
Seamless Transition between Connected and Disconnected

Collaborative Interaction

Stephan Lukosch
(FernUniversität in Hagen, Department for Mathematics and Computer

Science, Germany
stephan.lukosch@fernuni-hagen.de)

Abstract: Nowadays, more and more users make use of web-based collaborative sys-
tems. Users participate in communities or search for and provide information in web-
based systems. They access shared resources which they need for their professional
life or for learning. One of the major prerequisites of such web-based systems is that
users have to be connected to the network. But life has become much more mobile
over the last years. While traveling, e.g. to the office or the university, users often are
disconnected from the network. This makes it difficult to interact with other users or to
access shared resources. An application supporting a seamless transition between con-
nected and disconnected phases would allow users to work at any time and place while
maintaining the advantages of a web-based collaborative system once they are online
again. In this article, we describe the requirements that a web-based collaborative sys-
tem has to fulfill to enable a nomadic use. We show how we extended the web-based
collaborative system CURE to fulfill these requirements and how our approach can be
transferred to other web-based collaborative systems.
Key Words: Shared workspaces, collaborative working and learning, nomadic work-
ing and learning, interactive situation model
Category: H.1.2, H.5.1, H.5.3, J.7

1 Introduction

In the last years, life has become more and more mobile. A lot of people are trav-
eling not only in their professional life but also in their private life. At the same
time, more and more information has become available in the Web. Platforms
like, e.g., Wikipedia [Wikipedia, 2007] rely on a large communities that collab-
oratively construct knowledge. This process is also visible in smaller scenarios.
In companies, employees collect company knowledge in web-based systems. At
universities, students collaborate during seminars or lab courses in web-based
systems.

Knowing that, the FernUniversität developed the web-based collaborative
system CURE [Haake et al., 2003] which has successfully been in use for about
four years now. CURE uses virtual rooms as well as keys to structure collabo-
ration. In these rooms, users can share and create documents. CURE supports
various typical use cases in collaborative work, like, e.g., group communication,
document sharing, or collaborative writing. Additionally, CURE is used in var-
ious collaborative learning scenarios like, e.g., collaborative exam preparation
[Lukosch and Schümmer, 2006] or virtual labs [Schümmer et al., 2005].

Journal of Universal Computer Science, vol. 14, no. 1 (2008), 59-87
submitted: 6/11/06, accepted: 17/10/07, appeared: 1/1/08 © J.UCS



These use cases include various forms of interaction among the collaborating
users. One common model to classify these interaction situations is the Denver
Interactive Situation Model [Salvador et al., 1996]. This model considers differ-
ent properties of interactive situations, i.e. dependency of tasks, time of inter-
action, size of the interacting group, interaction location, and the timing of the
interaction. But this model does not consider that nowadays users are more
and more mobile. During these times, users are normally disconnected from the
Internet. Kleinrock (1996) considers this disconnected state as the usual state
instead of an exceptional one. Furthermore, Kleinrock (1996) calls users nomads
when they often experience the disconnected state and carry their computing
and communication devices with them while traveling.

In the sense of Kleinrock (1996), workers who travel from one work place or
one customer to another are nomads. At these different places, they often have
to access resources in their web-based knowledge repository of their company
to accomplish their work. The same is true for students that want to use spare
time when traveling for learning or for community member that want to access
the community resources not only when they are at home but also when they
are mobile. For all these users, it is crucial to access their shared resources not
only from home, but also while they are in transit, i.e. anywhere and anytime
[Kleinrock, 1996].

This vision of anywhere and anytime is currently not supported by web-based
collaborative systems. Additionally, it is not part of the Denver Interactive Sit-
uation Model or other classification models for groupware like the well-known
2x2 matrix proposed by [Ellis et al., 1991]. In this article, we describe the re-
quirements that we have identified for a nomadic use of web-based collaborative
systems. We show how we extended web-based collaborative system CURE to
fulfill these requirements and the Denver Interactive Situation Model to also
reflect the anywhere and anytime interactive situations.

We have chosen to extend CURE as the students at the FernUniversität are
a very specific clientele. The FernUniversität is a distance teaching university.
Apart from regular full-time students, students at the FernUniversität often
have full-time positions. Most of the students with full-time employment study
as a part-time student. They use every spare time for their studies. Thus, the
independence in time and place is one of the major reasons for enrolling in a
distance teaching university. Interviews with about 120 students that have used
CURE during lectures, seminars, or lab courses in the winter term 2003/2004
revealed a major interest in working nomadically. Since CURE is web-based,
spare time during train journeys or flights where no internet access is available
cannot be used for reading or editing CURE content. Supporting a nomadic use
of CURE would thereby significantly enhance the available learning possibilities.

The remainder of this article is structured as follows: First, we briefly discuss

60 Lukosch S.: Seamless Transition ...



a scenario that describes a common use case of a web-based collaborative system
and demonstrates potential advantages of using such a system nomadically (see
Section 2). Based on this scenario, we determine the requirements for a nomadic
use of web-based collaborative systems. In Section 3, we introduce the web-
based collaborative system CURE in more detail while highlighting the deficits
for a nomadic use. In Section 4, we describe how we extended CURE to fulfill
the requirements for a nomadic use and generalize our approach for web-based
collaborative system by using patterns for computer-mediated interaction. We
then compare our approach with the state of the art. Finally, we report on
our experiences when using the CURE nomadically (see Section 6), before we
conclude our paper with a summary and an outlook on future work directions.

2 Requirements analysis

Typical web-based collaborative systems can be characterized by means of
patterns1 for computer-mediated interaction [Schümmer and Lukosch, 2007a].
To enable collaboration, typical web-based collaborative systems offer shared
workspaces as Shared File Repositories or Rooms. These shared workspaces
rely on Centralized Objects and allow users to cooperate by sharing re-
sources. Prominent examples are wikis [Leuf and Cunningham, 2001], BSCW
[Appelt and Mambrey, 1999], or CURE [Haake et al., 2003]. Some systems fur-
thermore support communication and coordination by means of Forums or Em-

bedded Chats. Wikis, e.g., allow to modify the shared resources via the web
interface. Other systems only offer a Shared File Repository from which
users can download shared resources for modification and later on upload the
modified resource. To control who can access and modify the shared resources
most systems allow to define Groups.

Such web-based collaborative systems focus on enabling interaction when
users are online and connected to the network. They do not consider a nomadic
use. It is completely up to the user to prepare for disconnected phases. Users have
to manually download content for disconnected phases. Later, when connected
to the network again, they have to manually synchronize modified content.

In this section, we describe a typical use case for web-based collaborative
systems that offer access-restricted shared workspaces, allow users to modify
shared resources directly via the web interface, and offer means for synchronous
as well as asynchronous communication. Based on this use case, we determine
the requirements for a nomadic use of such web-based collaborative systems. We
have chosen a virtual seminar as use case. In such a seminar, students work in
small teams up to three members on a given topic. The students collaboratively
1 Pattern names are set in Small Caps and can be found in

[Schümmer and Lukosch, 2007a].

61Lukosch S.: Seamless Transition ...



collect references, discuss with their co-students, write the seminar thesis, and
review the thesis.

Figure 1: Interactive situations in a seminar

The selected use case makes use of all functional means that are offered
by standard web-based collaborative systems. Similar use cases can be found
in professional life when small design teams, e.g., collaborate to solve wicked
problems [Rittel and Webber, 1973] and have to report their results. Figure 1
is based on the Denver Interactive Situation Model. It shows the five different
properties used to classify interactive situations. The grey area highlights the
interactive situations that normally occur in a virtual seminar:

– Size: In a seminar, several student teams work on different topics. These
topics are often related and the different teams can discuss common issues
in a large group. However, specific topic-centered discussion take place in
the small team.

– Location: In a virtual seminar, the participants are in the most cases geo-
graphically distributed, i.e. the interaction takes place at different places.

– Timing : The interaction can be planned by, e.g. by communicating via e-
mail, but also spontaneously, e.g. by using the chat to contact someone else
who is currently online.

– Dependency : In a team that works on the same topic the interaction is
normally tight. However, there can also be loose interaction between the

62 Lukosch S.: Seamless Transition ...



different teams when considering the whole seminar.

– Time: The interaction has asynchronous phases when team members write
sections of the final thesis for which they are responsible, but there are also
synchronous phases when team members, e.g., discuss the outline in the chat.

2.1 Virtual Seminar

Heide has just enrolled in a virtual seminar and has been granted access to the
main collaborative workspace in the web-based system. This workspace has been
created by the supervisors as a central meeting point for the seminar participants.
The workspace already contains a number of pages that give a basic overview of
the subject of the seminar, the planned workflow, and the timetable. The general
subject is split up into a number of sub-topics, each of which should be worked
on collaboratively by two students. To reflect this, the workspace contains a page
with links to a number of additional workspaces in the web-based system, i.e.
one workspace for each sub-topic, and the students have been granted access for
their respective workspace.

The supervisors have uploaded some research articles to each workspace that
serve as a starting point for further investigations. In addition, a page contain-
ing a template for the seminar thesis and a template for collecting literature
references is provided. The students are supposed to use their workspace for co-
ordination and communication within their team. They are also encouraged to
use the workspace for uploading drafts, intermediary results and the final semi-
nar thesis. The main workspace should be used for communication between all
participants of the seminar and as a central repository for pages with information
and links of general interest.

Heide would like to read the provided material and then insert some first
thoughts right into the thesis draft. Unfortunately, she soon has to leave for
a job-related journey. She knows that she will have some hours of spare time
on that journey, but she will not be able to access the web-based system during
that time. Therefore, she downloads the PDF documents to her notebook to have
some reading material. During the journey, Heide has more time than expected,
so she starts to work on the thesis by making notes in a simple text editor on
her computer. However, since she does not have the provided draft with her, her
work remains a coarse collection of thoughts. When returning home, she connects
to the network, enters the workspace of her team and notices that her colleague
has already inserted some notes into the designated page. Some of these overlap
with her work and she has a hard time copying and pasting her sketches to the
common page without loosing the existing text.

Heide and her teammate have some long lasting discussions with the teachers
about the outline of the thesis. This discussion mainly stems from the teacher

63Lukosch S.: Seamless Transition ...



noticing a discussion between Heide and her teammate. To avoid such discussions
the next time, Heide and her teammate decide to create a private workspace for
their topic. They want to use this workspace for private discussions without the
teachers.

The next time Heide travels to a customer, she does not need her laptop.
However, she still has to take her PDA with her, as she has to coordinate some
appointments. Again, she knows that she will have some spare time while trav-
eling. Thus, during the last synchronization with her laptop she adds the latest
versions of the pages containing the discussions from the private room to her
PDA. During her journey, Heide reads the discussion pages and would like to
add some notes to the latest draft of the seminar thesis. However, this is not
possible as she only added the discussion pages and not the draft to her PDA.

Finally, the deadline for delivering the final seminar thesis is approaching.
Heide and her teammate have still a lot of work to do. Up to now, the whole
thesis was represented as one page. Now, they want to work more concurrently
and split up the page in several sub-pages, i.e. one page per section. However,
for each page they want to create, they have to interact with the server and
wait for its response, which can become rather time consuming considering the
approaching deadline. Additionally, they have to switch back and forth between
the pages and their different workspaces which can become confusing without
adequate navigation tools.

2.2 Summary

Web-based collaborative systems focus on providing access using any web
browser, with the only requirement being an existing network connection. While
this ensures a maximum in flexibility, the user interface is limited due to the
possibilities of the web browser. User input has to be sent to the server for
processing before the result can be shown within the user interface.

The above scenario highlights some deficits of web-based collaborative sys-
tems, when users are nomads. An independent local application on the users
computer or PDA can improve the usability by reducing the response time. Fur-
thermore, a local application on a computer can provide a more intuitive user
interface compared to the possibilities available in web-based applications. The
most important advantage of a local application that can synchronize user data
with the server of the web-based collaborative system, and let the user view
and edit content locally, is the independence from permanent network access.
This allows users to effectively use times of mobility and reduce online costs.
Working and learning become possible at any time and place while keeping the
advantages of a collaborative environment.

Such a local application enhances the supported interactive situations. We
added the property connectivity to reflect this in the Denver Interactive Situation

64 Lukosch S.: Seamless Transition ...



Model. Figure 2 shows the extended Denver Interactive Situation Model. The
grey area highlights the interactive situations in a seminar when students can
also work nomadically.

Figure 2: Interactive situations in a seminar when considering connectivity

Summarizing, the following requirements must be fulfilled by an extension of
a web-based collaborative system to support these interactive situations:

R1: A communication interface between the server of the web-based collabora-
tive system and a local client on a computer or a PDA has to provide read
and write access to the contents of the system. Additionally, users must be
able to synchronize the content on their computer with their PDA.

R2: The access rights for group formation as well as access to shared resources
must be respected by a local client. This includes authentication of the users.

R3: Users have to be able to individually select the content they want to access
locally. The data has to be stored persistently on the users computer or PDA
while maintaining the structure existing on the server.

R4: When editing local data the corresponding resources on the server of the
web-based system should not be locked, to allow a maximum of concurrency.
Therefore, the local application has to provide means for synchronizing local
data with the content stored on the server.

R5: Support for the resolution of conflicting changes performed by multiple
users on the same page has to be given.

65Lukosch S.: Seamless Transition ...



R6: Compared to the web interface, an intuitive user interface has to simplify
the creation and editing of content.

3 CURE in a nutshell

In this section, we introduce the web-based collaborative system CURE
[Haake et al., 2003]. CURE is used for collaborative work and learn-
ing. Typical collaborative learning scenarios are collaborative exercises,
tutor-guided groups with collaborative exercises, collaborative exam prepa-
ration [Lukosch and Schümmer, 2006], virtual seminars, and virtual labs
[Schümmer et al., 2005]. When considering collaborative work typical use cases
include group formation, group communication, document sharing, collaborative
writing, collaborative task management etc.

From a technical perspective, CURE was built by composing patterns for
computer-mediated interaction. For space reasons, we will not go into details of
the implementation here, but instead reference to the patterns2 that were used
to create the system and show how they appear in the functional context of user
interaction.

Users can structure their interaction in Groups that inhabit virtual Rooms.
Room metaphors [Greenberg and Roseman, 2003, Pfister et al., 1998] have been
widely used to structure collaboration. Figure 3 shows the abstractions that are
offered by CURE. Users enter the cooperative working/learning environment
via an entry room that is called Hall. Rooms can contain pages, communication
channels, e.g. chat, threaded mail, and users. Users, who are in the same room
at the same time, can communicate by means of a synchronous communication
channel, i.e. by using the chat that is automatically established between all
users in the room. They can also access all pages that are contained in the room.
Changes of these pages are visible to all members in the room.

The concept of a virtual Key [Schümmer and Fernandéz, 2006] is used to
express access permissions of the key holder on rooms. Each key distinguishes
three different classes of rights [Haake et al., 2004]: key-rights defining what the
user can do with the key, room-rights defining whether or not a user can enter a
room or change the room structure, and interaction-rights specifying what the
user can do in the room. Rooms with public keys are accessible by all registered
users of the system.

Users can enter a room to access the communication channels of the room
and participate in collaborative activities. Users can also create and edit pages
in the room. Pages may either be directly edited using a simple wiki-like syntax
[Leuf and Cunningham, 2001], or they may contain binary documents or arti-

2 Again, pattern names are set in Small Caps and can be found in
[Schümmer and Lukosch, 2007a] if no other reference is provided.

66 Lukosch S.: Seamless Transition ...



Figure 3: CURE abstractions

facts, e.g. JPEG images, Microsoft Word documents etc. In particular, the syn-
tax supports links to other pages, other rooms, external URLs or mail addresses.
The server stores all artifacts to support collaborative access. When users leave
the room, the content stays there to allow users to come back later and continue
their work on the room’s pages. However, this implies that the CURE platform
as such requires the user to be connected to the network to access content stored
on the CURE server.

Figure 4 shows a typical room in CURE. The numbers in the figure refer to
details explained in the following paragraphs. A room contains documents (①, cf.
Centralized Objects) that can be edited by those users, who have sufficient
edit rights ②. CURE stores all versions of a page as Immutable Versions.
Users can browse different versions ③ to understand their colleagues’ changes
(cf. Timeline). Communication is supported by two room-based communication
channels, i.e. a Forum ④ and an Embedded Chat ⑤. Users can use the room-
based e-mail to send a mail to the room. Users of the room that have sufficient
communication rights will receive this message like being a member of a Mailing

List [Schümmer and Lukosch, 2007b].
By providing a plenary room, sharing and communication in a whole class

or organization can be supported. By creating new rooms for sub-groups and
connecting those to the classes’ or organization’s room, work and collaboration
can be flexibly structured. Starting from the plenary room users can Navigate

[Schümmer and Fernandéz, 2006] to the connected sub-rooms ⑥.
For user coordination, CURE supports various types of awareness informa-

tion:

1. Users can see in the room’s properties who else has access to this room ⑦.

2. Users can see in a User List ⑧ who else is currently in the same room.

3. If the Embedded Chat ⑤ is enabled in the room, users can directly start

67Lukosch S.: Seamless Transition ...



Figure 4: A room in CURE

chatting to each other.

4. Users can trace who has previously edited the current page ⑨ (cf. Active

Neighbors).

5. Periodic Reports automatically posted to all users of a room include all
changes made since the last report was sent.

When considering the above functionality and the extended Denver Inter-
active Situation Model (cf. Figure 2), CURE supports the whole range of all
properties apart from the connectivity property. The tasks can be highly de-
pendent or independent. In CURE, users can collaborate synchronously, e.g. by
using the chat, as well as asynchronously, e.g. by creating different parts of a
shared document as wiki pages. The size of the interacting group can be small or
large, as this is defined by the number of users who have access to a virtual room.
CURE can be used to support co-located interaction, e.g. during brainstorming,
as well as distributed interaction. The timing of the interaction can be planned

68 Lukosch S.: Seamless Transition ...



by using the mail box for coordination as well as spontaneous when triggered by
the synchronous awareness functionality.

When considering the connectivity property, CURE does not offer any sup-
port. None of the identified requirements R1-R6 is met. Instead, users have to
download content manually for use in disconnected phases and later on upload
the modified content. In case of conflicts due to parallel modifications, it is up
to the users to resolve these. In the following section, we show how CURE can
be extended to meet the requirements R1-R6.

4 Approach

In this section, we first describe how we fulfill the identified requirements R1-
R6 by extending CURE and implementing offlineCURE [Lukosch et al., 2006]
as well as pocketCURE for seamless transitions between connected and discon-
nected collaborative interaction. offlineCURE as well as pocketCURE were im-
plemented as Java applications to be independent from the operating system
used by the users. At the end of the section, we summarize our approach and
discuss how the approach can be transferred to web-based collaborative systems
in general.

4.1 Communication Interface (R1)

To address the requirement R1, we integrated the CURE communication in-
terface (CCI) into the CURE server. The CCI offers access to CURE data in
parallel to the web interface. Figure 5 shows the overall architecture of CURE
after being extended with the CURE communication interface (CCI). Without
CCI users can only access CURE content using standard web browsers. The
communication between a client and the server is established via HTTP and
servlets running on the server respond to the clients requests. CURE content is
stored in a database that is accessed by the servlets via the CURE kernel.

Communication between offlineCURE and pocketCURE is established by
using ActiveSync [Microsoft Corporation, 2007], a synchronization program de-
veloped by Microsoft.

For communication between the CCI and its clients, we considered web ser-
vices as well as a proprietary communication protocol in combination with a di-
rect TCP/IP connection to the server. Web services lead to an open and flexible
architecture at the server side. The integration with other applications is sim-
plified due to common standards like HTTP, XML, or SOAP. Additionally, web
services reduce possible conflicts with firewalls at the client-side. However, web
services also introduce overhead due to the predefined message format which re-
duces the communication performance. The following text shows a fictive SOAP
request for retrieving the page with the name Welcome from the room Hall:

69Lukosch S.: Seamless Transition ...



Figure 5: offlineCURE architecture

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Body xmlns:m="http://cure.fernuni-hagen.de/services">

<m:getPage>

<m:pageName>Welcome</m:pageName>

<m:roomName>Hall</m:roomName>

</m:getPage>

</soap:Body>

</soap:Envelope>

This fictive request has a size of 367 bytes, while the necessary data in the
SOAP body only requires about 187 bytes. By using a proprietary protocol which
makes use of a TCP/IP connection, the amount of bytes for calling the method
could be even more reduced, as only the method name and its parameters would
have to be transferred, i.e. getPage, pageName Welcome, and roomName Hall.
Such a request would only require 38 bytes which reduces the amount of bytes for
calling the method getName by almost 90 percent. This is a significant reduction.
Especially, when considering nomadic interaction where online time is valuable
and connection bandwidth can be low. Using web services, the communication

70 Lukosch S.: Seamless Transition ...



furthermore relies on a request and answer paradigm. The client applications
have to use specific libraries, like JDOM or SAX, to interact with the CCI.
These additional libraries reduce the memory space at the client-side which is
an important factor when implementing applications for a PDA.

Due to the communication overhead, the additional memory requirements,
and the fact that we are not planning to integrate CURE, offlineCURE, and
pocketCURE with other applications, we decided to use a proprietary proto-
col in combination with a direct TCP/IP connection. The proprietary protocol
allows us to reduce the necessary network bandwidth as well as the necessary
memory space at the client side. Additionally, the TCP/IP connection allows
us to establish a bidirectional communication which has the advantage to offer
additional services to the client application, e.g. awareness services. To ensure
secure communication, we use a SSL connection. After a client established a con-
nection to the CCI, users have to authenticate themselves, before gaining access
to the content. Alternatively, users have the chance to authenticate the server
with a server-certificate, signed by a certification authority or a trust center.

Communication between the CCI and offlineCURE as well as pocketCURE is
handled using a proprietary communication protocol which is based on a intuitive
and flexible script language. This language allows to access all necessary methods
of the CURE kernel. Clients can send single commands as well as scripts to the
CCI for processing. The script commands support the download of rooms or
pages, the upload of edited pages or rooms, the creation of new pages, rooms or
keys, the synchronization of local content with server data, etc. Example script
commands are:

– get page name "Welcome" in room name "Hall";

Returns the page with the name Welcome in the room Hall.

– get page * in room name "Hall";

Returns all pages in the room Hall.

– create room name "Seminar" in room name "Hall";

Creates a new sub-room Seminar in the room Hall.

– update page name "Welcome" in room name "Hall" -content="...";

Updates the page with the name Welcome in the room Hall with the specified
content.

– create key for room name "My Room" -rigths=124 -freekey;

Creates a free key for the room My Room with the rights 124.

The servers response can have different output formats, with the standard
format being XML. For higher security, the CCI filters sensible data, e.g. user
passwords, via a filter before sending responses to the clients.

71Lukosch S.: Seamless Transition ...



To allow a maximum of concurrency, the server uses one thread for each
client that receives and interprets script commands and generates the respective
response. To avoid conflicts the CCI makes use of the object manager in the
CURE kernel. The object manager provides access to the CURE database and
ensures consistency by using transactions. offlineCURE as well as pocketCURE
serialize the commands and the CCI executes the commands in the received
order. Each script command is handled by one transaction. Furthermore, the
CCI distinguishes between read - and write-commands for the above-mentioned
object manager of the CURE kernel.

In addition to read and write access to CURE content, the CCI offers an
interface which clients can use to subscribe to notification services. The CCI can
notify these clients about, e.g., user actions, messages, or news, while the clients
are connected to the network. Thereby, the CCI allows to provide awareness for
offlineCURE and pocketCURE users that do not want to enter the web-based
system, as they are, e.g., only shortly connected to the network again.

4.2 Respecting user rights (R2)

In CURE, users can have different access and interaction rights. For each room
users can access, they have a virtual key defining the rights within the respective
room [Haake et al., 2004]. These keys are only managed at the CURE server and
not at the clients. The CCI ensures these user rights by requiring user authen-
tication and by checking the current user rights at the server before executing a
script command. Even creating new keys by issuing script commands does not
allow to perform malicious operations as the a client can create the necessary
key only when the user has the sufficient key-rights anyway.

Receive script command(s)

Check user's key

Response resultExecute command

[Invalid command]

[Valid command]

Stop execution

[Commands > 0]

Check syntax

[Commands = 0]

Response error

[Sufficient

rights]

[Insufficient rights]

[Errors = 0]

[Errors > 0]

Figure 6: CCI command execution

72 Lukosch S.: Seamless Transition ...



Figure 6 shows a UML activity diagram describing the execution of a script
command by the CCI. After receiving one or more commands, the CCI checks
the syntax of the command to be executed. Since each script command is unam-
biguously related to a target room, the semantic part of the script interpreter
can then check whether the user has sufficient rights to execute the command in
the specified room. This guarantees that users can only execute commands via
the communication interface that result in actions the user could also perform
via the web interface. If a user does not have sufficient rights, the CCI responds
by sending an error code to the client and stops the transaction. Otherwise, the
CCI consecutively executes the received commands via the CURE kernel and
delivers its results.

4.3 Selection of local data (R3)

Users enter CURE via a main room from where different sub-rooms can be
entered. Sub-rooms can again contain further sub-rooms and each room has its
own content, i.e. wiki pages or binary pages. Thus, the content of CURE is
hierarchically organized and a tree-based visualization is particularly suitable.

For the selection of the CURE content, offlineCURE and pocketCURE visu-
alize this tree and let users mark the content they want to access nomadically,
e.g. a room including all or part of the rooms content, one or multiple pages,
or a complete branch of the tree (see Figure 7). To reduce network communica-
tion, both client applications only request the information via the CCI which is
needed to build the currently shown depth of the tree. If a user selects deeper
layers, the clients recursively requests the corresponding information.

When the user has selected the desired content for nomadic use, offlineCURE
and pocketCURE download the respective data via the CCI and store it locally.
Thereby, offlineCURE and pocketCURE make use of the Nomadic Objects

pattern [Schümmer and Lukosch, 2007a]. Relations between the replicated con-
tent objects is maintained, thus providing the same structure of rooms, sub-
rooms and pages as on the server. Subsequently, the user can disconnect from
the network and use the replicated data nomadically.

The above approach requires that the PDA has a direct connection to the
network. Some PDAs, however, do not provide the possibility to establish a direct
connection to the network. Therefore, it is also possible to add CURE content to
the PDA by using an export functionality which is integrated in offlineCURE.
The export functionality allows a user to select the content that is transferred
to and later on synchronized with the PDA. For that purpose a similar dialog
like in Figure 7 a) is opened and lets the user select the CURE content for the
PDA. As mentioned before, the communication between offlineCURE and the
PDA is handled by using ActiveSync [Microsoft Corporation, 2007].

73Lukosch S.: Seamless Transition ...



a) offlineCURE b) pocketCURE

Figure 7: Synchronization dialog in offlineCURE and pocketCURE

4.4 Synchronization of local data (R4)

Since offlineCURE as well as pocketCURE are designed to enable the use of
CURE content while being completely independent of network connections, both
clients cannot directly propagate local modifications to the CURE server and
other users. This may result in conflicts between the local version of a docu-
ment and the corresponding version on the CURE server. One way to avoid this,
would be to lock a document on the CURE server whenever a user transfers
it to one of the clients. However, this would prevent simultaneous, independent
editing and thus contradict the collaborative nature of CURE. The possibil-
ity to edit a document would depend, e.g., on the author who has locked it
[Vitali and Durand, 1994].

Instead of using such a pessimistic approach, offlineCURE and pocketCURE
use an optimistic one and let users work on separate logical versions of a docu-
ment, and resolve conflicts when the content is uploaded to (synchronized with)
the CURE server. For this purpose, they use an optimistic replication strategy
[Saito and Shapiro, 2005], i.e. the original content on the server is not locked
and users still have the possibility to modify it using the web interface or edit
local copies on their clients. This strategy is also known as Optimistic Con-

currency Control [Schümmer and Lukosch, 2007a].
In CURE, version management uses timestamps that are assigned

to CURE content when it is created. For Conflict Detection

[Schümmer and Lukosch, 2007a] between client and server data, offlineCURE

74 Lukosch S.: Seamless Transition ...



Server Client Synchronization action
t1 n/a Content only available on the server; download to

client
n/a t1/+ Content only available on the client; upload to

server
t1 t1/- Content unmodified; no synchronization necessary
t1 t1/+ Content modified on the client; upload to server
t2 t1/- Content modified on the server; download to client
t2 t1/+ Content modified on server and client; conflict

resolution

t1, t2: Consecutive timestamps on the CURE server
n/a: Document is not available at this site
- / +: Document was not changed / changed by a client

Table 1: Possible combinations of timestamp and modified bit with correspond-
ing synchronization action

and pocketCURE use a combination of these server-based timestamps and client-
based modified bits [Saito and Shapiro, 2005]. While the timestamps included in
the local copy of content objects are never changed by the client, modified bits
are set whenever a user changes a local document. Table 1 shows possible combi-
nations of the server-based timestamp and the client-based modified bit. When
users are connected again and start a synchronization, the clients analyze the
local content and communicate with the CCI to determine the necessary syn-
chronization actions. The result of this analysis and communication is visualized
in a tree. In this tree, users can select which synchronization actions they want
to perform (see Figure 7), i.e. upload to the server, download to the client, or
conflict resolution (cf. Section 4.5).

4.5 Conflict resolution support (R5)

The optimistic replication strategy used by offlineCURE as well as pocketCURE
can lead to conflicting modifications. Already in CURE, conflicting modifications
occur. Depending on the collaboration scenario, these conflicts can be quite ob-
trusive for the user. In our workgroup, we, e.g., use a CURE page to coordinate
oral exams. This page mainly consists of a huge table listing the oral exams and
the corresponding examiners. The examiners regularly check the page and con-
firm or change the exams. Conflicts on this page happen quite often. We expect
that the number of such conflicts will increase with the use of offlineCURE and
pocketCURE, especially as there are no awareness mechanisms for disconnected

75Lukosch S.: Seamless Transition ...



synchronous work that allow to establish a social protocol.
Different approaches can be employed to solve such conflicts. Operational

transformation approaches [Sun and Ellis, 1998] are often used in groupware ap-
plications to automatically solve such conflicts. These approaches require that
the conflicting changes can be described as fine-grained operations which are
then transformed to lead to an consistent state. However, the nature of web-
based collaborative applications does not allow to describe the changes as fine-
grained commands. Another possibility would be to a use a difference algorithm,
e.g. [Myers, 1986], and use the result to automatically merge the conflicting ver-
sions. Though this approach can lead to a page that contains the modifications
from both versions, it cannot guarantee that the merged version is semantically
correct.

Figure 8: Version tree in CURE

To ensure the semantical correctness, CURE as well as the client applica-
tions use a different approach. CURE uses the Immutable Versions pattern
[Schümmer and Lukosch, 2007a] and stores all versions of a document in a ver-
sion tree. Thereby, it ensures that no version of a document gets lost. Figure 8
shows the evolution of such a version tree in CURE. A newly created document
has the version V1. When a document is changed for the first time, the version
number is changed to V2. When this version is changed in parallel, the parallel
versions are assigned the version numbers V3, V4, and V6. When the user that
created the version V4 stores the version on the CURE server, the server auto-
matically creates the version V5 and requests the user to manually resolve the
conflict and thereby keep the semantical correctness of the page. V5 is called

76 Lukosch S.: Seamless Transition ...



merge-page and contains the versions V3 as well as V4. The version V7 shows
an even more complicated conflict that emerged from a third user editing V2 in
parallel.

When using the web-based interface of CURE, these merge-pages, like V5 or
V7, consist of the conflicting pages and are separated by text that points out
the conflicts and requests the user to solve them. CURE as well as pocketCURE,
use this approach to manage conflicts that might occur when users modify the
same version of a document via the web interface. This way, CURE and pock-
etCURE prevent users from overwriting the changes other users have performed
and ensures semantical correctness of the pages.

Figure 9: Merge view in offlineCURE

Solving these conflicts via the web interface of CURE or on the small display
of a PDA, in case of pocketCURE, can be quite difficult. To better support
users when solving conflicts, offlineCURE employs a different visualization for
merging pages. First, users can select the versions they wants to merge. The text
of the selected versions is then compared blockwise and both versions are aligned
in an editable form as shown in Figure 9). Differing blocks are highlighted in the
user interface and users can select which block they want to use in the merged
version, or edit one version manually. When a user has solved a conflict, the
merged document is uploaded to the server resulting in a new version.

77Lukosch S.: Seamless Transition ...



4.6 User interface (R6)

Figure 10 shows the user interface of offlineCURE. The left area of the user
interface shows a tree-based overview of the content that is locally available
①. Compared to the web interface, this simplifies the navigation, since users
always have an overview of the local content available. The level of detail can
be tailored by expanding or collapsing individual tree branches and the different
content types are visualized by using different symbols. Context-sensitive menus
allow users to perform actions in relation to the selected object, e.g. create a
new sub-room in a room or delete a page ②. Additionally, the offlineCURE user
interface offers statical menus, keyboard shortcuts, and a toolbar which provides
support for incorporating wiki-tags into the page text ③.

Figure 10: offlineCURE user interface

Figure 10 also shows three windows in which the user currently edits CURE
pages ④ or views a binary page ⑤. Both edit windows are split horizontally.
The upper part is used for editing Wiki pages while the lower shows a real-
time preview of the rendered page. The size of the edit and preview areas is
variable, i.e. users can decide to display only the edit area while working on a

78 Lukosch S.: Seamless Transition ...



long document, or use the preview area on its own for browsing CURE content
offline. The real-time preview shows the page content like it would be rendered
in the users browser when working with the CURE server. This also includes us-
able links to other documents, external URLs etc. Support for creating complex
structures is given by indicating whether internal links on a page are valid, i.e.
whether the linked content is available locally, and allowing users to conveniently
create content via context sensitive menus attached to links. Compared to the
web interface, the offlineCURE user interface thereby significantly improves the
usability and workflow when editing CURE content.

Figure 11 shows the user interface of pocketCURE. Due to the limited size of
the display, the functionality is split up in several windows. Figure 11 a) shows
the tree view of the local CURE content ①. A context-sensitive menu allows
to edit, preview, rename, etc. a selected document ②. Additional menus ③, let
users perform basic editing operations or synchronize the local content with the
CURE server.

a) Tree view b) Edit view

Figure 11: pocketCURE user interface

Figure 11 b) shows the edit view of pocketCURE in which users can edit the
selected page ①. To support the editing process pocketCURE offers menus that
provide support for incorporating wiki-tags into the page text ②. Additionally,
pocketCURE supports an undo and a redo of performed editing operations ③.

79Lukosch S.: Seamless Transition ...



Thereby, pocketCURE enables users to view and edit selected CURE content on
their PDA.

4.7 Summary

The previous sections described how CURE has been extended to support a
seamless transition between connected and disconnected phases. Now, we trans-
fer the taken approach to web-based collaborative systems in general.

In a first step, the web-based collaborative system has to be extended with
a communication interface which allows to access the shared resources. For the
communication interface, two design options exist. First, the communication
interface can make use of TCP/IP and rely on a proprietary protocol to speed up
communication and offer awareness services for the client application. Second,
the communication interface can make use of web services if the users of the
client applications have difficulties to directly access the internet. As discussed,
the web service solution introduces overhead in the communication, does not
allow to establish direct communication links between the server and the client
applications, and requires additional memory space at the client-side.

If the web-based collaborative system supports mechanisms for access con-
trol, it is important that the communication interface respects the defined user
rights. It must not be possible that nomadic users gain access to shared resources
which they are not allowed to access. For that purpose, the communication in-
terface has to require a user authentication. Based on the authentication, the
communication interface has to check whether a user is allowed to perform the
requested operations. As the communication interface and not the client appli-
cation checks the user rights, it is not possible for the user to locally manipulate
its user rights while working disconnected.

Normally, users do not need all shared resources while disconnected and their
devices, especially PDAs, often have limited space. Therefore, the client applica-
tions have to support users in selecting the content for the disconnected phases.
In most web-based collaborative systems, the shared resources are organized hi-
erarchically and thus a tree-based visualization is particularly suitable for the
representation of the shared workspaces (nodes) and shared resources (leafs).

The shared resources have to be replicated for use in disconnected phases by
using the Nomadic Objects pattern [Schümmer and Lukosch, 2007a]. An Op-

timistic Concurrency Control [Schümmer and Lukosch, 2007a] approach
ensures that the shared resources can still be modified via the web interface of
the collaborative system. As this approach can lead to diverging shared resources
at the client-side as well as at the server-side, the client applications have provide
means for Conflict Detection [Schümmer and Lukosch, 2007a] and synchro-
nizing local shared resources with the resources stored on the server. Resources

80 Lukosch S.: Seamless Transition ...



that have to be synchronized can easily be detected by using modified bits at
the client-side and version numbers at the server-side.

Apart from diverging shared resources, the optimistic replication approach
can also lead to conflicting modifications of the same shared resource. Approaches
that automatically resolve conflicts can only ensure the syntactical but not the
semantical correctness of a shared resource. Therefore, a versioning approach
like the Immutable Versions pattern [Schümmer and Lukosch, 2007a] that
keeps all modifications and lets users manually resolve the conflicts to ensure
semantical correctness is most suitable. Client applications should offer means
that support users when resolving conflicts.

Finally, the client applications should offer an intuitive user interface that
makes use of common single-user application concepts, like,e.g., the tree visual-
ization of the shared resources to simplify the navigation or the real-time preview
of the rendered wiki page.

5 Related Work

There has a lot of work been done in order to support disconnected
work. Systems like Bayou [Terry et al., 1995], Rover [Joseph et al., 1997], Sync
[Munson and Dewan, 1997], or DOORS [Preguiça et al., 2000] offer a shared ob-
ject management which allows users to disconnect and work nomadically. How-
ever, none of these systems focusses on extending a web-based system for no-
madic work or even to support different devices. In this section, we compare
offlineCURE and pocketCURE with web-based collaborative systems or wiki
engines that offer a nomadic use.

BSCW [Appelt and Mambrey, 1999] and BSCL [Stahl, 2002] are web-based
collaboration platforms. BSCW allows to download documents, edit them locally,
and then upload the modified document. BSCWeasel [Stevens et al., 2004] al-
lows to access a BSCW server without using the web interface, but still requires
a permanent network connection. BSCW, BSCL, and BSCWeasel do not support
PDAs or the synchronization of documents, when documents were modified by
another user.

The learning platform KOLUMBUS [Herrmann and Kienle, 2003] allows
users to import and export content, but like BSCW, BSCL, and BSCWeasel
it does not support PDAs or resolving conflicts that are due to parallel changes.

Blackboard Backpack [Blackboard Inc., 2007a] is a client-side software ap-
plication that enables users to download content, e.g. course documents, an-
nouncements, calendar items, or tasks, from the Blackboard learning platform
[Blackboard Inc., 2007b]. However, the content can only be read and annotated
locally, i.e. local changes cannot be synchronized. Additionally, the minimum
system requirement is a Tablet PC and thus PDAs are not supported.

81Lukosch S.: Seamless Transition ...



FirstClass [FirstClass, 2007] is a commercial groupware similar to CURE.
But compared to CURE, FirstClass does not offer a versioning support. First-
Class allows users to lock documents when they want to modify it. While a
document is locked, other users can only read it. Due to this, FirstClass does
not fulfill our requirements concerning conflict resolution and synchronization.
FirstClass also offers a PDA client, but this client does not support to edit the
content pages. Instead it, e.g., allows to view mails or collected contact informa-
tion.

eBag [Brodersen et al., 2005] offers a digital schoolbag which can contain im-
ages, videos, music, or text documents for learning at school. eBag allows pupils
to move nomadically between stationary terminals, called digital oases, in class-
rooms, labs, libraries, etc. In these digital oases, pupils can access their docu-
ments. Out of these digital oases, the digital schoolbag can be accessed via a
web browser. Though the developers call this offline use, the latter obviously
requires a network connection. Therefore, eBag does not fulfill our requirements
concerning nomadic use.

The collaborative learning platform sTeam [Eßmann et al., 2004] allows stu-
dents to learn collaboratively without being connected to the learning platform.
For that purpose, the students have to establish an ad-hoc network among them-
selves. Thus, sTeam allows to disconnect from the learning platform, but students
have to meet at the same place and the same time for collaboration. Individual
times of mobility cannot be used for learning.

Personal Wikis, e.g. WikiWriter [HyText Consulting, 2007], EclipseWiki
[EclipseWiki, 2007] or WikidPad [WikidPad, 2007], allow to setup a local wiki
engine and locally manage, create, and modify the content of this wiki. The
content of these personal wikis is stored in a local database. Thus, nomadic
working and learning is possible, but as the content cannot be shared, users
cannot collaborate.

SimpleWikiEditMode [SimpleWikiEditMode, 2007] differs from the above
personal wikis. It uses the text editor Emacs to access and modify the content
of a remote wiki. However, SimpleWikiEditMode does not support the selection
of local content. Additionally, it does not support PDAs and does not provide
functions for identifying locally changed content or conflict resolution.

The Wikipedia Editor [PLog4U, 2007] is a plugin for the IDE Eclipse. With
the help of this plugin, users can locally store and modify Wikipedia articles.
Compared to our requirements, the plugin does not support PDAs, conflict detec-
tion, and conflict resolution. During synchronization, articles that were changed
locally are simply replaced with the current version in the Web.

To summarize, none of the above systems fulfills our requirements for a seam-
less transition between connected and disconnected collaborative interaction.
CURE together with offlineCURE and pocketCURE represent a significant step

82 Lukosch S.: Seamless Transition ...



forward, as they allow users to work and continue their interaction with other
users while they are on the move and disconnected from the network. As soon as
the users are connected again, they can synchronize their nomadic results with
the web-based collaborative system and thereby seamlessly integrate these in
their collaboration process.

6 Experiences

We split up the evaluation of offlineCURE and pocketCURE in three phases. In
the first phase, we have conducted functional tests. These functional tests con-
centrated on validating the intended use cases and checking if our requirements
are met. For testing the CCI, we developed a console application which allowed
us to interact with the CCI without using offlineCURE or pocketCURE. This
console application allowed us to define test scripts and check the robustness
and performance of the CCI. In these scripts, we also tried to execute malicious
commands but checking the access rights at the server prevented the execution
of these commands. The tree representation worked well for selecting the con-
tent for nomadic use. Especially, when setting up the test server with a large
database, the recursive approach to build the tree at the client-side significantly
reduced the network communication. To test the versioning approach, we have
run test scripts which concurrently modified pages at the server. These tests con-
structed up to ten parallel versions and showed the stability of the versioning
approach. However, merging these pages was only possible via the offlineCURE
user interface, as users had problems to keep the overview about the different
page versions in the web-based user interface or the PDA user interface.

In a second phase, we have setup a test environment in our group and let
several groups test the system. Feedback from these users with different back-
ground, i.e. expert as well as lay users, indicates that offlineCURE and pock-
etCURE satisfy all of our requirements. Users have reported that the client
applications simplify typical use cases of daily work and learning as the neces-
sary content is now available anywhere and anytime. Furthermore, users have
told that they prefer to use offlineCURE for creating, structuring, and browsing
CURE content, even when connected to the network. This shows that the user
interface of offlineCURE highly improves the usability when navigating, creat-
ing, or editing CURE content. pocketCURE is often used when a laptop is not
available. In these cases, users mainly use pocketCURE to browse CURE content
and to lookup information. Users only sometimes modified content when using
pocketCURE. Additionally, large documents were only rarely created with pock-
etCURE. However, users have told that this was mainly due to the inconvenient
input possibilities of the PDA.

CURE is regularly used by our group to conduct seminars as well as lab
courses with a blended CSCL approach [Haake et al., 2005]. During these semi-

83Lukosch S.: Seamless Transition ...



nars and lab courses, we gather a lot of log data which allows us to analyze the
interaction among the students. In the final evaluation phase of offlineCURE
and pocketCURE, we plan to use these applications in seminars and lab courses
which follow the same blended CSCL approach. Based on the gathered interac-
tion data with or without nomadic interaction possibilities, we plan to evaluate
how the nomadic interaction possibilities affect the interaction among the users.
Especially, we want to investigate if users more often lookup information, if users
more often create or modify pages, if users concentrate on modifying their own
pages or if they also modify other users’ pages, and if the number of conflicting
modifications increases. In [Schümmer et al., 2005], we already reported that the
student groups with a higher communication load produced better results in the
lab courses. We expect that the number of created pages and modifications and
thus the interaction among the users increases. We want to investigate if the
results of the lab courses improve when offlineCURE as well as pocketCURE
increase the interaction.

7 Conclusions

Life has become more and more mobile. In combination with the advent of web-
based collaborative systems in private as well as professional life, this increases
the demand for a seamless transition between connected and disconnected col-
laborative interaction. In the sense of Kleinrock (1996), users that require such
interaction possibilities are called nomads. When considering the specific clien-
tele of the FernUniversität, one can easily recognize that most of the students
learn while they are disconnected from the network and thus are nomads.

In this article, we first have identified general requirements for web-based
collaborative systems which must be met to support a seamless transition be-
tween connected and disconnected collaborative interaction. Then, we have pre-
sented how we extended the web-based collaborative system CURE to fulfill
these requirements. The CURE extensions offlineCURE and pocketCURE use
the CURE communication interface CCI to selectively download content. They
respect the access rights that are represented as virtual keys in CURE. Users
can download all content that is accessible for them. They can view and modify
the locally available content. For that purpose, offlineCURE and pocketCURE
apply an optimistic replication strategy. As this may lead to conflicting modi-
fications while users are disconnected, offlineCURE and pocketCURE support
users in solving such conflicts.

Our approach can easily be generalized for other web-based collaborative
systems. To support nomadic work, a web-based collaborative system has to of-
fer a communication interface that allows to access its content. An optimistic
replication strategy which allows users to select content for nomadic use in com-
bination with a version control for the content of the system allows users to

84 Lukosch S.: Seamless Transition ...



modify the content while disconnected. As this might increase the number of
conflicting modifications, the tool for nomadic work should offer conflict resolu-
tion functionality. Finally, if the web-based system distinguishes different access
rights these should only be managed at the server of the web-based system to
prevent malicious actions.

Experiences have shown that all of our requirements are satisfied. However,
we plan use CURE together with its extensions offlineCURE and pocketCURE
to evaluate how seamless interaction possibilities affect the created content and
the results of collaborating students. Additionally, we are currently working on
a Web 2.0 approach to improve the usability of the web interface of CURE con-
cerning navigation, tailoring, and awareness [Bourimi et al., 2007]. This includes
web-based user support for merging conflicting pages. Finally, we are currently
identifying basic collaborative services which have to be offered by a web-based
collaborative system to enable computer-mediated interaction. We plan to imple-
ment these services as web services and support a context-based orchestration
and choreography of these services to improve the interaction among collabo-
rating users. We will include the CCI in this generic interface. This will even
broaden the usage possibilities of offlineCURE and pocketCURE.

Acknowledgements

Special thanks are due to Matthias Hellweg and Martin Rasel for their effort in
implementing offlineCURE and Frank Plieninger for implementing pocketCURE.

References

[Appelt and Mambrey, 1999] Appelt, W. and Mambrey, P. (1999). Experiences with
the BSCW shared workspace system as the backbone of a virtual learning environ-
ment for students. In Proceedings of ED-MEDIA99.

[Blackboard Inc., 2007a] Blackboard Inc. (2007a). Blackboard backpack.
http://backpack.blackboard.com/.

[Blackboard Inc., 2007b] Blackboard Inc. (2007b). Product homepage.
http://www.blackboard.com/.

[Bourimi et al., 2007] Bourimi, M., Lukosch, S., and Kühnel, F. (2007). Leveraging
visual tailoring and synchronous awareness in web-based collaborative systems. In
Haake, J. M., Ochoa, S. F., and Cechich, A., editors, Groupware: Design, Implemen-
tation, and Use, 13th International Workshop, CRIWG 2007, LNCS 4715, pages
40–55. Springer-Verlag Berlin Heidelberg.

[Brodersen et al., 2005] Brodersen, C., Christensen, B. G., Grønbæk, K., Dindler, C.,
and Sundararajah, B. (2005). eBag: a ubiquitous web infrastructure for nomadic
learning. In WWW ’05: Proceedings of the 14th international conference on World
Wide Web, pages 298–306, Chiba, Japan. ACM Press.

[EclipseWiki, 2007] EclipseWiki (2007). Eclipse Wiki Editor Plugin.
http://eclipsewiki.sourceforge. net/.

[Ellis et al., 1991] Ellis, C., Gibbs, S., and Rein, G. (1991). Groupware some issues
and experiences. Communications of the ACM, 34(1):38–58.

85Lukosch S.: Seamless Transition ...



[Eßmann et al., 2004] Eßmann, B., Hampel, T., and Bopp, T. (2004). A network com-
ponent architecture for collaboration in mobile settings. In ICEIS 2004, Sixth In-
ternational Conference on Enterprise Information Systems, pages 337–343, Porto,
Portugal.

[FirstClass, 2007] FirstClass (2007). Product homepage. http://www.firstclass.com.
[Greenberg and Roseman, 2003] Greenberg, S. and Roseman, M. (2003). Using a room

metaphor to ease transitions in groupware. In Ackermann, M., Pipek, V., and Wulf,
V., editors, Sharing Expertise: Beyond Knowledge Management, pages 203–256. MIT
Press, Cambridge, MA, USA.

[Haake et al., 2004] Haake, J. M., Haake, A., Schümmer, T., Bourimi, M., and Land-
graf, B. (2004). End-user controlled group formation and access rights management
in a shared workspace system. In CSCW ’04: Proceedings of the 2004 ACM con-
ference on Computer supported cooperative work, pages 554–563. ACM Press, New
York, NY, USA.

[Haake et al., 2005] Haake, J. M., Haake, A., Schümmer, T., and Lukosch, S. (2005).
Collaborative learning at a distance with the project method. Educational Technol-
ogy, 45(5):21–24.

[Haake et al., 2003] Haake, J. M., Schümmer, T., Haake, A., Bourimi, M., and Land-
graf, B. (2003). Two-level tailoring support for CSCL. In Favela, J. and Decouchant,
D., editors, Groupware: Design, Implementation, and Use, 9th International Work-
shop, CRIWG 2003, LNCS 2806, pages 74–82. Springer-Verlag Berlin Heidelberg.

[Herrmann and Kienle, 2003] Herrmann, T. and Kienle, A. (2003). KOLUMBUS:
Context-oriented communication support in a collaborative learning environment.
In van Weert, T. J. and Munro, R. K., editors, Informatics and the Digital Society.
Social, Ethical, and Cognitive Issues, pages 251–260. Kluwer.

[HyText Consulting, 2007] HyText Consulting (2007). Wikiwriter.
http://hytext.com/ww/.

[Joseph et al., 1997] Joseph, A. D., Tauber, J. A., and Kaashoek, M. F. (1997). Mobile
computing with the rover toolkit. IEEE Transactions on Computers, 46(3):337–352.

[Kleinrock, 1996] Kleinrock, L. (1996). Nomadicity: anytime, anywhere in a discon-
nected world. Mobile Networks and Applications, 1(4):351–357.

[Leuf and Cunningham, 2001] Leuf, B. and Cunningham, W. (2001). The WIKI way.
Addison-Wesley, Boston, MA, USA.

[Lukosch et al., 2006] Lukosch, S., Hellweg, M., and Rasel, M. (2006). CSCL, Any-
where and Anytime. In Dimitriadis, Y. A., Zigurs, I., and Gómez-Sánchez, E., ed-
itors, Groupware: Design, Implementation, and Use, 12th International Workshop,
CRIWG 2006, LNCS 4154, pages 326–340. Springer-Verlag Berlin Heidelberg.

[Lukosch and Schümmer, 2006] Lukosch, S. and Schümmer, T. (2006). Making exam
preparation an enjoyable experience. International Journal of Interactive Technology
and Smart Education, Special Issue on ’Computer Game-based Learning’, 3(4):259–
274.

[Microsoft Corporation, 2007] Microsoft Corporation (2007). Windows Mobile -
Device Synchronization - ActiveSync and Windows Mobile Device Center.
http://www.microsoft.com/windowsmobile/activesync/.

[Munson and Dewan, 1997] Munson, J. P. and Dewan, P. (1997). Sync: A java frame-
work for mobile collaborative applications. IEEE Computer, 30(6):59–66.

[Myers, 1986] Myers, E. W. (1986). An o(nd) difference algorithm and its variations.
Algorithmica, 1(2):251–266.

[Pfister et al., 1998] Pfister, H.-R., Schuckmann, C., Beck-Wilson, J., and Wessner,
M. (1998). The metaphor of virtual rooms in the cooperative learning environment
clear. In Streitz, N., Konomi, S., and Burkhardt, H., editors, Cooperative Buildings -
Integrating Information, Organization and Architecture. Proceedings of CoBuild’98,
LNCS 1370, pages 107–113. Springer Heidelberg.

[PLog4U, 2007] PLog4U (2007). Eclipse Wikipedia Plugin.
http://www.plog4u.org/index.php/Using Eclipse Wikipedia Editor.

86 Lukosch S.: Seamless Transition ...



[Preguiça et al., 2000] Preguiça, N., Martins, J. L., Domingos, H., and Duarte, S.
(2000). Data management support for asynchronous groupware. In Proceedings of
the ACM 2000 Conference on Computer Supported Cooperative Work, Philadelphia,
Pennsylvania, USA. ACM.

[Rittel and Webber, 1973] Rittel, H. W. J. and Webber, M. M. (1973). Dilemmas in
a general theory of planning. Policy Sciences, 4:155–169.

[Saito and Shapiro, 2005] Saito, Y. and Shapiro, M. (2005). Optimistic replication.
ACM Computing Surveys, 37(1):42–81.

[Salvador et al., 1996] Salvador, T., Scholtz, J., and Larson, J. (1996). The Denver
model for groupware design. SIGCHI Bulletin, 28(1):52–58.

[Schümmer and Fernandéz, 2006] Schümmer, T. and Fernandéz, A. (2006). Patterns
for virtual places. In Longshaw, A. and Zdun, U., editors, Proceedings of the Tenth
European Conference on Pattern Languages of Programs (EuroPLoP’05), pages 35–
74. UVK Universitätsverlag Konstanz GmbH.

[Schümmer and Lukosch, 2007a] Schümmer, T. and Lukosch, S. (2007a). Patterns for
Computer-Mediated Interaction. John Wiley & Sons, Ltd.

[Schümmer and Lukosch, 2007b] Schümmer, T. and Lukosch, S. (2007b). READ.ME
– Talking about computer-mediated communication. In Zdun, U. and Hvatum, L. B.,
editors, Proceedings of the 11th European Conference on Pattern Languages and Pro-
grams (EuroPLoP’06), pages 317–342. UVK Universitätsverlag Konstanz GmbH.

[Schümmer et al., 2005] Schümmer, T., Lukosch, S., and Haake, J. M. (2005). Teach-
ing distributed software development with the project method. In Koschmann, T.,
Suthers, D. D., and Chan, T.-W., editors, Computer Supported Collaborative Learn-
ing 2005: The Next 10 Years!, pages 577–586. Lawrence Erlbaum Associates.

[SimpleWikiEditMode, 2007] SimpleWikiEditMode (2007). Product Homepage.
http://www.emacswiki.org/cgi-bin/wiki/SimpleWikiEditMode.

[Stahl, 2002] Stahl, G. (2002). Groupware goes to school. In Haake, J. M. and Pino,
J. A., editors, Groupware: Design, Implementation, and Use, 8th International Work-
shop, CRIWG 2002, LNCS 2440, pages 7–24, La Serena, Chile. Springer-Verlag Berlin
Heidelberg.

[Stevens et al., 2004] Stevens, G., Budweg, S., and Pipek, V. (2004). The
”BSCWeasel” and Eclipse-powered cooperative end user development. In Proceed-
ings of the Workshop ”Eclipse as a Vehicle for CSCW Research” at the International
Conference on CSCW 2004.

[Sun and Ellis, 1998] Sun, C. and Ellis, C. (1998). Operational transformation in real-
time group editors: Issues, algorithms, and achievements. In Proceedings of the ACM
1998 Conference on Computer Supported Cooperative Work, pages 139–148, Seattle,
Washington, USA.

[Terry et al., 1995] Terry, D. B., Theimer, M. M., Petersen, K., Demers, A. J., Spre-
itzer, M. J., and Hauser, C. H. (1995). Managing update conflicts in bayou, a weakly
connected replicated storage system. In Proceeding of the Fifteenth ACM Symposium
on Operating System Principles, pages 172–183, Copper Mountain Resort, CO, USA.

[Vitali and Durand, 1994] Vitali, F. and Durand, D. G. (1994). Using versioning to
support collaboration on the WWW. World Wide Web Journal, 1(1):37–50.

[WikidPad, 2007] WikidPad (2007). Wikidpad - wiki notebook/outliner for windows.
http://www.jhorman.org/wikidPad/.

[Wikipedia, 2007] Wikipedia (2007). Main page — wikipedia, the free encyclopedia.
http://en.wikipedia.org/. [Online; Stand 24. April 2007].

87Lukosch S.: Seamless Transition ...


