see figure 5) the participants indicate that they do not want to
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change the model anymore. The users’ indication is sent to the CopperCore en-
gine via the Cool Modes translator and the Remote Control. The learning design
script changes its states and tells the Remote Control to start a voting activ-
ity. In turn the Remote Control distributes a Show workspace for voting phase
command primitive. The Translator translates this primitive application specific
commands for the creation of a new window containing a voting opportunity.

While the availability of a voting option is quite wide spread and therefore
reasonable to be taken as a command primitive the concrete implementation
of the voting is application specific. So every LSE has to use its own means
to enable the students to give their vote. This so called VotingService enables
the user to choose between different options which in turn affect the learn flow
of the IMS LD play. Technically the voting results returned by the Translators
are stored in IMS properties. This enables their use as variables that determine
the further steps in Copper Core’s learning script. This technique can easily be
adopted for other activities like evaluation of tests etc.

All the other communication primitives mentioned in the previous section
have also been implemented in our FreeStyler remote API / Translator. We will
show the usage of some of them in the following learning scenarios that are
supported through our remote control architecture. Since the translator is the
sole mediator between the LSE and the LDE, independent evolution of both
sides is possible, as long as the mapping of the primitives is valid. New versions
of the LSE, e.g. of FreeStyler, can be used without modification, given that the
interface of the functionality called by the translator is still preserved. On the
other hand new functionality in the LSE, such as a new visual rendering of
highlighting objects, can be integrated by small adaptations of the translator
that map one of the primitives now to the improved functionality instead of the
previously used one.

5 Scenarios using the Remote Control Approach

To show the expressiveness of our approach for a variety of very different learn-
ing activities, we provide two different scripts in the next subsections: the first
one is a complex scientific inquiry script with adaptive feedback, while the sec-
ond is a collaborative modelling scenario with dynamic flow depending on the
students’ voting decision. The first scenario emphasizes the possible re-use of
scripts with different learning contents by using a learning design engine as a
remote controller. This scenario also gives the opportunity to illustrate how the
behaviour of the learning environment is adapted according to the input given
by the student, i.e. characteristics usually associated with Intelligent Tutoring
Systems (ITS). The second scenario emphasizes on the scripted collaboration
(CSCL) aspects that are possible using the remote control approach. Both sce-
narios can easily be adapted to different domains by exchanging the content (i.e.
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basically exchanging the content of a referenced text file) of the presented scripts
while re-using the structure of the script.

5.1 A Scientific Inquiry script conducted with FreeStyler

The Inquiry IMS LD script consists of a macro script integrated with a mi-
cro script (cf. [Dillenbourg and Tchounikine 2007]) that determine the work-
flow and give specific hints respectively. The macro structure guides the stu-
dent through the experimentation process providing several phases of inquiry
[de Jong and van Joolingen 1998], such as the creation of research question, stat-
ing a hypothesis, experimentation, analysis etc. The instructor can customize the
phases depending on the depth of inquiry that is appropriate. The macro struc-
ture of the script is represented visually in the FreeStyler application as one tab
resp. page for each phase of the macro script; this process phases can be seen in
figure 6 at the top of the window, where the student is currently working on the
creation of a Research Question (the active page / tab).

Figure 6: Inquiry Script conducted with FreeStyler - Phase 3 (Research Question)

While this inquiry process is generated as a pre-existing guide or macro-level
scaffold, the IMS LD script is also able to generate prompts at run-time that
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give support during specific tasks of the experimentation process. On this micro
level, the instructor can define prompts with means to trigger metacognitive
thinking processes that allow the learner to plan, monitor and evaluate their
learning process. These micro prompts can be given on different levels of coercion
depending on the task difficulty and the level of students’ prior knowledge. For
example if the students’ prior inquiry skills are high because the teacher used
authentic approaches to science in class, a less coercive micro inquiry script can
be applied. Figure 7 shows a micro prompt with the text ”Are you done with the
experiment?”, that lets the student reflect on the learning process and that also
gives informed feedback to the system, when the student commits the prompt.

Figure 7: Inquiry Script conducted with FreeStyler - Phase 5 (Experiment)

However if more support is needed during the inquiry process, the level of
coercion can be adapted. Especially during extensive activities where the student
engages in several cycles of inquiry investigating a scientific phenomenon, the
micro inquiry script should allow a scaffolding with means of fading the support
depending on whether the student just started his or her first experiment or has
already finished several experiments. The instructor can employ different types
of prompts that can be specified in the IMS LD script:

During our experimentation scenario we used pop-ups to prompt students
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for monitoring purposes. Pop-ups have a high level of coercion because they
force the students to interrupt the activity they are currently engaged in. These
monitoring pop-ups remind the students to keep track of mistakes while they
are working on a specific problem. An example for such a pop-up can be seen in
figure 8 in the lower part.

Figure 8: Inquiry Script conducted with FreeStyler - Phase 6 (Analysis)

For the planning phase we use embedded hints, which pre-exist on the work-
space. These embedded hints are useful for the student to work systematically,
such as in figure 6 where the embedded hints scaffold the explication of the
research question. Especially when concluding an inquiry phase the students are
asked to evaluate and review the progress they have made. Depending on the
level of support that is needed we used either pop-ups or embedded hints for
supporting evaluative thinking.

The inquiry script is used for students in the age of 15-18 to investigate pho-
tosynthetic processes. Students engage in a cycle of inquiry using a simulation
program altering parameters that affect plant growth. After a planning phase
the students determine conditions of their scientific experiment and generate a
hypothesis predicting the outcome. While FreeStyler provides the means of pro-
ducing a qualitative model and visualising the experiment data using a graph
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plotter (see figure 7), the IMS LD Inquiry Script structures the learning activity
and asks the student to document the experiment throughout the stages of in-
quiry. For example after students have written their hypothesis they are hinted
to explain the reasons of why they think that their hypothesis is correct. During
the final stages of the experiment we use pop-ups to ask for specifically reviewing
their conclusions with respect to their hypothesis they have made earlier. These
prompts aim at fostering the students to externalize their thinking processes to
better keep track of inconsistencies that would stay hidden otherwise. We use
prompts mainly for the externalization purposes but also to systematize the ac-
tivity. Leveraging systematic thinking is important especially during our science
activities because the problems that students investigate are complex and not
easily predictable.

Figure 9 shows the IMS LD content, i.e. an XML document, that is specified
by the learning designer to display the topmost embedded hint of figure 6 with
the predefined text in the FreeStyler LSE and an associated property that will
store the student’s statement.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<content>

<div>
Please formulate your Research Question:

<set-property xmlns="http://www.imsglobal.org/xsd/imsld_v1p0"
ref="prop-Research_Question"
property-of="self"
view="value"/>

</div>
</content>

Figure 9: IMS LD content representing the embedded hint

The texts of embedded hints can be easily modified by the designer without
any programming skills, while the properties usually will have to be defined
using IMS LD editing tools. Pop-up messages such as the one in figure 8 can be
edited as plain text resource files, so a deeper understanding of IMS LD is not
necessary for the use.

The XML declaration of the property used for the student’s statement of the
research question in the IMS LD manifest can be seen in figure 10. The property
value will contain the answer given by the student.

Figure 11 shows the LD fragment from the manifest that defines the Graph-
Plotter object which is mapped in the Remote Control to a command primitive
requiring a plotting tool from the application used in the activity (here the graph
plotter of the FreeStyler visible in figure 7 as the visual representation of this
LD specification mapped to FreeStyler’s functionality).
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<imsld:locpers-property identifier="prop-Research_Question">
<imsld:title>Research_Question</imsld:title>
<imsld:datatype datatype="string" />

</imsld:locpers-property>

Figure 10: IMS LD property defined to capture the student answer of an embed-
ded hint

<imsld:locpers-property identifier="prop-Experiment_Done">
<imsld:title>Experiment_Done</imsld:title>
<imsld:datatype datatype="boolean" />
<imsld:initial-value>false</imsld:initial-value>

</imsld:locpers-property>
...
<imsld:environment identifier="env-c8d272fe">

<imsld:title>FunctionGraphPlotterEnvironment</imsld:title>
<imsld:learning-object identifier="lo-8359f4b0"

class="FunctionGraphPlotter"
isvisible="true" type="tool-object">

<imsld:title>FunctionGraphPlotter</imsld:title>
<imsld:item identifier="item-3b7de949"

identifierref="resource-be848c0c"
isvisible="true" />
</imsld:learning-object>

</imsld:environment>

Figure 11: IMS LD fragment used in the example script - Declaration of a prop-
erty and a learning environment

The presented Inquiry Script has been recently used with a school class in the
field to conduct an experimental study about the effects of fading in scientific in-
quiry processes. While the scientific evaluation of the study is currently going on,
the technical implementation showed quite a robust behaviour and effectiveness
in the classroom with a dozen of LDE/LSE systems running in parallel.

5.2 A Collaborative Modelling Scenario conducted with Cool
Modes

To conclude this section we describe the scenario and the IMS LD script for
an exemplary scenario using the collaborative features of the Remote Control
Approach and the Cool Modes application. The scenario that has also been
shown in figure 5 consists of three phases, the first a collaborative modelling
activity of a stochastic mathematical model, followed by a voting activity to
decide if all collaborators think that the model is sufficient. If the voting is
uniformly positive, the students advance to the presentation of their results (e.g.
to their classmates and teacher in a classroom scenario), while otherwise they
return to an additional phase of modelling to revise their solution.

The IMS LD document describing this scenario consists of a one acted play

165Harrer A., Malzahn N., Wichmann A.: The Remote Control Approach ...



structured in three Role-Parts, whereas one Role-Part (RP-1-2) can be skipped
by the users based on their decision in a voting (cf. figure 12).

<imsld:play identifier="PLAY-1" isvisible="true"> ...
<imsld:act identifier="Act-1"> <imsld:title>Model a Coin Experiment</imsld:title>

<imsld:role-part identifier="RP-1-1">...
<imsld:activity-structure-ref ref="LA-Modelling"/>

</imsld:role-part>

<imsld:role-part identifier="RP-1-2">...
<imsld:learning-activity-ref ref="LA-Further-Modelling"/>

</imsld:role-part>

<imsld:role-part identifier="RP-1-3"> ...
<imsld:learning-activity-ref ref="LA-Presentation"/>

</imsld:role-part>

<imsld:complete-act>
<imsld:when-role-part-completed ref="RP-1-3" />

</imsld:complete-act>
</imsld:act>

<imsld:complete-play>
<imsld:when-last-act-completed />

</imsld:complete-play>
</imsld:play>
<imsld:conditions>

<imsld:if>
<imsld:is>

<imsld:property-ref ref="P-Voting"/>
<imsld:property-value>true</imsld:property-value>

</imsld:is>
</imsld:if>

<imsld:then>
<imsld:hide>

<imsld:learning-activity-ref ref="LA-Further-Modelling"/>
</imsld:hide>
<imsld:show>

<imsld:learning-activity-ref ref="LA-Presentation"/>
</imsld:show>

</imsld:then>

<imsld:else>
<imsld:show>

<imsld:learning-activity-ref ref="LA-Further-Modelling"/>
</imsld:show>
<imsld:hide>

<imsld:learning-activity-ref ref="LA-Presentation"/>
</imsld:hide>

</imsld:else>
...

</imsld:conditions>
</imsld:method>

Figure 12: IMS LD Play used in the example script - Note that three Role-Parts
are needed since IMS LD does not allow to switch forth and back between acts

Each voting has a title containing the question and at least two options to
select from. The options again have a title, refer to an IMS LD property and
indicate to what value this property should be set, if this option is the result.
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Furthermore the attribute voting-type indicates whether this service is scripted
or unscripted. A scripted voting service results in getting configured and placed
for the user ready to use, in contrast to an unscripted voting service which just
indicates the user has the optional ability to configure his own voting. In Cool
Modes the latter will result in the Voting Plugin getting loaded and in case of
a scripted voting event a voting node provided by this plugin will get placed on
a shared workspace. This creation of a scripted voting can be seen in figure 5
from left (the modelling phase) to right (the voting between the participants).

<imsld:environment identifier="LD-Environment1">
<imsld:title>Modelling Environment</imsld:title>

<imsld:service identifier="LD-Service1">
<imsld-ext:voting identifier="LD-Voting1" voting-type="scripted">

<imsld:title>Is this model correct?</imsld:title>
<imsld-ext:choice identifier="LD-Choice1" property-ref="P-Voting">

<imsld:title>Yes</imsld:title>
<imsld:property-value>1</imsld:property-value> </imsld-ext:choice>

<imsld-ext:choice identifier="LD-Choice2" property-ref="P-Voting">
<imsld:title>No incomplete</imsld:title>
<imsld:property-value>2</imsld:property-value> </imsld-ext:choice>

<imsld-ext:choice identifier="LD-Choice3" property-ref="P-Voting">
<imsld:title>No incorrect</imsld:title>
<imsld:property-value>3</imsld:property-value> </imsld-ext:choice>

</imsld-ext:voting>
</imsld:service>

</imsld:environment>

Figure 13: Environment with a voting service used in the example script

In this case, the environment shown in figure 13 consisting of a voting ser-
vice is referenced in a learning activity. Thus the learners have the ability to
vote if their model needs further work or whether it is already correct and the
next modelling phase should be skipped. This works by using IMS LD Level B
conditions and showing or hiding the relevant activity based on the value of the
property P-Voting. Given a result of a majority for the correctness of the model
like in figure 5 a re-iteration of the modelling phase will be skipped and the
students directly proceed to the presentation for their classmates.

6 Discussion

In this section we want to discuss the presented approach considering the im-
plications of scripted learning environments on learning processes of the learner
and problems that usually arise within such systems. Furthermore we want to
explain the different variants of using multiple learning environments with or
within scripts.
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6.1 Implications of scripted learning environments

The IMS LD inquiry scripts that we are developing try to tackle a problem that
the research community is well aware of [Davis 2003], [Lajoie 2005]. When sup-
porting certain behavior during science learning the outcome of support can be
twofold: On the one hand prompts (cf. 5.1) can lead to scaffolding the student
within his or her zone of proximal development [Vygotsky 78] leading to a more
systematic learning path and triggering thinking processes which might have
stayed inactive otherwise. On the other hand however the possibility of disturb-
ing the students own learning path and inhibiting reflective processes through ex-
ternalized guidance (so called overscripting [Dillenbourg 2002]) seems inevitable.
IMS LD scripts allow to adapt the level of coercion achieving the lowest level
of support that is needed and the highest level of autonomous learning that is
possible. Our approach allows the instructor to apply adaptive support depend-
ing on the workflow which then can be mapped flexibly on different learning
environments.

To enable the script to decide which level of support is suitable for the learner,
resources and artefacts that have been resp. produced in earlier phases, should
be available to them at later stages to reflect on it and improve their hypotheses
in the next cycle. Here it becomes obvious that resources and objects need ref-
erences through which they can be adressed to be used in multiple phases and
cycles of the learning process.

Because the artefacts within the learning process, such as a simulation model
created by the student, can change over time, they have to be available both for
the LDE and the LSE: the LDE has to initiate the re-appearance of the object
in the LSE according to the description of the learning process, while the LSE
potentially has to change the content of the object, when the student modifies
it in the learning process.

To achieve this flexible use of learning objects in different phases and cycles
we chose to represent each re-usable object as a global personal property in the
LD description. The property is globally defined, because while the initial state
of the property can be set in the LD document, the external LSE can manipulate
the content during the learning process via the URI the property is associated
with. A personal property is required here, because every student involved in
the learning process might possess an individual version of the artefact, e.g. the
simulation model that should be produced in the inquiry process.

6.2 Using scripts with different learning environments

The remote control approach allows us to run the same script with different
learning environments. While the presented approach supports the usage of two
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or more different learning environments (e.g. Cool Modes and CoLab) with dif-
ferent students working through the same script, it does not support the auto-
matic launch of these applications. Since the users of the specific collaborative
learning environments should be unaware of the fact that the learning session is
scripted externally by an LDE, we didn’t provide a mechanism that starts a new
program on purpose. By this we emphasize the fact that all interaction of the
learner is done directly with the learning environment and only indirectly with
the learning design engine. Following this philosophy the presented approach
allows the remote control approach to use scenarios with different learning en-
vironments for the same learner only if the learner started all of them initially.
On the other hand no further software installation (i.e apart from the original
learning environments) is needed on the client (learning environment) side.

So e.g. if a learning scenario needs a voting facility (see subsection 5.2) and
it cannot be provided by the currently active LSEs, no additional voting facility
will pop up. But if the same learner is used to such voting scenarios and has a
voting facility opened, it is of course possible to control that one too to initi-
ate the script specific voting, given that the voting tool supports the required
remote API / Translator. Still there is one flaw with such a setup: all of the
collaborating learners will have to use a second application because currently
we do not transform the requests for different environments to a request for one
single learning environment (merging several tool requests to a singular one) or
to more of them depending on the capabilities of the available one (decomposing
a request for one tool to several sub-requests for different tools).

A second approach would be to have a special client program that is able
to start applications dynamically according to the script. As said before, this
would oppose our philosophy of not being intrusive to the user, but it makes
the learning processes and the choice of partners for collaboration even more
flexible. In [Harrer et al. 2007] we present an approach providing a client that is
capable of dynamically launching learning environments. This approach makes
use of grid technologies to transfer artefacts between the different learners.

7 Conclusion

We have presented a flexible architecture to combine Learning Support Envi-
ronments with Computer Supported Collaborative Scripting approaches. This is
based on our considerations that the pedagogical rationale compiled in scripts
has a large potential when transferred to well elaborated (collaborative) learn-
ing environments which have been developed in recent years. The idea is to
combine the flexibility of learning scripts, which can be adapted to different
learning groups and tasks, with the detailed and adaptive support that char-
acterizes task-oriented and domain specific ITS systems. Since the pre-existing
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systems should not be rewritten substantially we decided to use a loosely cou-
pled approach based on the so-called remote control component that allows to
be adjusted for different learning support environments on the one hand and
on the other hand different scaffolding agents (e.g. learning design engines, but
also human actors) to be applied. We proved our conceptual ideas by presenting
the current prototypical implementation of the proposed architecture using the
CopperCore engine and the Cool Modes resp. FreeStyler learning environments.
The feasibility of our approach for a variety of different learning processes has
been shown by the definition and practical test of a complex adaptive script
for the support of scientific inquiry learning and a collaborative modelling sce-
nario requiring consensus between the participants. The potential of extending
the approach towards the combination of different learning support environ-
ments within one learning process and the transferrability of learning resources
or products between phases and tools has been elaborated on in the discussion
section.

For the specification of the learning processes the Learning Design Standard
is used and their are no restrictions with respect to the tools used to create the
LD documents. Currently we are working on means for graphical group forma-
tion to ease the effort for teachers. For this we plan to use the SessionManager
[Kuhn et al. 2005]. Such a graphical specification can help to solve the matter
from the user’s perspective. Another open question is the definition of an auto-
matic mechanism for group formation in IMS LD scripts. Currently groups are
not explicitly represented in the specification, yet there are some workarounds
discussed in the literature such as in [Hernandez-Leo et al. 2005], where groups
are represented by specific roles. So either substitutes have to be found or new
constructs have to be introduced into LD. Following our principle of being as
little intrusive as possible, we prefer to extend existing constructs in a way that
they conform to the syntax specification of standard IMS LD and that support
the semantics needed for automatic group formation.

The second line of research we currently pursue is the transfer of the ap-
proach to other collaborative applications with the final goal to create scripted
applications which enable the learning designers to specify the interoperability
between application rather than programming it. Given this it will be possible
to use one learning flow for more than one learning environment at the same
time. That means the script (agent, tutor) can be used for other collaborative
learning environments, enabling students using different learning environments
to collaborate with each other. In the Argunaut project5 we currently use the Re-
mote API ideas with the third-party collaborative argumentation environment
Digalo. There and in the FreeStyler environment (using a visual discussion tool)
the remote interventions are enacted by a human moderator to support learners
5 Project website: www.argunaut.org
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in their discussions. By providing a mechanism to let a translator publish the
set of supported primitives for a LSE, it is possible to allow the dynamic selec-
tion of one LSE out of a set of potentially available environments, to perform
the execution of the desired functionality, e.g. voting or experimentation. The
mechanism has been defined in the Argunaut project and is planned to be put
to test in other contexts in future experimentation.
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