Journal of Universal Computer Science, vol. 14, no. 1 (2008), 27-58
submitted: 6/11/06, accepted: 17/10/07, appeared: 1/1/08 © J.UCS

Ontoolcole: Supporting Educators in the Semantic Search
of CSCL Tools

Guillermo Vega-Gorgojo, Miguel L. Bote-Lorenzo
Eduardo Gomez-Sanchez, Juan I. Asensio-Pérez
Yannis A. Dimitriadis
(School of Telecommunications Engineering, University of Valladolid
Camino del Cementerio s/n, 47011 Valladolid, Spain
{guiveg, migbot, edugom, juaase, yannis}Qtel.uva.es)

Ivan M. Jorrin-Abellan
(Faculty of Education, University of Valladolid
Camino del Cementerio s/n, 47011 Valladolid, Spain
ivanjo@doe.uva.es)

Abstract: Collaborative learning systems can be constructed following the service-
oriented computing paradigm. This allows educators to integrate external tools, offered
as services by software providers, in order to support the realization of collaborative
learning situations. Discovering appropriate services is a challenging task that requires
the description of their capabilities. This can be accomplished with Ontoolcole, an on-
tology of collaborative learning tools designed with the aim of supporting educators in
the search of CSCL tools. Ontoolcole is depicted here and some new, relevant features
are discussed. Namely, Ontoolcole incorporates an artifact module, a task-level coordi-
nation module and the description of static information resources, further improving
the capabilities to describe complex CSCL tools. As a proof of concept, we also present
a preliminary prototype of the intended target application of Ontoolcole, an interac-
tive system for the search of CSCL tools, named Ontoolsearch. A case study with
practitioners has been carried out to evaluate whether Ontoolcole can be employed by
educators to search CSCL tools. Evaluation results show that Ontoolcole abstractions
fit educators’ questions based on their real practice while retrieving useful tools for
their educational needs.

Key Words: ontologies, semantic web services, service discovery, collaborative learn-
ing systems, CSCL tools

Category: H.3.3, H4.3, [.2.4, K.3.1

1 Introduction

Computer Supported Collaborative Learning (CSCL) [Koschmann, 1996] is a ma-
ture research field of increasing interest in recent years that promotes the use of
Information and Communication Technologies within the context of collabora-
tive learning. The so-called collaborative learning systems (CLSs) typically offer
an environment with several tools that users may employ to accomplish specific
learning activities. These tools can be collaborative in order to support the re-
alization of group tasks, such as an asynchronous discussion carried out with a

28 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

bulletin board. However, not all of the activities involved in a CSCL situation
need to be collaborative: some may require individual tools such as a text editor
for the writing of a report.

CLSs must be very flexible in order to accommodate a wide range of learning
situations given the diversity of curricula, teaching styles and cultural differences
among institutions, or even educators at the same institution [Roschelle et al.,
1999]. In this sense, most of the existing CLSs include generic tools such as chats
or document repositories that can be useful in a wide range of learning situations
[Betbeder, 2003]. However, more specific tools are needed to achieve particular
pedagogical objectives, e.g. concept map tools to ease the understanding of new
concepts by relating them to students’ previous knowledge [Jonassen, 2006, ch.
10]. Other specific tools offer a precise functionality for a particular domain,
such as C-CHENE [Baker and Lund, 1996], a collaborative system for learning
energy concepts in Physics.

In summary, it is difficult that a CLS can anticipate all possible learning
situations that educators may require. However, it is highly desirable that they
can adjust a collaborative learning system to their specific needs. Such a feature
is called tailorability, and allows users to modify a system functionality so as to
better fit their needs [Morch, 1995]. In this sense, tailorable CLSs enable educa-
tors to easily integrate external tools in order to support the realization of new
situations. Service-oriented computing [Papazoglou and Georgakopoulos, 2003]
can help the development of tailorable CLSs, since an educator can tailor a
service-oriented CLS to his setting by selecting adequate services among those
offered by service providers [Bote-Lorenzo et al., 2004]. Besides, service-oriented
computing can promote educational software reuse since an existing service can
be employed to support different learning activities.

There are ongoing proposals of service-oriented learning systems in the lit-
erature, such as [Bote-Lorenzo et al., 2007b], [Friesen and Mazloumi, 2004] or
[Xu et al., 2003]. Moreover, the recent specification IMS Tools Interoperability
Guidelines [IMS, 2006] defines a series of recommendations for the integration
of third-party tools in a learning system based on the service-oriented comput-
ing paradigm. However, service-oriented computing introduces the challenge of
service discovery since consumers need to find the most appropriate services for
their current needs among available ones. Current approaches for service dis-
covery are commonly based on well-known registries that are used by service
providers to publish service metadata while consumers can query them to find
suitable services. In the context of CSCL, educators are expected to perform
the search of services in order to tailor a CLS to support their collaborative
scenarios. These services offer ready-to-use tools that are accessible by learn-
ers and teachers through user interfaces. Throughout this paper we will use the
term CSCL service to refer to any service-based tool that may be discovered

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 29

by educators and integrated in a CLS to support a CSCL activity. Note that
within this view a CSCL service is not necessarily designed for learning nor it is
required to be collaborative.

Standard service registries, such as UDDI [OASIS, 2004] in the popular Web
Services architecture [Curbera et al., 2002], use keyword-based searches to re-
trieve services whose descriptions contain the keywords included in a query using
Information Retrieval techniques [Baeza-Yates and Ribeiro-Neto, 1999]. As re-
ported in the literature [Lassila, 1998, Paolucci et al., 2002, Zhang et al., 2005],
keyword-based searches are prone to obtain unexpected responses since a term
may have more than one distinct meaning. Moreover, relevant results may not
be retrieved because the terms employed to describe them do not match the
query keywords, even though their meanings were similar [Fensel, 2004, pp. 91-
95]. Given this limitation, ongoing research in Semantic Web Service (SWS)
technology [Paolucci and Sycara, 2003] promises to automate Web Service dis-
covery allowing semantic searches, as well as automatic invocation and com-
position. A semantic search intends to gather information compliant with the
semantics of the query [Guha et al., 2003]. A search engine can achieve this
by exploiting ontologies [Gruber, 1993] that are used to explicitly formalize
knowledge, enabling rich descriptions and robust information retrieval. Prelim-
inary results show that using ontologies to semantically annotate services al-
low much more expressive queries and enhanced precision in service retrieval
[Paolucci et al., 2002, Klein and Bernstein, 2004].

However, these proposals do not support educators’ required queries. A ser-
vice discovery facility should allow educators to determine which CSCL ser-
vices can support a collaborative scenario. To enable it, they should query
for the offered functionality using high-level and comprehensible abstractions
for educators, including supported collaboration features. Our previous work
[Vega-Gorgojo et al., 2006] proposed a preliminary ontology of CSCL tools with
the aim of allowing educators to perform semantic searches of CSCL services.
In this ontology tools can be described specifying the set of tasks that can be
performed by an actor (probably playing a role). In this paper, we present an
evolution of this ontology, named Ontoolcole, with augmented capabilities to de-
scribe complex CSCL tools (although simple tools can also be described in an
easy way) such as archival storage properties or decomposable group tasks. We
also deepen on the role of this ontology for CSCL service discovery in a service-
oriented CLS, although it could also be applied in the more general context of
a recommender system of learning tools for CSCL settings. Indeed, the design
of Ontoolcole is driven by the search system that would use this ontology. As a
proof of concept, we present here Ontoolsearch, a preliminary prototype of such
a system intended for educators’ use. Finally, in order to evaluate if educators
can benefit from using Ontoolcole for the semantic search of CSCL tools, we

30 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

have carried out a case study in which some practitioners formulated questions
for searching tools derived from their real practice.

The rest of this document is organized as follows: section 2 identifies the re-
quirements for the discovery of CSCL services and discusses the alternatives to
support it, motivating the use of Ontoolcole. Section 3 presents an overview of
Ontoolcole and depicts the new features introduced to overcome some previous
limitations. Next, section 4 introduces Ontoolsearch, an Ontoolcole-powered in-
teractive system for the search of CSCL tools. Then, section 5 evaluates whether
Ontoolcole can be employed by educators to search CSCL tools. Finally, the main
conclusions of the study are shown as well as current research work.

2 Discovery of CSCL Services

This section deals with the issue of discovering CSCL services. First, service
descriptions are discussed, emphasizing the attributes employed for service dis-
covery. Then, some requirements are defined for the search of CSCL services. It
follows an analysis of alternatives for the discovery of CSCL services.

2.1 Service descriptions

“Services are autonomous, computational entities that can be used in a platform-
independent way. Services can be described, published, discovered, and dynam-
ically assembled for developing massively distributed, interoperable, evolvable
systems” [Papazoglou, 2007]. In this sense, it is possible to construct a new appli-
cation based solely on sets of interacting services offering well-defined interfaces.
The Service-Oriented Architecture (SOA) [Papazoglou, 2003] is a logical way of
designing a software system to provide services to either end-user applications
or other services distributed in a network through published and discoverable in-
terfaces. In the SOA paradigm, service providers host services and publish their
descriptions in a well-known service registry. Next, clients query one of these
registries to find appropriate services. Using the obtained information, clients
can bind to a service and invoke it. Due to the composition property of services,
a service aggregator can arrange a composite service by aggregating a set of ser-
vices. Composite services may provide a more complex functionality, although
clients would perform the same interactions (find, bind and invoke) as in the
former case.

Within this general picture, a tool that encloses a coarse-grained functional-
ity can be exposed as a CSCL service. Software developers can design either a
monolithic CSCL service or a composite one, composed by other lower-level ser-
vices. For instance, the Collaborative Network Simulation Environment (CNSE)
[Bote-Lorenzo et al., 2007a] is a service-oriented application intended for Com-
puter Networks education that comprises several services such as a simulation

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 31

@ SERVICE IMPLEMENTATION
® ABSTRACT SERVICE
Qualityl (DTOOL Service interface

of
Behavior

Figure 1: Level decomposition of a service. (1) The tool level defines the ca-
pabilities of a service, i.e. what a service does. (2) The abstract service level
incorporates the interface and the behavior, defining how to interact with a ser-
vice and its internal functioning. (3) The service implementation level defines
a specific service endpoint in a hosting platform (the binding information) and
administrative information of the provider. Finally, quality of service parameters
define important functional and non-functional properties that involve the three
levels

service or a visualization service. However, this aspect is irrelevant for a service
client since the implementation is hidden to the users. Thus, once a CSCL ser-
vice has been discovered and integrated in a service-oriented CLS, learners and
educators can interact with it using a client that implements the presentation
logic [Bote-Lorenzo et al., 2007b].

Concerning the discovery of CSCL services, the SOA find operation can be
performed iteratively at different stages: initially, an educator searches for tool
capabilities and obtains suitable CSCL services for his educational setting; the
selection of a specific service binding is deferred, maybe based on other criteria
such as quality of service parameters [Papazoglou, 2007]. To accomplish this it-
erative search, services need to be described with different kinds of metadata.
Indeed, a service can be decomposed in three levels, each one described with
different attributes, as shown in Fig. 1. The proposed model is based on the lit-
erature of services [Papazoglou and Georgakopoulos, 2003] and on the semantic
approaches for the description of services OWL-S [Martin et al., 2004a], WSDL-
S [Sheth et al., 2006] and WSMO [Roman et al., 2005].

At the tool level, the capability description states the conceptual purpose
and expected results of the execution, i.e. what a service does. There is an 1:n
mapping between the tool and the abstract service levels, since different abstract
services can be defined for the same tool. An abstract service is described by its
interface and its behavior. The interface contains the operations and data types
supported, and it is required to interact with a service. The behavior defines

32 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

how the announced capabilities are achieved, i.e. its execution semantics. The
behavior is commonly described with a workflow model and is mainly used for
service composition. Lastly, a service implementation identifies a concrete service
endpoint hosted in a provider’s platform. There is also an 1:n mapping between
the abstract service and the service implementation layers. The administrative
information describes the provider and the specific service, while the binding
information specifies the access information required to actually invoke a service.
Finally, the quality of service defines a series of quantitative functional and non-
functional attributes that are assured by the service provider [Papazoglou, 2007]
such as cost, security requirements, quality ratings or performance metrics, and
are intended for service selection. Note that these quality of service properties
affect all three levels since they involve implementation and deployment issues.
Thus, service discovery is mainly supported by the capability description,
that should employ domain-specific concepts and taxonomies [Papazoglou and
Georgakopoulos, 2003]. The following subsection discusses the requirements for
the discovery of CSCL services, including the description of their capabilities.

2.2 Requirements for the discovery of CSCL Services

A service discovery facility should allow educators to find appropriate CSCL
services for their learning scenarios. In order to be useful for educators, the search
system should support their required queries. To determine the type of questions
that educators command, we have carried out a preliminary study with eight
CSCL practitioners. Specifically, we demanded them to pose questions for tools
to support their real practice CSCL settings. Collecting competency questions is
a common practice to gather user requirements [Staab et al., 2001], since they
can help to determine user expectations of a system.

Table 2.2 shows an overview of some of the competency questions posed by
educators. The analysis of these questions can serve to identify which properties
should include the capability description of a CSCL service. Thus, questions CQ1
and CQ2 demand specific tool types, editor and document management tool.
Remaining competency questions refer to required functionality of a tool using
task types such as communication. Interestingly, all questions ask for support
of group work, specifying collaborative tool or task types. The realization of
group work is further refined in questions CQ3 and CQ5, defining synchronous
and asynchronous types of interaction. Finally, some questions identify artifact
types, such as concept maps or text documents, that are managed with a tool.

The capabilities of a CSCL service should describe the features identified
in this study in order to properly support educators in the search of CSCL
services. Noteworthy, other higher-level educational abstractions such as ped-
agogical objectives or type of knowledge to be learned could be employed to

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 33

|Id || Competency questions |

CQ1|]I want a collaborative editor of concept maps

I require a document management tool that can be used
by groups of students to store and retrieve documents

CQ2

CQ3||II want a synchronous tool for creating UML diagrams

CQ4||T want a tool to facilitate the communication among students

CQ5||T need a tool for editing text documents asynchronously

Table 1: Sample competency questions posed by educators for a search of CSCL
tools

perform the search. Indeed, ongoing research on learning design tackles the def-
inition of these aspects [IMS, 2003]. However, the description of a CSCL service
should not be tied to a pedagogical scenario, since such a service can accommo-
date many different settings. In addition, a provider cannot anticipate all the
possible scenarios in which technology can be used and describing them would
add significant burden to providers. Thus, we have limited the description of
CSCL service capabilities to the properties identified in this study that serve to
define the offered functionality.

Besides, a service discovery facility can employ different technologies allowing
different types of searches. Using traditional Information Retrieval techniques
[Baeza-Yates and Ribeiro-Neto, 1999], both service descriptions and queries are
modeled as sets of keywords. It allows keyword-based searches based on textual
information, retrieving those services whose descriptions contain the keywords
included in a user query. However, this type of search is prone to obtain irrelevant
results while missing some relevant ones due to ambiguity of natural language
[Fensel, 2004, pp. 91-95]. Broadly speaking, there are two related issues that
we will call synonymy and polysemy. Synonymy reflects the fact that there are
many ways to refer to the same concept, precluding the recall performance of a
retrieval system [Deerwester et al., 1990]. In contrast, poor precision is affected
by polysemy, since the same word can have different meanings.

To overcome these limitations of keyword-based searches, there are ongoing
proposals to allow semantic searches. A semantic search denotes a concept about
which the user is trying to gather information [Guha et al., 2003]. This way, a
service discovery facility should understand the semantics of a query in order to
properly respond. To achieve it, ontologies [Gruber, 1993] can be used to explic-
itly formalize a conceptual domain. An ontology could model the abstractions
required by educators to search CSCL services and employed to semantically
annotate them. A service discovery system could then use these annotations to
unambiguously respond to semantic searches about CSCL services.

34 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

2.3 Approaches for the discovery of CSCL Services

Service discovery is commonly accomplished using well-known registries. For in-
stance, UDDI [OASIS, 2004] is the service registry proposed for the popular
Web Services architecture. Organizations can announce them in such a registry,
as well as the services they offer. UDDI provides a white/yellow/green page func-
tionality, allowing queries about organizations (“white pages”), services (“yellow
pages”) and technical information (“green pages”). However, UDDI is limited
to keyword-based searches, precluding recall and precision, as discussed above.
Moreover, UDDI and other existing service registries do not provide a capability
representation language, as reported in [Martin et al., 2004b]. Thus, identified
requirements for the discovery of CSCL services are not fulfilled with these reg-
istries.

SWS approaches like OWL-S [Martin et al., 2004a] and WSMO [Roman et al.,
2005] make use of ontologies in order to support semantic searches of services.
These proposals define mechanisms for the description of service capabilities,
allowing capability matching of services. So far, OWL-S is perhaps the initiative
that has attracted more interest. The OWL-S schema defines the element Ser-
vice Profile to advertise a service, enabling its discovery. The profile describes
the capabilities of a service in terms of the transformation produced. Specifically,
it specifies the inputs required by the service and the outputs generated; as well
as the preconditions required by the service and the expected effects that result
from the execution of the service. Preliminary experiments with OWL-S provide
implementations for service discovery based on matching the types of a service’s
inputs and outputs [Martin et al., 2004b, Kawamura et al., 2005]. However, the
functionality of a service is not completely defined by the inputs and outputs,
and other authors have proposed extensions to explain the relationship between
inputs and outputs [Hull et al., 2006].

WSMO offers an alternative approach for service discovery, although with
many similar characteristics to OWL-S [Lara et al., 2004]. Perhaps the main
difference is the definition of user objectives as goals, which are decoupled from
service capability descriptions. Both goals and capabilities are expressed by the
state of world transition before and after service execution. A refinement of the
WSMO approach for service discovery is explained in [Stollberg et al., 2007].

Concerning the discovery of CSCL services, OWL-S and WSMO would re-
quire extensions for the CSCL domain to describe them. Moreover, the major-
ity of CSCL services involve cognitive processes that are difficult to express in
terms of state transitions. Additionally, a CSCL service offers a coarse-grained
functionality that should be described with other higher-level abstractions than
input / output parameters.

In order to address aforementioned difficulties for the description of CSCL
services, we have proposed the Ontoolcole ontology (see [Vega-Gorgojo et al.,

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 35

2006] for a preliminary version). The depiction of this ontology is the topic of
the following section. Ontoolcole aims to describe CSCL services at the tool level
in order to support the discovery. Moreover, this ontology has been constructed
taking into account educators’ required questions identified in subsection 2.2.

3 Ontoolcole: an Ontology of Collaborative Learning Tools

Ontoolcole is an evolving ontology of collaborative learning tools designed with
the aim of supporting educators in the search of CSCL tools. This section first
provides an overview of Ontoolcole. Then, it depicts the new features introduced
in Ontoolcole in order to overcome the three limitations found in a previous
version [Vega-Gorgojo et al., 2006].

3.1 Overview of Ontoolcole

Technically, Ontoolcole is formalized in OWL DL [Bechhofer et al., 2004], a
widespread and expressive ontology language with definite semantics that can
be processed by a reasoner. A reasoner offers two valuable services for ontology
development: ontology classification and consistency checking. When a reasoner
classifies an ontology it generates the inferred ontology class hierarchy. The de-
signer can then check whether the inferred class hierarchy reflects his design ob-
jectives. Considering consistency checking, a reasoner can verify whether or not a
class can have any instances. An inconsistent class reflects something incorrectly
built in the ontology. Both services have been extensively used when developing
Ontoolcole, helping to assess that the formalization was correctly made. This
ontology is thoroughly described below, although some low-level details are left
out for the sake of readability.

As discussed in the precedent section, Ontoolcole aims to describe the capa-
bilities of CSCL tools. This is accomplished by specifying that a Tool supports
one or more Tasks performed by an Actor, maybe playing a specific Role. The
realization of a task may require an Artifact as input or may produce an artifact
as output. This simple schema, shown in Fig. 2(a), is the basis of the description
of tools in Ontoolcole and it has been employed with small variations in the
CSCL/CSCW literature [van der Veer and van Welie, 2000].

The Actor concept is specialized to Person, Group and ComputerSystem,
representing the possible actors that can perform a task, as shown in Fig. 2(b).
One first classification of tasks is determined by the actor that performs a task:
an IndividualTask is performed by a person, a GroupTask is performed by a
group and a Computation is performed by a computer system. Note that a group
is composed of other groups and/or persons. In this sense, a group task denotes a
collaborative task that can be performed either synchronously or asynchronously,
reflecting an important characteristic of CSCL tools. This aspect is modeled

36 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

@ Role Tool
&é@é"
plys % 9@90 providesStorage
hashput
Actor perbon o Task A rtifact
hasO utput
b) Actor

Com puterSystem Person f G oup

Figure 2: Overview of Ontoolcole: (a) Basic information model. (b) Actor types
defined in Ontoolcole

in Ontoolcole using the property hasTimeOfInteraction that only applies to
group tasks. Remarkably, the proposed information model can be related with
the activity theory [Engéstrom, 2001]. This theory considers that individuals
and groups learn something mediated by tools and other artifacts. Accordingly,
the conceptual model of Ontoolcole represents those tools that can mediate in a
learning activity and that can be used by persons or groups. The artifacts that
are required as input or produced as output in Ontoolcole may represent the
object which is the subject of study.

While the concepts IndividualTask, GroupTask and Computation reflect
the actor performance, the nature of the task needs to be specified. Interestingly,
[Koschmann, 1996] identifies the uses that may be served by a tool in a learning
context: presentation, support the creation of representational formalisms, com-
putation, mediate communication and provide archival storage. Since the infor-
mation model of Ontoolcole represents tasks as perceived by actors, these terms
have been reified to Perception, Construction, Communication, Computation
(presented above) and InformationManagement. The key features of these five
prototypical task types are shown in Table 3.1, indicating the possible values
eventually assigned to the building blocks of the information model of Ontool-
cole (see Fig. 2(a)). Note that these core task types can be further specialized
to define other more specific types.

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 37

[Task Type I Actor | Role | Input [Output]
Perception Person or Group Beholder Required -
Construction Person or Group Editor Optional |[Required
Communication Group Communicator - -
Computation Computer system - Required|Required
Inf. Management Any Publisher, Retriever. .. [Optional | Optional

Table 2: Key features of the five core tasks in Ontoolcole. These task types are
inspired in [Koschmann, 1996] and represent the possible uses of a tool in a
learning context

A perception task, such as reading or hearing, can only be performed by a
person or a group and requires some artifact as input. Similarly, a construction
task, such as writing or modeling, is performed by either a person or a group and
produces some artifact as a result of the task. A communication task is explicitly
performed by a group exchanging messages of different types (text, graphics,
audio, video or documents). In contrast, an information management task can be
specialized to publishing, retrieving, searching, sending or deleting some artifact.
Depending on the type of information management task, an artifact would be
required as input, e.g. publishing a document, or as output, e.g. retrieving an
image. Finally, a computation task, such as compilation or computer simulation,
is always performed by a computer system transforming some inputs into some
outputs. Participants play roles during the realization of a task, as shown in
Table 3.1. Roles are further specialized when appropriate, such as writer for a
writing task (subclass of construction). As stated before, collaborative work is
naturally described in this model by specifying group tasks and annotating them
as either synchronous or asynchronous.

Using the precedent elements, other task types have been defined to obtain
more refined concepts. A reasoner can then obtain the inferred hierarchy of task
types, shown pictorially in Fig. 3. The root concept is Task, while the rest of
task types are specializations of this concept. Note that concepts reflecting the
actor performance and the nature of the task are intertwined in the resulting
classification. In this sense, one of the top concepts is InteractiveTask which
simply denotes any task performed by either a person or a group. Accordingly,
Perception and Construction (as well as their subclasses) are specializations of
InteractiveTask. They cannot be classified as IndividualTask because some
instances of these concepts could be performed by a group; the same applies
to GroupTask since some could be performed individually. On the other hand,
Communication is classified as a GroupTask since it is always performed by a
group.

Combining these elements it is possible to describe the capabilities of a tool

38 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

Oﬁm agg\ﬂewing Q WideoWatching
.,O AudioHearing
QDocum entPerception

 Retieving = Publishing

Sending

O Moclel\-‘iewng
/ Deleting
d) InclividualTask
TexReacing \ -
/'_'_ " hRerception Informationi anagementTaslc

MessageRecording

/‘ Compilation

Computation

-

dl‘u'l essage\iewing
—

rc,‘onsh'/ucﬁon
A

/|
;o\

Interactive Task:

ComputerSimulation

/ b M essageComposition |
CY) A GroupTashk
S

Daocum entEdition o |I — Automatich arking

~
e

. ‘*O . 7 Y —
\ Drawing b —
O Wiiing . Usm10|1l'0HDLISGI'DLIIJTEL?K - Communicaton @ AsynchronousGroupTask

M odelling ~ ; :'
*0 Commenting . 5\- T Lb
SynchronousCommunicaton AsynchronousComm unication

Figure 3: Inferred classification of task types defined in Ontoolcole. Concepts
refering to the actor performance and the nature of the task dimensions are
intertwined

by specifying the tasks that can be performed with it. Similarly, educators can
use this model to pose queries expressing what is required to support their in-
tended educational settings. In addition, Ontoolcole incorporates a predefined
set of tool type definitions. These well-known tool types can be good starting
points to perform a search. These tool definitions can be very generic, e.g. “com-
munication tool: any tool that supports a communication task”, or more specific,
e.g. “whiteboard: any tool that allows a group to draw an image synchronously”.
Thus, during a search process, educators can directly ask for a tool type. Be-
sides, they can also refine such a query with additional restrictions using the
constructs of Ontoolcole. Fig. 4 shows an excerpt of the inferred classification of
tool types. Note that the asserted tool concepts constitute a completely flat hi-
erarchy before reasoning. Then, a reasoner classified them as shown in the figure
using the definitions of these concepts.

The above description depicts Ontoolcole as in [Vega-Gorgojo et al., 2006].
However, this preliminary version has three main limitations that were detected
when using it to annotate tool instances that could not be properly described.
First of all, it lacks an artifact model to accommodate the different products
that may be used or created during the realization of a task. This is a crit-

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 39

. SliceViewer .

VideoPlayer
joPlayer . Blog
Browser

Q§|JI eacsheetTool J
Otnw..gclimr |
. /
\ /
/
— B . Modeling Tool
-

d Processing Tool
ConceptapTool

\‘Q Simulator

O‘/_’. I ConstructionTool .
CuestionnaireEclitor Campiler
Wioting Tool

SroupTool

. Drawing Tool \—)Q\CommumcanonTool

s { \\\
. . TesdEditor g . SynchronousToal \ ~—
SlideComposer /Y . —
,.-'{ Voo e Wiiteboard EmailServe
/ \ N { i

A\ S

. DocumentR epository

FepresentatonTool

InfarmatorianagementTool

. Assessing Tool

o

.--;O BulletinBoard

| - ‘d) ~ AsynchranousToal
| N ~ Synchronous TextEditor, N\

AY
é N\ ™~ / N
XML Edhior ~ -

. ~
b H T LEditor \‘Cj/ 0 CuestionnaireM anagementTool
A

yihchronous TexdEcditor

-

Figure 4: Excerpt of the inferred graph of tool types. Concepts were asserted in
a completely flat hierarchy and the reasoner found the relationships shown in
the figure

ical aspect to differentiate the capabilities of a tool and the previous version
did not offer a mechanism for this issue. For instance, generic text editors like
Word, XML editors like XMLSpy or specialized questionnaire editors like Adobe
Designer were all described alike with the previous version of Ontoolcole, thus
demanding an artifact model to differentiate among them.

Second, while Ontoolcole seems appropriate to describe tools designed for
single tasks (for example a simple text editor), there are many CSCL tools that
embody a complex workflow of tasks (for example a questionnaire management
tool) that cannot be described with this simple schema. A coordination model
is required for the description of the dynamic aspects of a tool.

Third, some tools such as document repositories or bulletin boards keep
archival storage that can be accessed during different task realizations. Thus,
some mechanism is required to describe the static information resources
that a tool can manage.

40 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

M M EA pplication

Figure 5: The new artifact model for Ontoolcole represented as a UML class dia-
gram. Classes on the right depict artifact types while classes on the left the well-
known MIME types. A specific artifact instance, e.g. a TextDocument, should
be related to a MIME type instance, e.g. application/pdf

3.2 New Features of the Ontoolcole Ontology

As discussed above, an important limitation of the preliminary version of On-
toolcole was the lack of an artifact model, which hindered the description of
tools and reduced the capability of tool discrimination. This new model should
help to describe the artifacts required or produced during a task realization.

The resulting artifact model is shown pictorially in Fig. 5. The main de-
sign criterion has been to separate the artifact type from the format type. The
well-known MIME types [TANA, 2006] have been employed to define the artifact
format types. Interestingly, metadata standards such as LOM [IEEE, 2002] or
Dublin Core Metadata Initiative (DCMI) [DCMI, 2006] also separate content
from format. In contrast, our approach makes heavy use of inheritance to struc-
ture the artifact types, and explicitly defines a vocabulary that can be shared
both by providers to describe tools and by educators to submit their queries,
leveraging the search process. Moreover, this artifact model further describes
some elements (although not shown in Fig. 5). For instance, a TextDocument
incorporates a property to specify the type of text document (generic, question-
naire, source program, etc.).

This artifact model does not aim to represent all possible features of artifacts.
This could be achieved including some of the metadata fields defined in LOM
or DCMI. Though defining such information could be interesting for cataloging
artifacts, in our case the intention is just to provide the required characteristics
for the search of CSCL tools that were identified in subsection 2.2. Moreover, new
artifact types can be easily incorporated to allow the description of a wider range
of tools since we are aware that domain-specific tools, e.g. network simulators
for teaching network protocols, will require extensions to this model.

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 41

In our previous work we also detected the need to specify the resources
a tool can store. This feature is specially relevant for information management
tools that keep archival storage of messages or documents. To solve this, a new
property has been defined that relates tools with the artifacts they can manage.
The name of this property is providesStorage and it is shown in Fig. 2(a).
With this simple approach it is possible to specify that an e-mail server can store
messages enclosing text and document files. Another example is the description
of a persistent chat that can store the messages of a conversation.

Finally, the preliminary version did not include a coordination model.
This is, perhaps, the most challenging limitation, and becomes quite important
when describing asynchronous group scenarios, since different users may perform
individual tasks that constitute a whole complex task. Furthermore, the utility
of this feature is not limited to such cases; for instance, participants engaged in
a synchronous group drawing task may exchange text messages at the same time
to coordinate their drawing. Thus, some mechanism is necessary to describe the
concurrent realization of the drawing and communication tasks.

Fig. 6(a) outlines the coordination model developed for Ontoolcole. Basically,
a CompositeTask has been defined as any task that is composed of exactly one
ControlConstruct element. This latter element acts as a container of tasks or
other control constructs. Each control construct has different semantics: Choice
implies that only one of the elements contained is performed; Sequence defines
a time ordering; and Split serves to specify the concurrent execution of the
elements contained. Combining these elements, it is possible to describe a wide
range of complex workflows of tasks, e.g. a split of three concurrent sequences
of tasks. Indeed, this coordination model is inspired in OWL-S Composite Pro-
cesses [Martin et al., 2004a] that defines a mechanism for composing processes
formalized in OWL DL. In contrast, the proposed model uses different constructs
exploiting the high expressiveness of OWL DL. Specifically, components is de-
fined as a transitive property and composedOf as a specialization of components;
in this way, it is possible to obtain all the nested elements of a composite task
simply asking a reasoner to retrieve the values of the property components.

An example of the use of this coordination model is shown in Fig. 6(b),
representing a possible scenario of an asynchronous group writing task. This
description provides a high-level overview of the group task (top of Fig. 6(b))
that is further refined with the description of the individual tasks performed
by the members of the group (bottom of Fig. 6(b)). Remarkably, the sequence
ordering is defined by the use of the first and next properties, pointing to the
first and the subsequent tasks, respectively. Indeed, first is a specialization of
components that is used to mark the first element in a sequence.

After overcoming the previous limitations, Ontoolcole has proven to be very
versatile for the description of CSCL tools. Different instances of document

42 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

@)

b)

I — 7.

4

docR etRetrieving [IndW 2:W ritng

z%

Figure 6: Ontoolcole’s new coordination model (a). A CompositeTask is com-
posed of a ControlConstruct element that includes other tasks or other control
constructs. (b) illustrates the use of the coordination model for the description
of an asynchronous group writing. A text document is produced as a result of a
sequence of individual tasks performed by each of the members of the peer group.
This figure only shows the properties that concern the coordination model for
the sake of readability

repositories, drawing tools, whiteboards, collaborative text editors, multimedia
players, questionnaire management tools, chats and concept map tools, among
others, have been described with Ontoolcole. Exploiting Ontoolcole abstractions,
tools are described by the depiction of their different scenarios of use. For in-
stance, Fig. 6(b) forms the basis for the description of CoWeb [Rick et al., 2002],
a popular asynchronous group text editor based on Wiki. Further aspects of
CoWeb have been included such as the storage of text documents and images,
document formats as well as the description of other CoWeb supported scenarios:
individual text edition and retrieval of stored documents. Simpler tools can also

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 43

be described in an easy way with Ontoolcole, such as the well-known pdf viewer
Adobe Reader. This tool has been annotated by creating new instances of Tool
(adobeReader), TextReading (adobeReaderViewing), Person (adobeUser) and
TextDocument (pdfDocument) with MIME type application/pdf;in addition,
it has been asserted that adobeReader supports the task adobeReaderViewing
performed by adobeUser requiring as input pdfDocument.

A noteworthy consideration refers to the level of detail used to describe
the capabilities of CSCL tools in Ontoolcole. An ontology should not contain
all the possible information about the domain, but only the needed informa-
tion for the intended applications [Noy and McGuinness, 2001]. Indeed, over-
specification incurs in the cost of adding unnecessary complexity, making an
ontology both difficult to maintain and exploit. In this sense, the design crite-
rion in Ontoolcole has been to keep this ontology as simple as possible, as well
as trying to simplify tool descriptions. For instance, CoWeb can support many
different variations of group writing and the provided description corresponds to
a simple one-step draft-passing process. However, it is sufficient to respond to
the following queries: “a tool for asynchronous group writing”; “a tool that can
store text documents”; “a tool that allows publishing text documents”; “a tool
that allows retrieving text documents”; and any combination of the precedent
ones. If we accept that educators will limit themselves to such queries, there are
no extra benefits in providing descriptions of more complex and realistic scenar-
ios of use. Indeed, it would be difficult for an educator to specify in a query his
intended learning scenario. Moreover, the search facility would require significant
complexity both to allow the specification of such queries and to match the tools
that can support the scenario defined in the query. Thus, the proposed approach
tries to simplify both tool descriptions and supported queries; whether this is
sufficient or not will be discussed in section 5 which describes an evaluation
experiment of Ontoolcole with real users.

A final remark can be made about tool annotation, since it requires a deep
understanding of Ontoolcole in order to provide comprehensive descriptions. Fur-
thermore, the popular ontology editor Protégé [Knublauch et al., 2004] has been
employed for this issue and using Protégé needs some training for non-trivial
usage. Thus, ongoing efforts should be carried out to develop an Ontoolcole-
flavoured authoring system to allow providers to describe their own tools. The is-
sue of tool annotation could be mitigated with tool templates, allowing providers
to adapt an appropriate template to a specific tool instance. Templates could
be based on the definitions of tool types provided in Ontoolcole. For instance,
a provider could select the template of a whiteboard (defined previously) and
adapt it afterwards, e.g. indicating supported MIME type of the images produced
with the whiteboard.

44 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

1 Information
need

> >
216 > CSCL tool
scan/browse/query | & 3 d "
o5} ESCI’IptIOﬂS
e | Reasoner
5 (DL Engine)
(%2}
analyze results | 'S |4 4 [4—>| Ontoolcole
Educator g 5
<

Results D

Figure 7: Architecture of Ontoolsearch and user interactions. (1) Initially, the
educator has a preliminary idea of the CSCL tool he requires. (2) Then, he uses
the search UI to scan the information structure, to browse tool types and to
formulate queries. (3) Queries are forwarded to the reasoner. (4) The reasoner
manages the knowledge base composed of Ontoolcole and the descriptions of
CSCL tools; it responds to a query with the set of tool instances that match the
query. (5) These results are presented to the educator through the analysis UI,
allowing him to evaluate their appropriateness

4 Ontoolsearch: a System for the Search of CSCL Tools

Section 3 depicted Ontoolcole and illustrated how to use it to semantically an-
notate CSCL tools. However, in order to fully support educators in the search of
CSCL tools we are currently developing a recommender system of CSCL tools
that uses Ontoolcole in the back-end to structure tool metadata. This system is
named Ontoolsearch and it is described here to illustrate the design of the target
application of the proposed ontology.

Ontoolsearch is an interactive system intended for educators. Since informa-
tion seeking is an imprecise process, when users approach an information access
system they often have only a vague understanding of how they can achieve
their goals [Hearst, 1999]. Thus, Ontoolsearch should help educators in the pro-
cess of understanding and expression of their information needs. Ontoolsearch
supports two main activities: search for tools and analysis of results. To perform
the former activity, educators use Ontoolsearch to scan the information struc-
ture defined in Ontoolcole, to browse the category hierarchy of tool types or to
formulate a query. Retrieved tools are presented to educators, allowing them to
analyze the results. These user interactions are shown in Fig. 7 together with
the architecture of Ontoolsearch.

Queries are modeled as OWL DL concepts and are processed by a reasoner.
The reasoner offers an instance retrieval service that is used to obtain the results

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 45

of a query. Current prototype of Ontoolsearch employs the reasoner RacerPro
[Racer, 2007] for this issue, managing the knowledge base composed of Ontool-
cole (the structure) and the descriptions of CSCL tools (the data). A query is
formed using the abstractions defined in Ontoolcole (see section 3). Thus, it is
possible to ask for tool types, task types, actors that can perform a task, re-
quired artifacts, elements in a composite task, etc. A query expression can be
articulated using the language nRQL [Racer, 2007] and submitted to RacerPro.
A simple example of an nRQL query is shown below:

(retrieve (?TOOL)

(and (?TOOL |Tooll) (?TASK |Communication|)(?MESSAGE |Messagel)
(?TASK (STRING= |hasTimeOfInteraction| "synchronous"))
(?MESSAGE (STRING= |encloses| "text"))

(?TASK 7MESSAGE |allowsMessagel)<
(?TOOL ?TASK |supportsTask]|))

This query asks for tool instances that match the restrictions defined in
the AND clause: supporting a synchronous communication task based on text
messages. However, although nRQL is a very powerful and flexible command
language, its syntax is complex and we cannot assume that educators will learn
nRQL. This leads to an important trade-off in all user interface designs: sim-
plicity versus power [Hearst, 1999]. Moreover, it is expected that educators will
search CSCL tools intermittently, pushing to a simpler and easier to learn in-
terface. Thus, the decision in Ontoolsearch has been to offer a graphical direct
manipulation interface at the expense of less flexibility than nRQL, limiting the
expressiveness of queries. Direct manipulation interfaces are commonly easier
to use than other methods [Shneiderman, 1997, p. 205], due to: (1) continuous
representation of the object of interest, (2) physical actions or button presses
instead of complex syntax, and (3) rapid incremental reversible operations whose
impact on the object of interest is immediately visible. The search interface cap-
tures user interactions to form a query that will be transformed to an nRQL
expression to be processed by RacerPro.

In order to design the search interface of Ontoolsearch, we have followed a
participatory design strategy involving both software developers and educators.
Participatory design is a common methodology to involve stakeholders to iden-
tify requirements and give feedback of preliminary prototypes [Muller and Kuhn,
1993]. Thus, several search user interfaces have been iteratively proposed until
having agreed the final interface that is shown in Fig. 8. It has been designed
following some well-known principles for information access [Hearst, 1999]. First,
the upper left frame displays the inferred graph of CSCL tool types (see graph
frame in Fig. 4) and is intended to provide educators with a good starting point
for a search. Educators can browse tool categories and eventually select a tool

46 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

@lontoolsearch B [m]

n‘roolsq,o[ch ToolGraph TaskGraph ()Ewanded node /N Gollapsed node

Ghat supporis

A SynchronousTool

YA GroupTool Y
3 O
A GonstructionTool . g A~/ Chat
ool
>
A Communicafc,

Group Communication
Synchronous

€

B

Selected row in my query

A AsynchionousTool

@ suletngoard

Hessage

‘ Inform ationh anagem entTocl

encloses: text

Artifact

Person OR Group ImageViewing Input: Image | MIME: png i

Person OR Group™ Imageviewing Image Change

MIME

=

Figure 8: Snapshot of the search user interface of Ontoolsearch

type and add it to the query frame (bottom-left in Fig. 8) as a list of one or
more actor-task-artifact rows, depending on the specific tool type definition;
then, pressing the ‘Search’ button will retrieve the set of tool instances per-
taining to that category. Educators can also manipulate the graph by moving,
expanding, collapsing and hiding nodes, allowing them to control the informa-
tion to display. This graph has been developed using the JUNG Framework
[0O’'Madadhain et al., 2003], a flexible and open-source Java library for graph
visualization.

Second, since humans are highly attuned to images and visual information,
the upper right frame (visualization frame) displays a wvisual representation of
the currently selected node of the graph. This is accomplished using icons to rep-
resent the tasks supported by a tool type, along with the actors and artifacts,
as shown in Fig. 8. This aspect allows rapid communication of the abstrac-
tions modeled in Ontoolcole. Besides, tooltips are enabled in the graph, showing
textual descriptions stored in Ontoolcole when the mouse is positioned over a
node. Both the visualization frame and the tooltips allow educators to scan the
information structure of Ontoolcole.

Third, Ontoolsearch seamlessly integrates scanning, browsing and querying

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 47

in the search interface. Precedent paragraphs depicted the integration of tool
browsing with scanning information structure. Browsing tool categories is a way
of providing a set of predefined queries that may satisfy the information needs
of educators. However, they need more control to formulate a query, specifying
additional restrictions concerning tasks, actors and artifacts. To accomplish it,
each actor-task-artifact row in the query frame can be selected, triggering its
visualization in the lower right frame (editable frame); then, educators can add
constraints manipulating the elements of the graphical interface, e.g. pressing a
button to include a task type, restricting the actor in a combo or selecting a
MIME type in a pop-up window. In addition, educators can switch the graph
frame to display the task category hierarchy (see Fig. 3), allowing them to di-
rectly add a task type to the query frame. This way, we envision educators
will initially browse the tool category graph and retrieve a set of tool instances
pertaining to a tool category; then, as they familiarize with the information
structure, they will eventually switch to the task category graph and begin to
refine their queries.

For the sake of simplicity, the search interface limits the expression of some
features in a query that could otherwise be specified in nRQL. Specifically, ed-
ucators cannot ask for the artifact types that can be stored by a tool. However,
this feature is implicitly included in a query when an information management
task is added to the query frame, e.g. an educator may require a tool that allows
publishing messages and the query expression will incorporate the capability of
storing messages, although this will not be shown to the educator to reduce his
working memory load. In addition, educators cannot specify the components of
a composite task in a query, although Ontoolsearch will retrieve any tool that
matches the list of tasks contained in the query frame even in the case that some
of them form part of a composite task. Finally, Ontoolsearch constructs queries
using an AND clause to include the elements in the query frame; although a
combination of AND and OR clauses is possible, most users have great difficulty
in specifying Boolean queries [Greene et al., 1990].

Concerning the analysis user interface, we have followed the design principle
of placing the results set in the context of other information types. Specifically,
tool categories are used to place the results, constructing a graph showing the
tool instances as well as the tool types to which they belong. Selecting an instance
shows a combination of textual and graphical information of its Ontoolcole-
compliant description. An educator can then go back to refine his query, start a
new one or access the session history to restore a previous query and its results.
During this process, he will eventually find some tools that satisfy his information
needs.

The description so far shows how Ontoolsearch could be used by educators to
search appropriate CSCL tools for their educational settings. Besides, it can be

48 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

extended to support the discovery of CSCL services. As discussed in section 2, a
service description comprises many attributes, although service discovery basi-
cally requires the service capabilities. The capabilities of CSCL services can be
described with Ontoolcole, enabling the use of Ontoolsearch for the discovery of
CSCL services. This can be accomplished in cooperation with a service registry,
such as UDDI. The registry stores service records with the necessary information
to invoke a service. This way, each Ontoolcole tool description will point to the set
of CSCL services that implement the tool functionality. Thus, Ontoolsearch could
be extended with a module that maps tool descriptions to service implementa-
tions for the search of CSCL services. Then, educators could search appropriate
services using Ontoolsearch. After selecting a service, it would be integrated in
the CLS using the binding information stored in the registry. Current service-
oriented CLSs like Gridcole [Bote-Lorenzo et al., 2007b] offer the required mech-
anisms to seamlessly perform the integration of a CSCL service once it has been
selected. Noteworthy, other works such as Feta [Lord et al., 2005] and Match-
maker [Kawamura et al., 2005] propose similar approaches to enhance UDDI’s
search functionalities for specific domains.

Finally, service descriptions could incorporate quality of service parameters
to define important objective, e.g. cost, availability, request-to-response time,
and subjective attributes, e.g. user ratings. This will allow the expression of
additional restrictions in a query that are specially suited for service selection,
once discovered services with desired capabilities. For example, [Maximilien and
Singh, 2004] proposes an ontology for the description of quality of service param-
eters that could be integrated in Ontoolsearch for the issue of service selection.

5 Ontoolcole evaluation

Sections 3 and 4 portrayed Ontoolcole and Ontoolsearch, respectively. Since they
have been designed with the aim of facilitating educators the search of CSCL
tools, it is necessary to evaluate if they accomplish this goal. At the moment
of the evaluation Ontoolsearch was not available, so the evaluation experiment
presented here focuses on Ontoolcole. Specifically, we want to assess whether
educators’ real questions for services can be formulated with Ontoolcole. Besides,
using a small testbed of 21 CSCL tools like chats or document repositories, we
will determine if the tools retrieved satisfy users’ expectations for the questions
they posed. To pursue these objectives, we have devised a case study engaging
several educators to pose non-restricted questions from their real practice.
Some methodologies for ontology evaluation such as [Griininger and Fox,
1995] propose the use of competency questions defined a priori and tested after-
ward against an ontology to evaluate its compliance. In contrast, the proposed
experiment involves real users to express their information needs based on their

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 49

practice and without any restriction on the questions posed. While the goal of
the former methodology is to evaluate whether an ontology can respond to a
subset of predefined questions, the aim of the devised experiment is to assess
whether a specific ontology can fit the information needs of a community of
users.

5.1 The experimental setup

In order to evaluate whether educators can search CSCL tools using Ontoolcole
we have devised a Wizard of Oz experiment [Kelley, 1984]. Since Ontoolsearch
was not available at the time of the experiment, this methodology allows users to
interact with a system missing some functionalities. Specifically, Ontoolsearch’s
user interface was not available although it was possible to submit nRQL queries
to RacerPro fed with Ontoolcole and a testbed of Ontoolcole-compliant tool
descriptions. This way, 15 education practitioners were recruited and demanded
to formulate questions for tools.

The instructions given to the educators were to briefly describe a learning set-
ting based on their real practice that requires software tools to be enacted. Then,
they had to pose questions in natural language using unlimited expressiveness
in their formulation to find appropriate tools for their defined settings. It was
suggested to provide the description of three different learning settings and one
question for each one. Most of the educators submitted three settings/questions,
and some of them defined a unique learning scenario and posed various questions
about it. A human mediator played the “wizard” and was in charge of translat-
ing user questions into nRQL queries. Translated queries were paraphrased back
to natural text and returned to participants in addition to the tools found by
RacerPro. Thus, the “wizard” replaced the missing human-computer interface,
enabling the evaluation of the initial goals of the experiment. He did not ask for
clarifications in order to not affect the results of the study. Finally, users pro-
vided feedback about the translation quality and the utility of the tools found
for their educational settings.

An overview of the profiles of the 15 participants in the experiment is shown
in Table 5.1. Most of them are professors or teachers either in Computer Science,
Telematics, Signal Theory or Pedagogy. Remarkably, 9 out of 15 are practitioners
in CSCL and 7 have some knowledge about Ontoolcole. It was expected that
CSCL practitioners posed questions about CSCL settings, although they were
not obliged to. Besides, evaluation results might be influenced by prior users’
knowledge about Ontoolcole. Section 5.2 further discusses these aspects.

In addition, a reasonable amount of educational tools were described us-
ing Ontoolcole, in order to validate the retrieval part. For the experiment we
prepared 21 tool descriptions, including text editors, browsers, document visual-
izers, authoring tools, document repositories, questionnaire management tools,

50 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

Faculty # of | Area of Knowledge | CSCL Practitioner |Ontoolcole Knowledge
Position Users| CS| TM [ST [PG Yes | No Yes [Fair | No
Professor 5 - 3 - 2 5 - 2 1 2
Teacher 8 2 3 1 2 4 4 2 1 5
Grant holder| 1 1 - - - - 1 - - 1
Student 1 - 1 - - - 1 1 - -
[Total [15 [3] 7 1[4 9 [6 [51 2 8 |

Table 3: User profiles of the participants in the experiment. ‘CS’ stands for
‘Computer Science’, “TM’ for ‘Telematics’, ‘ST for ‘Signal Theory’ and ‘PG’ for
‘Pedagogy’

j of Settin CSCL
Degree Studies Qufstions Face—to—face|Dist§nt|B1ended Yes|No
MsC Computer Science 8 3 1 4 315
MsC Telecommunications 20 13 4 3 12 | 8
PhD Telecommunications 7 1 3 3 6 |1
MsC Pedagogy 5 1 1 3 3|2
[Total | 40 | 18 [9 [13 J24]16]

Table 4: Overview of the context of the analyzed questions

chats, e-mail, drawing tools, spreadsheets and concept map tools. Most of these
tools are generic and have been employed in some courses following a CSCL
methodology in our University. Thus, we expected they could be useful for ques-
tions referred to CSCL settings. However, the used dataset is too small to find
adequate tools for very specific needs. In this sense, a bigger dataset would be
valuable for a deeper analysis of the query results. This is part of future work.

5.2 Evaluation results

The participants in the experiment formulated 40 questions. An overview of
the context of these questions is shown in Table 4. They concern courses on
Computer Science, Telecommunications and Education as well as a doctoral
course on Research Methodology. Besides, questions present a balanced mixture
of face-to-face, distant and blended settings, while 24 out of 40 questions were
conceived for the practice of CSCL. They refer to different activities such as
UML modeling, signal/noise calculations, network simulations, design of didactic
units, HTML authoring, group writing or document sharing among others.
The 40 questions were translated into nRQL queries and submitted to Racer-
Pro. With the translated queries and the retrieved tools, a personalized response
was sent to the participants of the experiment. Users’ feedback was collected con-
cerning the quality of the translated queries and the usefulness of found tools.

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

[Id [Educator question

[Translation

Q1

I need a tool for visualizing PDF documents

any tool that supports the
perception of documents with
MIME type PDF

Q2

I want a collaborative concept map tool

any tool that supports the
modeling of concept maps in

group

I’'m searching a tool that supports working with
your companion, although mnot only working,
but also requiring sharing information between
them, mot just dividing the work in two parts.
Besides, it should allow seeing what your com-

any tool that supports the
construction of artifacts in
group and, besides, supports
the communication among
group members

51

panion makes and support communicating with,
her in an easy way

I want a tool that can facilitate a meeting
among co-located and remote groups

any tool that supports the
synchronous communication
among group members

any simulator

I need a network simulator that includes the
TCP protocol

Table 5: Sample educator questions and translations

Five of the user questions were very open and the wizard proposed several al-
ternative queries to fit each original question. All the alternative queries were
submitted to the educator and he judged whether they satisfied his information
needs or not. The educator then provided a single evaluation for the whole set
of alternatives, neither for the best nor the worst of them.

Table 5.2 shows five sample questions posed by educators, as well as the
translations to nRQL paraphrased to natural language. Some questions, such
as Q1 and Q2, used similar abstractions as those supported by Ontoolcole and
were easily translated to nRQL without any information loss. However, in other
cases questions were more abstractly defined and used different concepts as those
modeled in Ontoolcole. For example, questions Q3 and Q4 required significant
effort in the translation. Hence some of the features required by educators could
not be expressed with Ontoolcole, such as the awareness part of question Q3.

The quantitative results of the study are summarized in table 5.2. Figures
under column ‘Translation Understanding’ show that most participants under-
stood very well the translated queries, indicating that Ontoolcole’s abstractions
are comprehensible. Significantly, users ranked with an overall 3.64 (from 0 to 5)
the quality of the translations. Taking into account that users were not restricted
on the questions they posed, this figure can be considered very positive. In this
sense, some users formulated questions at an upper level than that supported
by Ontoolcole, using high-level abstractions such as group memory and presen-
tial debates. In contrast, these were translated to stored documents that can

52 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

Question Translation |Quality of the| Found Tool
Set Understanding| Translation |Tools (%)|Utility
CSCL 24 4.88 3.85 7% 4.32
Non-CSCL 16 4.71 3.29 5% 2.21
Ontoolcole-aware: Yes |16 4.94 3.28 100% 3.02
Ontoolcole-aware: Fair|10 4.70 3.40 70% 4.43
Ontoolcole-aware: No |14 4.75 4.33 1% 3.80
[Total [40] 182 | 3.64 [8% [355 |

Table 6: Evaluation results summarized using standard means. Levels are: 5
(very good), 4 (good), 3 (somewhat good), 2 (somewhat bad), 1 (bad) and 0
(very bad). The first two rows distinguish questions referred or not to CSCL
settings. Following three rows present the evaluation results according to the
users’ knowledge of Ontoolcole. Final row shows the aggregated figures

be accessed by a group and synchronous communication. Users were aware
of this ‘semantic gap’ that implied a simplification in the translations, although
they considered that the essence of the questions was preserved in the queries. In
other cases there were some misunderstandings due to natural language ambigu-
ity. For instance, the “wizard” interpreted that a user demanded a programming
environment when she required a tool for program designing (possibly a UML
modeling application). Curiously, users aware of Ontoolcole were more demand-
ing than the rest (3.28 vs 4.33), although the “wizard” feels that some of the
questions were thought as a challenge to Ontoolcole.

Interestingly, questions referred to CSCL settings were ranked a 17% bet-
ter than non-CSCL. Non-CSCL questions were sometimes very domain-specific
demanding specialized tools such as network simulators, specialized computer
graphics applications or very specific authoring tools for psycho-pedagogy, just
to mention a few. For instance, the translation of question Q5 in table 5.2 was
ranked with level ‘1’ (bad). Moreover, most of the tools in the dataset are not
domain-specific but collaborative tools to support communication and group
work that can be useful in a wide range of CSCL settings, affecting the utility
figure. This fact explains that educators considered useful the majority of tools
found for CSCL questions, such as CmapTools for question Q2. On the con-
trary, questions referred to non-CSCL settings matched no instance, or rather
generic ones that were ranked poorly (2.21) by educators. However, the core
of Ontoolcole (tasks, artifacts, etc.) fits these queries but extensions concerning
specific artifact types (e.g. data-network model) would increase the precision of
responses. In this sense, specialized extensions for Ontoolcole seem a feasible
approach to exploit Ontoolcole in specific domains.

To conclude the analysis, users suggested some enhancements to leverage

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 53

Ontoolcole. Excluding specialized domain-extensions, CSCL users demanded the
description of awareness, advanced commenting and meeting capabilities. We are
currently considering the inclusion of these suggested new features in Ontoolcole.
Other users required the inclusion of technological features in their queries such
as quality of service parameters, discussed in section 4. Further comments can be
made about query expressions. Using the Ontoolcole model, most of educators’
questions could be easily formulated. It seems that the abstractions employed in
Ontoolcole, namely tool types, task types, artifact types and actors, can serve
for the expression of their queries. The artifact model was employed in 67%
of the queries, indicating that this extension was necessary. Remarkably, more
complex queries involving composite tasks and the storage of artifacts were only
used in 16% and 8% of the queries, respectively. This fact indicates that the
approach followed to design Ontoolsearch can be effective taking into account the
simplicity /power tradeoff. A new experiment using Ontoolsearch will eventually
show evidence of this issue.

6 Conclusions and Future Work

Supporting educators in the semantic search of CSCL services is a challenging
task. This paper presented significant contributions toward this goal. Briefly,
an enhanced version of Ontoolcole, an ontology to semantically annotate CSCL
tools; the evaluation of this ontology with real users involved in a Wizard of Oz
experiment; and Ontoolsearch, a graphical interactive facility for the search of
CSCL tools.

Ontoolcole defines the structure of the information required to describe the
capabilities of CSCL services. The abstractions modeled in Ontoolcole intend to
be meaningful for educators, allowing them to search CSCL services. This revised
version incorporates a set of new features that allows a much more complete and
precise description of CSCL tools. Namely, the artifact model developed defines
an extensible structured depiction of the artifact types that can be employed
during the execution of CSCL activities. The formatting information of the arti-
facts is described using the well-known MIME types. In addition, a mechanism
has been built for specifying the resources a tool can store. Finally, a coordina-
tion model has been incorporated for the description of complex workflows of
tasks.

In addition, we carried out a case study with real users to evaluate whether
Ontoolcole can be employed by educators to search CSCL tools. 15 participants
expressed their information needs for tools in the context of their real practice
without any restriction on the questions they posed. A “wizard” translated those
questions into queries and submitted them to an Ontoolcole-powered retrieval
system. Participants ranked with an overall 3.64 (from 0 to 5) the quality of the

54 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

translations, indicating that Ontoolcole has the semantic richness to support
these queries. Significantly, questions referred to CSCL settings were ranked a
17% better due to the emphasis of Ontoolcole on collaboration features. More-
over, the tools retrieved were rated with 4.32 (from 0 to 5) for the CSCL case,
evidencing that users found useful tools for their educational needs. Real ques-
tions proposed by education practitioners are difficult to translate to SWS lan-
guages like OWL-S, since they employ low-level service abstractions that do not
easily match educators’ intended questions. Interestingly, this problem has been
also reported for user oriented semantic service discovery in the very different
domain of bioinformatics [Lord et al., 2005].

To make Ontoolcole usable by practitioners, we have devised Ontoolsearch,
an interactive system for the search of CSCL tools that uses Ontoolcole in the
back-end to structure tool metadata. Ontoolsearch offers an easy to use direct
manipulation interface. It seamlessly integrates scanning, browsing and querying
in the search interface and provides visual representations of the underlying
ontology. Furthermore, Ontoolsearch could be extended to support the discovery
of CSCL services. It could be accomplished in coordination with a service registry
and a mapping module that links an Ontoolcole-compliant tool description to a
set of services that implement the tool functionality.

Currently, we are completing a prototype of Ontoolsearch that will be evalu-
ated during the first half of 2007. Ontoolsearch aims at substituting the “wizard”
in the precedent experiment, allowing educators to autonomously search CSCL
services. It is expected that with such a system, educators would be able to trans-
late their information needs into appropriate queries, even if this process takes
them several tries. Then, a new experiment will be performed in order to assess
whether educators can accomplish a complete tool search scenario. Besides, we
are considering users’ suggestions to produce a new version of Ontoolcole in-
cluding new features such as awareness or course management functionalities.
Additionally, we plan the integration of Ontoolcole/Ontoolsearch in the service-
oriented, tailorable CLS Gridcole [Bote-Lorenzo et al., 2007b] to support the
discovery of CSCL services.

Acknowledgements

This work has been funded by the European Commission funded Kaleidoscope
network of excellence FP6-2002-IST-507838, Spanish Ministry of Education and
Science project TS12005-08225-C07-04 and Autonomous Government of Castilla
and Ledn, Spain, project VAOO9AOS5.

References

[Baeza-Yates and Ribeiro-Neto, 1999] Baeza-Yates, R. and Ribeiro-Neto, B. (1999).
Modern Information Retrieval. Addison-Wesley, Harlow, UK, first edition.

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 55

[Baker and Lund, 1996] Baker, M. and Lund, K. (1996). Flexibly structuring the in-
teraction in a CSCL environment. In Proceedings of the Furopean Conference on
Artificial Intelligence in Education, pages 401-407, Lisbon, Portugal.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D. L., Patel-Schneider, P., and Stein, L. (2004). OWL web ontology
language reference. Recommendation, W3C. URL: http://www.w3.org/TR/owl-
ref/, last visited May 2007.

[Betbeder, 2003] Betbeder, M. L. (2003). Symba: a Tailorable Framework to Support
Collective Activities in a Learning Context. PhD thesis, Université du Maine, France.
In French.

[Bote-Lorenzo et al., 2007a] Bote-Lorenzo, M. L., Asensio-Pérez, J.I., Goémez-
Sénchez, E., Vega-Gorgojo, G., Dimitriadis, Y. A., and Guinez-Molinos, S. (2007a).
A grid service-based collaborative network simulation environment for computer
networks education. In Proceedings of the Seventh IEEE International Conference
on Advanced Learning Technologies (ICALT 2007), Niigata, Japan.

[Bote-Lorenzo et al., 2007b] Bote-Lorenzo, M. L., Gémez-Sanchez, E., Vega-Gorgojo,
G., Dimitriadis, Y. A., Asensio-Pérez, J. 1., and Jorrin-Abelldn, I. M. (2007b). Grid-
cole: a tailorable grid service based system that supports scripted collaborative learn-
ing. Computers & Education. Accepted for publication.

[Bote-Lorenzo et al., 2004] Bote-Lorenzo, M. L., Herndndez-Leo, D., Dimitriadis,
Y. A., Asensio-Pérez, J. 1., Gémez-Sénchez, E., Vega-Gorgojo, G., and Vaquero-
Gonzélez, L. M. (2004). Towards reusability and tailorability in collaborative learn-
ing systems using IMS-LD and grid services. Advanced Technology for Learning,
1(3):129-138.

[Curbera et al., 2002] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and
Weerawarana, S. (2002). Unraveling the Web Services Web. IEEE Internet Comput-
ing, 6(2):86-93.

[DCMI, 2006] DCMI Usage Board (2006). DCMI metadata terms. Specification 1.1,
DCMI. URL: http://dublincore.org/documents/dcmi-terms/, last visited April 2007.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent semantic analysis. Journal
of the American Society for Information Science, 41(6):391-407.

[Engéstrom, 2001] Engéstrom, Y. (2001). Expansive learning at work: toward an activ-
ity theoretical reconceptualization. Journal of Education and Work, 14(1):133-156.
[Fensel, 2004] Fensel, D. (2004). Ontologies: A Silver Bullet for Knowledge Manage-

ment and Electronic Commerce. Springer, second edition.

[Friesen and Mazloumi, 2004] Friesen, K. and Mazloumi, N. (2004). Integration of
learning management systems and web applications using web services. Advanced
Technology for Learning, 1(1):16-24.

[Greene et al., 1990] Greene, S. L., Devlin, S. J., Cannata, P. E., and Gémez, L. M.
(1990). No IFs, ANDs, or ORs: A study of database querying. International Journal
of Man-Machine Studies, 32(3):303-326.

[Gruber, 1993] Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowledge Acquisition, 6(2):199-221.

[Griininger and Fox, 1995] Griininger, M. and Fox, M. S. (1995). Methodology for the
design and evaluation of ontologies. In Skuce, D., editor, Proceedings of the Workshop
on Basic Ontological Issues in Knowledge Sharing (IJCAI-95), Montreal, Canada.

[Guha et al., 2003] Guha, R., McCook, R., and Miller, E. (2003). Semantic search. In
Proceedings of the Twelfth International World Wide Web Conference (WWW2003),
Budapest, Hungary.

[Hearst, 1999] Hearst, M. A. (1999). User interfaces and visualization. In
[Baeza-Yates and Ribeiro-Neto, 1999], pages 257-323.

[Hull et al., 2006] Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., and
Stevens, R. (2006). Deciding semantic matching of stateless services. In Proceed-
ings of the Twenty-First National Conference on Artificial Intelligence (AAAI 2006),

56 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

Boston, MA, USA.

[IEEE, 2002] IEEE Learning Technology Standards Committee (2002). IEEE stan-
dard for learning object metadata. Specification 1484.12.1-2002, Computer Soci-
ety /Learning Technology Standards Committee.

[IMS, 2003] IMS Global Learning Consortium (2003). IMS learning design information
model. Specification, IMS.

[IMS, 2006] IMS Global Learning Consortium (2006). IMS Tools Interoperability
Guidelines. Specification 1.0, IMS.

[IANA, 2006] Internet Assigned Numbers Authority (IANA) (2006). MIME media
types. URL: http://www.iana.org/assignments/media-types/, last visited May 2007.

[Jonassen, 2006] Jonassen, D. H. (2006). Modeling with Technology. Mindtools for con-
ceptual change. Pearson Education, Inc., Upper Saddle River, NJ, USA, third edition.

[Kawamura et al., 2005] Kawamura, T., Hasegawa, T., Ohsuga, A., Paolucci, M., and
Sycara, K. (2005). Web services lookup: a matchmaker experiment. I'T Professional,
7(2):36-41.

[Kelley, 1984] Kelley, J. F. (1984). An iterative design methodology for user-friendly
natural language information applications. ACM Transactions on Office Information
Systems, 2(1):26-41.

[Klein and Bernstein, 2004] Klein, M. and Bernstein, A. (2004). Toward high-precision
service retrieval. IEEE Internet Computing, 8(1):30-36.

[Knublauch et al., 2004] Knublauch, H., Fergerson, R. W., Noy, N. F., and Musen,
M. A. (2004). The Protégé OWL plugin: An open development environment for
semantic web applications. In Proceedings of the Third International Semantic Web
Conference (ISWC 2004), LNCS 3298, pages 229-243, Hiroshima, Japan.

[Koschmann, 1996] Koschmann, T. (1996). Paradigm shift and instructional technol-
ogy. In Koschmann, T., editor, CSCL: Theory and Practice of an emerging paradigm,
pages 1-23. Lawrence Erlbaum, Mahwah, NJ, USA.

[Lara et al., 2004] Lara, R., Roman, D., Polleres, A., and Fensel, D. (2004). A Con-
ceptual Comparison of WSMO and OWL-S. In Proceedings of the European Confer-
ence on Web Services (ECOWS 2004), LNCS 3250, pages 254-269, Erfurt, Germany.
Springer.

[Lassila, 1998] Lassila, O. (1998). Web metadata: A matter of semantics. IEEE Inter-
net Computing, 2(4):30-37.

[Lord et al., 2005] Lord, P., Alper, P., Wroe, C., and Goble, C. (2005). Feta: A light-
weight architecture for user oriented semantic service discovery. In Proceedings of
the Second European Semantic Web Conference (ESWC 2005), LNCS 3532, pages
17-31, Heraklion, Greece. Springer.

[Martin et al., 2004a] Martin, D., Burstein, M., Hobbs, J., Lassila, O., et al. (2004a).
OWL-S: Semantic markup for web services. White paper OWL-S 1.1, DARPA
Agent Markup Language Program. URL: http://www.daml.org/services/owl-
s/1.1/overview/, last visited April 2007.

[Martin et al., 2004b] Martin, D. et al. (2004b). Bringing semantics to web services:
The OWL-S approach. In Proceedings of the First International Workshop on Se-
mantic Web Services and Web Process Composition (SWSWPC 2004), San Diego,
CA, USA.

[Maximilien and Singh, 2004] Maximilien, E. M. and Singh, M. P. (2004). A frame-
work and ontology for dynamic web services selection. IEEE Internet Computing,
8(5):84-93.

[Morch, 1995] Morch, A. (1995). Three levels of end-user tailoring: customization,
integration and extension. In Proceedings of the Third Decennial Aarhus Conference,
pages 41-45, Aarhus, Denmark.

[Muller and Kuhn, 1993] Muller, M. J. and Kuhn, S. (1993). Participatory design.
Communications of the ACM, 36(6):24-28.

Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ... 57

[Noy and McGuinness, 2001] Noy, N. F. and McGuinness, D. L. (2001). Ontology de-
velopment 101: A guide to creating your first ontology. Technical Report SMI-2001-
0880, Stanford Knowledge Systems Laboratory.

[O’Madadhain et al., 2003] O’Madadhain, J., Fisher, D., White, S., and Boey, Y.
(2003). The JUNG (java universal network/graph) framework. Technical Report
UCI-ICS 03-17, University of California, Irvine, CA, USA.

[OASIS, 2004] Organization for the Advancement of Structured Information Standards
(OASIS) (2004). Universal Description, Discovery and Integration v3.0.2 (UDDI).
Specification 3.0.2, OASIS. URL: http://uddi.org/pubs/uddi_v3.htm, last visited
April 2007.

[Paolucci et al., 2002] Paolucci, M., Kawamura, T., Payne, T. R., and Sycara, K.
(2002). Semantic matching of web services capabilities. In Proceedings of the First In-
ternational Semantic Web Conference (ISWC 2002), pages 333-347, Sardinia, Italy.
Springer.

[Paolucci and Sycara, 2003] Paolucci, M. and Sycara, K. (2003). Autonomous seman-
tic web services. IEEE Internet Computing, 7(5):34-41.

[Papazoglou, 2003] Papazoglou, M. P. (2003). Service-oriented computing: concepts,
characteristics and directions. In Proceedings of the Fourth International Conference
on Web Information Systems Engineering (WISE 2003), pages 3-13, Roma, Italy.

[Papazoglou, 2007] Papazoglou, M. P. (2007). Web services technologies and stan-
dards. Computing Surveys. To appear in 2007.

[Papazoglou and Georgakopoulos, 2003] Papazoglou, M. P. and Georgakopoulos, D.
(2003). Service-oriented computing. Communications of the ACM, 46(10):25-28.
[Racer, 2007] Racer Systems GmbH & Co.KG (2007). RacerPro website. URL:
http://www.racer-systems.com/products/racerpro/index.phtml, last visited May

2007.

[Rick et al., 2002] Rick, J., Guzdial, M., Carroll, K., Hollaway-Attaway, L., and
Walker, B. (2002). Collaborative learning at low cost: CoWeb use in english com-
position. In Stahl, G., editor, Proceedings of the Computer Supported Collaborative
Learning Conference 2002 (CSCL 2002), Boulder, CO, USA. Lawrence Erlbaum As-
sociates.

[Roman et al., 2005] Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R., Stoll-
berg, M., Polleres, A., Feier, C., Bussler, C., and Fensel, D. (2005). Web Service
Modeling Ontology. Applied Ontology, 1(1):77-106.

[Roschelle et al., 1999] Roschelle, J., DiGiano, C., Koutis, M., Repenning, A., Philips,
J., Jackiw, N., and Suthers, D. (1999). Developing educational software components.
IEEE Computer, 32(9):50-58.

[Sheth et al., 2006] Sheth, A., Verma, K., and Gomadam, K. (2006). Semantics to
energize the full services spectrum. Communications of the ACM, 49(7):55-61.

[Shneiderman, 1997] Shneiderman, B. (1997). Designing the User Interface: Strategies
for Effective Human-Computer Interaction. Addison-Wesley, Reading, MA, USA.

[Staab et al., 2001] Staab, S., Studer, R., Schnurr, H. P., and Sure, Y. (2001). Knowl-
edge processes and ontologies. IEEE Intelligent Systems, 16(1):26-34.

[Stollberg et al., 2007] Stollberg, M., Keller, U., Lausen, H., and Heymans, S. (2007).
Two-phase web service discovery based on rich functional descriptions. In Proceedings
of the Fourth European Semantic Web Conference (ESWC 2007), Innsbruck, Austria.

[van der Veer and van Welie, 2000] van der Veer, G. and van Welie, M. (2000). Task-
based groupware design: Putting theory into practice. In Boyarski, D. and Kellog,
A. W., editors, Proceedings of the ACM SIGCHI Conference on Designing Interac-
tive Systems: Processes, Practices, Methods and Techniques (DIS-00), pages 326-337,
Nueva York, AZ, USA. ACM Press.

[Vega-Gorgojo et al., 2006] Vega-Gorgojo, G., Bote-Lorenzo, M. L., Gémez-Sanchez,
E., Dimitriadis, Y. A., and Asensio-Pérez, J. I. (2006). A semantic approach to
discovering learning services in grid-based collaborative systems. Future Generation
Computer Systems (FGCS), 22(6):709-719.

58 Vega-Gorgojo G., Bote-Lorenzo M.L., Gomez-Sanchez E., Asensio-Perez J.I. ...

[Xu et al., 2003] Xu, Z., Yin, Z., and Saddik, A. E. (2003). A web services oriented
framework for dynamic e-learning systems. In Proceedings of the 2003 Canadian
Conference on Electrical and Computer Engineering (CCECE 03), pages 943— 946,
Montreal, Canada.

[Zhang et al., 2005] Zhang, L., Yu, Y., Zhou, J., Lin, C., and Yang, Y. (2005). An
enhanced model for searching in semantic portals. In Proceedings of the Fourteenth

international conference on World Wide Web (WWW2005), pages 453-462, Chiba,
Japan. ACM Press.

