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Abstract: Classification-based reinforcement learning (RL) methods have recently been pro-
posed as an alternative to the traditional value-function based methods. These methods use a
classifier to represent a policy, where the input (features) to the classifier is the state and the
output (class label) for that state is the desired action. The reinforcement-learning community
knows that focusing on more important states can lead to improved performance. In this paper,
we investigate the idea of focused learning in the context of classification-based RL. Specifically,
we define a useful notation of state importance, which we use to prove rigorous bounds on policy
loss. Furthermore, we show that a classification-based RL agent may behave arbitrarily poorly if
it treats all states as equally important.
Key Words: reinforcement learning, function approximation, generalization, attention.
Category: I.2.6 [Artificial Intelligence]: Learning

1 Introduction

Many real-world tasks—such as flying a helicopter, playing a game, and managing
inventory—cannot be accomplished in a single step but instead require an agent to
perform a sequence of actions. Such problems are usually formulated as sequential de-
cision making problems, and have become one of the key challenges in artificial intelli-
gence. We can model these problems using the agent-environment interface (Figure 1),
where the agent is a (software or hardware) implementation that has a certain predefined
goal and can perceive the environment and take actions according to a policy. Roughly
speaking, a policy answers the question: “Given what I have observed so far, what shall
I do now?”. Everything outside the agent is considered a part of the environment, which
the agent may not be able to control, nor even necessarily observe. The agent maintains
knowledge about the environment, and interacts with the environment as follows: on
each cycle, the agent perceives the environment (either completely or partially), and
takes an action that can change the environment; the environment evolves according to
this action and at the same time provides the agent with some feedback measuring the
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Figure 1: The agent-environment interface.

goodness of the action; then the next cycle begins. An environment is called determin-
istic if its evolution is deterministic; otherwise, it is called stochastic.1

Consider the task of balancing on a bicycle [Randløv and Alstrøm, 1998], for in-
stance, where the agent (either a person or a computer program) tries to balance on the
bicycle for as long as possible. She is able to perceive the state of the bicycle (e.g., the
angle of the handlebar and the vertical angle of the bicycle, both of which are relevant
to the balancing task), and is able to perform an action, which has two components—
the torque applied to the handlebar and the displacement of the rider. When an action
is applied, the bicycle’s state changes according to a set of nonlinear equations. If the
rider is balanced for one time step, she receives an immediate reward of +1; otherwise,
the task terminates and no further rewards are received. We can model this task as a
sequential decision-making problem, where the rider tries to find a policy that maps
each bicycle state to an action, such that a rider who acts according to the policy will
maximize the sum of immediate rewards she receives before the bicycle falls.

Reinforcement learning (RL) [Sutton and Barto, 1998], or neuro-dynamic program-
ming [Bertsekas and Tsitsiklis, 1996], is a well-studied general framework for learn-
ing to act optimally in sequential decision making problems, through interaction
with a possibly unknown and stochastic environment. Having succeeded in a num-
ber of challenging applications, such as the game of backgammon [Tesauro, 1992,
Tesauro, 1995], job-shop scheduling [Zhang and Dietterich, 1995], elevator dispatch-
ing [Crites and Barto, 1996], dialogue policy learning [Singh et al., 2002], power
control in wireless transmitters [Berenji and Vengerov, 2003], and helicopter con-
trol [Ng et al., 2004], reinforcement learning has attracted a great deal of research inter-
est and became one of the central topics in machine learning and artificial intelligence.

There are two main classes of reinforcement-learning approaches. One approach
is based on “value functions”, which map each state to a numeric value such that an
optimal policy involves simply applying the action that produces the optimal expected
value over the resulting states. Policy-search methods, on the other hand, seek an ap-

1 The next section provides a more formal description of these terms and concepts.
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proximation to the optimal policy directly in the policy space.
Recent developments in the latter group of methods include applications of high

performance classifiers. In this framework, the agent acquires a policy by learning a
classifier that labels each state with the appropriate action. E.g., in the bicycle ex-
ample, it might map the state 〈handlebar = 0.5o, bikeAngle = −2.1o〉 to the ac-
tion 〈torque = 2.3, displacement = 0.01〉. One of the challenges is to find an ap-
propriate collection of “labelled databases”—here a set of 〈state, appropriate action〉
pairs. Recent implementations of this idea have demonstrated promising performance
in several domains by learning high-quality policies through high-accuracy classi-
fiers [Yoon et al., 2002, Lagoudakis and Parr, 2003, Fern et al., 2004]. This is different
from traditional supervised learning, in that its goal of maximizing expect reward is
subtly different from minimizing expected classification error. This is basically because
here, some decisions are more important that others. In riding a bicycle, for example,
making mistakes when the bicycle is well balanced can often be recovered from, but
taking a wrong action when the bicycle is barely balanced can force the bicycle to enter
into a “death spiral” from which crash is unavoidable. This effect can be amplified, as
one decision has impacts on the agent’s subsequent decisions [Scheffer et al., 1997].

Hence, a simple average over classification errors is not appropriate, as a system
with higher classification accuracy may actually have lower policy quality [Li, 2004].
We demonstrate that classification-based reinforcement learning methods should in-
stead focus the learning process on more important states. In particular, we will con-
sider two classes of RL problems; for each of them, we define state importance based
on quantities that are measurable by an agent, and then prove performance bounds for
classification-based methods that take importance into account. In contrast, we also
show examples where importance-insensitive agents can behave arbitrarily poorly.

The rest of the paper is organized as follows. Section 2 defines the notation and
formulates the RL problem. Section 3 reviews the existing work on classification-based
RL, and then motivates our work. Section 4 contains our main results: focused-learning
methods for two classes of problems—batch and online RL with a generative model.
Finally, Section 5 concludes the paper and discusses future directions.

As there are a number of terms used throughout this paper, we include two short
glossaries: Table 1 summarizes terms from the reinforcement-learning literature, and
Table 2 summarizes terms specific to our results.

2 Foundations

In reinforcement learning, sequential decision-making problems are usually modelled
as finite Markov decision processes (MDPs) [Puterman, 1994]. An MDP is a six-tuple:
M = 〈S,A,P,R,D, γ〉, where S and A are the finite state and action spaces, re-
spectively. The agent starts in some initial state s0 ∈ S generated from a start-state
distribution D. At each time step t, it perceives the current state st ∈ S, takes an action
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Table 1: Glossary of standard reinforcement learning terms used in this paper

A action space
D start state distribution
γ discount factor in the range of (0, 1)
L(π) policy loss (5)
π policy mapping S to A
πQ(s) greedy policy w.r.t. Q (7)
πV (s) greedy policy w.r.t. V (6)
π∗ optimal policy
Π policy space
Q(s, a) action-value function estimate
Qπ(s, a) action-value function (3)
Q∗(s, a) optimal action-value function
rt reward received at time t

R0 cumulative discounted return (1)
S state space
t time step index
V (s) state-value function estimate
V π(s) state-value function (2)
V ∗(s) optimal state-value function
V(π) policy value (4)

at ∈ A, receives an immediate reward signal rt+1 ∈ R, and reaches the next state
st+1 ∈ S according to the transition probability Pat

stst+1
= Pr(st+1|st, at); then it re-

peats the same process from state st+1. We assume the immediate rewards are bounded
random variables, i.e., there exists Rmax > 0 such that |rt| ≤ Rmax for all t, and
E{rt|st−1 = s, at−1 = a} = Ra

s . The goal of the agent is to select actions sequentially
to maximize the discounted return:

R0 = r1 + γr2 + γ2r3 + · · ·+ γkrk+1 + · · · (1)

where the discount factor γ ∈ (0, 1) has the effect of valuing future rewards less than
the current reward. (This also ensures that R0 is well-defined.)

A policy π is the set of state-action rules adopted by the agent to select actions at
each state: π : S → A. Given a policy π, we define V π(s), the state-value function, as
the expected return received by following π from state s:

V π(s) = Eπ

{
r1 + γr2 + γ2r3 + · · · |s0 = s

}
, (2)

where the expectation is taken over all possible state-action sequences generated by
following π. Similarly, the action-value function Qπ(s, a) is defined as the expected
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Table 2: Glossary of terms specific to our results

dτ,D discounted cumulative visitation probability (13)
Gπ(s) and Gπ(s, τ) importance in the online setting (29,30)
Gν(s, ν → τ) advantage of switching to τ from ν (14)
G∗(s) and G∗(s, π) importance in the batch setting (18,19)
μτ,D

t state-visitation probability (12)
π∗

CI classification-based policy, based on TCI (10)
π∗

CS classification-based policy, based on TCS (23)
π′

CI-cRL cost-insensitive greedy policy (28)
π′

CS-cRL cost-sensitive greedy policy (33)
TCI cost-insensitive training data (9)
TCI-cRL cost-insensitive training data (c.f., Algorithm 1)
TCS cost-sensitive training data (22)
TCS-cRL cost-sensitive training data (c.f., Algorithm 4)
TQ∗ training data (8)
T sampled states, subset of S
ω distribution over state space

return received by taking action a in state s and following π thereafter:

Qπ(s, a) = Eπ

{
r1 + γr2 + γ2r3 + · · · |s0 = s, a0 = a

}
. (3)

We use policy value

V(π) = Es0∼D {V π(s0)} (4)

as the measure of a policy’s performance, which is defined as the expected re-
turn obtained by following π from the start state s0 drawn according to distribution
D [Ng and Jordan, 2000]. A reinforcement-learning agent tries to learn the optimal
policy, i.e., the one with the maximum value: π∗ = arg maxπ V(π). The corresponding
optimal state- and action-value functions are denoted by V ∗(s) and Q∗(s, a), respec-
tively. Another equivalent way to measure the quality of a policy is through policy loss:

L(π) = V(π∗)− V(π). (5)

Since V(π∗) is a constant for a given problem, maximizing V(π) is equivalent to mini-
mizing L(π).

After a value function (V or Q) is obtained, the associated deterministic, greedy
policy is given by:

πV (st) = arg max
a

E {rt+1 + γV (st+1)|at = a} (6)
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or

πQ(st) = arg max
a

Q(st, a). (7)

When V (·) or Q(·, ·) is close to the optimal value functions V ∗(·) or Q∗(·, ·),
we anticipate the value of the greedy policy defined above will be near opti-
mal [Singh and Yee, 1994]. Clearly, using action-value functions Q(·, ·) allows the
agent to make greedy decisions without knowledge about the rewards and state tran-
sitions of the environment. For this reason, action-value functions are more convenient
to work with than state-value functions.

This work explores the quality of the policies produced by reinforcement learners
that differ in how they collect and weigh their training data. These learners will typically
have to solve some optimization task (e.g., (23)); here we assume that they can find the
exact solution.

3 Classification-based Reinforcement Learning

As noted earlier, there are two primary approaches to obtaining near-optimal poli-
cies. Value-function based methods approximate the optimal value function under
the assumption that the greedy policy πV with respect to the approximation V will
be close to π∗ when V is close to V ∗ [Singh and Yee, 1994]. In particular, tempo-
ral difference learning [Sutton, 1988, Watkins, 1989] implements this approach by up-
dating V iteratively online. On the other hand, policy-search methods work directly
in a policy space Π and build an approximation π̂∗ ∈ Π to the optimal policy
π∗. Examples include [Williams, 1992, Baxter and Bartlett, 1999, Baxter et al., 1999,
Kearns et al., 2000, Ng and Jordan, 2000, Sutton et al., 2000, Fern et al., 2004]. In this
paper we will focus on classification-based policy-search RL methods where the policy
is represented as a classifier mapping states to actions.

3.1 Classification-based Batch Reinforcement Learning

So far we have introduced the online version of reinforcement learning, wherein the
agent learns and acts at the same time. In this section, we will briefly discuss a sim-
pler formulation called batch reinforcement learning, where learning of the policy or
value function occurs offline. Such a batch/offline reinforcement learning framework is
important wherever online learning is not feasible (e.g., when the reward data do not
come in continuously, or when acting online may be too expensive as in robotics), and
therefore a fixed set of experiences has to be acquired and used for learning policies
offline [Draper et al., 2000, Dietterich and Wang, 2002, Levner and Bulitko, 2004].

A related technique called experience replay has been employed in robotics and
was shown to speed up reinforcement learning and reduce possible damage to the
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learning robot [Lin, 1992]. An experience-replay RL agent remembers its past on-
line experiences and then repeatedly updates its value function or policy using these
experiences offline. Another similar idea has been adopted in the Dyna-Q architec-
ture [Sutton, 1990], in which the agent improves its policy or value function from both
the “real” online experiences and the “imaginary” experience generated by the agent’s
model about the environment. Thus, both experience replay and Dyna-Q can be viewed
as combinations of online and offline/batch reinforcement learning. Another advantage
of batch reinforcement learning is that sometimes it facilitates theoretical analysis such
as the sample complexity analysis [Kearns et al., 2000], as well as applications of ad-
vanced supervised learning algorithms [Dietterich and Wang, 2002].

In one specific setting that can be reduced to a supervised learning problem, we
assume that the state space is sampled (independently) according to some distribution
ω(·), and the optimal action values for these sampled states are computed or estimated.
The sampled states together with their optimal action values form the training set for
supervised learning. For this reason, these sampled states are called training states.
Formally, the training data are provided in the form of

TQ∗ = {〈s, a,Q∗(s, a)〉 | s ∈ T , a ∈ A}, (8)

where T ⊂ S is a sampled state space with s drawn randomly from ω.
The assumption of knowing the optimal action values may at first seem unreal-

istic. In practice, however, a technique called sparse sampling [Kearns et al., 2002,
Kocsis and Szepesvári, 2006] may be used to compute or estimate such values. In it,
the optimal action values are computed by applying all possible action sequences to
each training state. Note that in the infinite-horizon case where the action sequences can
be infinitely long, the discount factor γ has to be strictly less than one, which implies
that the optimal action values can be estimated to any desired precision by considering
action sequences up to a limited depth [Kearns et al., 2000].

Sparse sampling is especially useful for domains where good control policies gen-
eralize well across problems of different sizes. The agent can start with problems
of tractable state spaces and apply the expansion efficiently to obtain the informa-
tion needed for batch reinforcement learning. Once a good policy is computed, it
may generalize to problems with larger state spaces. There have been several suc-
cessful applications of this technique [Draper et al., 2000, Dietterich and Wang, 2002,
Levner and Bulitko, 2004, Wang and Dietterich, 1999].

When the optimal action values are acquired for the sampled space T , optimal ac-
tions a∗(s) = arg maxa Q∗(s, a) can be computed, and the training data for learning a
classifier-based policy can be formed:

TCI = {〈s, a∗(s)〉 | s ∈ T }, (9)

where the subscript CI (cost-insensitive) is in contrast to CS (cost-sensitive) that will
be introduced later in the paper. The RL agent can then induce a classifier π∗

CI from the
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training set TCI by minimizing the classification error2:

π∗
CI = arg min

π∈Π
Pr
s∼ω

(π(s) �= a∗(s)). (10)

3.2 Classification-based Approximate Policy Iteration

When the state space is small, a policy can be represented by a lookup table with one en-
try per state. In such a case, policy iteration [Howard, 1960] has been found efficient in
solving MDPs. Two steps are involved in each policy iteration. In the policy-evaluation
step, the agent computes the value function of its current policy π, such as Qπ(s, a);
then in the policy-improvement step, it computes the greedy policy π′ from π:

π′(s) = arg max
a

Qπ(s, a), ∀s ∈ S. (11)

It can be shown that V(π′) > V(π), unless π is optimal [Puterman, 1994].
If the state space is prohibitively large, however, function approximation has

to be used to represent the policy or the value function. A general framework
of approximation within policy iteration is known as approximate policy iteration
(API) [Bertsekas and Tsitsiklis, 1996], which is similar to policy iteration, except (i)
the policy and value functions are represented by function approximators such as neural
networks (in contrast to lookup tables in policy iteration), and/or (ii) the value function
is not computed exactly but is estimated. Consequently, the greedy policy π̂′, computed
in the inner loop of API, is an approximation to π′. Unlike π′, π̂′ may be worse than the
original policy π, due to approximation errors.

With policies represented by classifiers, API has been successfully applied to several
domains [Lagoudakis and Parr, 2003]. We refer to these methods as “cost-insensitive”
as equal importance is assigned to all training states when learning a classifier. Algo-
rithm 1 outlines the algorithm CI-cRL (Cost-Insensitive classification based Reinforce-
ment Learning), which is due to Lagoudakis and Parr [Lagoudakis and Parr, 2003].
The algorithm makes calls to a subroutine Rollout (Algorithm 2) for estimating action
values[Tesauro and Galperin, 1997]. Note that with the condition in line 10 of CI-cRL,
only actions that are strictly better than others are included in the training set; otherwise,
there is a tie in Q-values and thus no reason to prefer one action over another.

3.3 Classifier Accuracy versus Policy Performance

Before going into technical details, we establish some intuition by looking at a simple
car-shopping problem. Figure 2 models the problem as a three-step (finite-horizon),
non-discounted MDP. Non-terminal states are labeled with the decisions the user is
2 In here and the rest of the paper, we always define the objective function (such as (10)) with

states s drawn from the same distribution as the sampling distribution ω when constructing T .
For notational simplicity, we will assume this implicitly without explicitly including s ∼ ω in
the objective functions.
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Algorithm 1 CI-cRL: Cost-insensitive classification-based RL. Learn is a sub-routine
that induces a classifier from the input training data.
0: Input:

– M : generative model
– T : set of training states
– γ: discount factor
– K: number of trajectories used to estimate the Q-function
– H: maximum length of trajectories

1: π̂′ ← random policy
2: repeat
3: π ← π̂′

4: TCI-cRL ← ∅
5: for all s ∈ T do
6: for all a ∈ A do
7: Q̂π(s, a)← Rollout(M, s, a, γ, π,K,H)
8: end for
9: â∗

π ← arg maxa∈A Q̂π(s, a)
10: if Q̂π(s, â∗

π) > Q̂π(s, a) for all a �= â∗
π then

11: TCI-cRL ← TCI-cRL ∪ {〈s, â∗
π〉}

12: end if
13: end for
14: π̂′ ← Learn(TCI-cRL)
15: until π ≈ π̂′

16: return π

to make. The edges are labeled with the possible actions and the associated immediate
rewards. The agent starts by choosing the engine condition and finishes with the action
of re-sell the car. Starting with the state engine condition, she has two choices: good
and poor. Then she decides on the size of the car (small/large), and finally on its color
(black/white). After all three choices are made, the agent buys the car and collects the
final rewards by reselling the car shortly thereafter.

The optimal policy π∗ is shown in Table 3. Suppose the agent is using batch re-
inforcement learning, and is considering two policies π1 and π2 (shown in the table).
If the seven possible states are selected uniformly, policy π1 has the classification ac-
curacy of 86% and the policy value V(π1) of 30, while policy π2 is considerably less
accurate (14%) but has a much higher policy value of 1000.

This phenomenon takes place because the correlation between the policy value and
the classification accuracy is not monotonic. This is because in sequential decision-
making the classification accuracy (i.e., the probability that a policy π outputs the opti-
mal action) is not the target performance measure of a reward-maximizing agent. It
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Algorithm 2 An implementation of the rollout technique. Simulate is a sub-routine
that generates the next state and immediate reward using a generative model.
0: Input:

– M : generative model
– (s0, a0): the state-action pair to evaluate
– π: the policy to follow
– γ: discount factor
– K: number of trajectories
– H: maximum length of trajectories

1: for k = 1, 2, · · · ,K do
2: (s, a)← (s0, a0)
3: (s′, r)← Simulate(M, s, a)
4: Q̂π

k ← r

5: s← s′

6: for h = 1, 2, · · · ,H − 1 do
7: a← π(s)
8: (s′, r)← Simulate(M, s, a)
9: Q̂π

k ← Q̂π
k + γhr

10: s← s′

11: end for
12: end for
13: Q̂π ← 1

K

∑K
k=1 Q̂π

k

14: return Q̂π

Table 3: Optimal and two approximate policies for the car-shopping problem.

engine condition size color accuracy policy value
optimal policy π∗ good large white 100% 1030

policy π1 poor large white 86% 30
policy π2 good small black 14% 1000

is tempting for the agent to increase the classification accuracy and agree with the
optimal policy in more states. However, it can be more crucial to agree with the op-
timal policy in states that are more important in affecting the policy value [Li, 2004,
Li et al., 2004a, Li et al., 2004b]. Therefore, it would be helpful for the agent to focus
the learning process on more critical states. This important observation motivates our
work in the subsequent sections.
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Figure 2: The car-shopping problem. Non-terminal states are labeled with the factors on
which the user is to make decisions. The edges are labeled with the actions (g for good,
p for poor, s for small, l for large, b for black, and w for white) and the immediate
rewards. The user starts by choosing the engine condition and finishes with the need
to re-sell the car.

3.4 Related Work

Some prior RL works have also explored the idea of focusing on important states. For
example, prioritized sweeping [Moore and Atkeson, 1993] attempts to update only the
more important states, based on the magnitudes of their Bellman errors. Real-time dy-
namic programming (RTDP) [Barto et al., 1995] considers a state to be more relevant
if it is visited more often. Later in the paper, we will derive policy loss bounds based on
state visitation probabilities and quantities known as advantage [Baird, 1993]. As state
visitation probabilities are often unknown and not easy to estimate, we proposed ap-
proximate solutions that only depends on advantages. In this sense, our notion of state
importance is orthogonal to RTDP’s. It is of interest to combine the two notions of state
importance in future research.

People in machine-learning reduction also emphasizes the use of cost
in classification-based RL (e.g., [Kim et al., 2003, Langford and Zadrony, 2003,
Langford and Zadrony, 2005]). Those systems, however, consider a different RL set-
ting, where an episode terminates after T steps and γ = 1, where the optimal policy
is usually nonstationary—it consists of T policies that specify the rule of acting for
horizons 1, 2, · · · , T . Consequently, they make use of T individual classifiers to repre-
sent this T -step nonstationary policy. In contrast, we consider infinite-horizon problems
where only a single policy/classifier is involved. This makes the algorithm and analysis
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trickier because there are interventions between decisions made in different time steps:
that is, the single classifier being used has to work “consistently” over time. This is why
we adopt the approximate policy iteration framework in the online RL setting (Sec-
tion 4.3), while in the T -step RL setting, the T policies are usually learned backwards
one by one, with the policy at horizon t depending only on the policy at horizon t + 1.
This paper thus extends previous results in T -step problems to a different setting, which
requires a different analysis.

4 Focusing Attention in Reinforcement Learning

In this section, we formalize the idea of focused learning by introducing the concept of
state importance. The policy-switching theorem will be presented first, followed by an
investigation of the batch and online RL problems. The soundness of our approach is
guaranteed by several theorems, presented and proven below. More details are found in
a longer thesis [Li, 2004].

4.1 The Policy-Switching Theorem

Theorem 1 below, which establishes how the policy value is changed when a policy is
switched to another, forms the basis of our later developments.

Let ν and τ be two arbitrary policies for a discounted, infinite-horizon MDP. The
state-visitation distribution, μτ,D

t (s), is the probability that state s is visited at time t by
following policy τ with start states drawn according to D, that is,

μτ,D
t (s) = Pr{st = s|τ,D}. (12)

Define

dτ,D(s) =
∞∑

t=0

γt · μτ,D
t (s) (13)

as the “discounted cumulative visitation probability”, and

Gν(s, ν → τ) = Qν(s, τ(s))−Qν(s, ν(s)) (14)

as the advantage of action values between the “original” action, ν(s), and the “new”
action, τ(s).

Theorem 1. Given the definitions above,

V(τ)− V(ν) =
∑
s∈S

(
Gν(s, ν → τ) · dτ,D(s)

)
. (15)
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Proof. Suppose the agent follows the policy τ from any start state s0 ∼ D, producing
the trajectory s0, a0, r1, s1, a1, · · · , st, at, rt+1, st+1, · · · . Then

V ν(s0) = Qν(s0, ν(s0)) = Qν(s0, τ(s0))−Gν(s0, ν → τ)

= E
τ
{r1 + γV ν(s1)−Gν(s0, ν → τ)} (16)

Note that equation (16) is recurrent. In a similar fashion we derive:

V ν(s0) = E
τ
{r1 + γV ν(s1)−Gν(s0, ν → τ)}

= E
τ

{
r1 + γr2 + γ2V ν(s2)−Gν(s0, ν → τ)− γGν(s1, ν → τ)

}
= E

τ
{r1 + γr2 + γ2r3 + γ3V ν(s3)−Gν(s0, ν → τ)− γGν(s1, ν → τ)

−γ2Gν(s2, ν → τ)}
= · · ·

= E
τ

{ ∞∑
t=0

γtrt

}
−E

τ

{ ∞∑
t=0

γtGν(st, ν → τ)

}

= V τ (s0)−E
τ

{ ∞∑
t=0

γtGν(st, ν → τ)

}
.

Therefore,

V τ (s0)− V ν(s0) = E
τ

{ ∞∑
t=0

γtGν(st, ν → τ)

}
. (17)

Taking the expectation of (17) over all start states s0 ∼ D, we obtain

V(τ)− V(ν) = E
s0∼D

{V τ (s0)− V ν(s0)}

= E
s0∼D

{
E
τ

{ ∞∑
t=0

γtGν(st, ν → τ)

}}

=
∞∑

t=0

γt E
s0∼D,τ

{Gν(st, ν → τ)}

=
∞∑

t=0

γt
∑
s∈S

(
Gν(s, ν → τ) · μτ,D

t (s)
)

=
∞∑

t=0

∑
s∈S

(
Gν(s, ν → τ) · γt μτ,D

t (s)
)

=
∑
s∈S

(
Gν(s, ν → τ) ·

∞∑
t=0

γt μτ,D
t (s)

)

=
∑
s∈S

(
Gν(s, ν → τ) · dτ,D(s)

)
.

�
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A concept similar to Gν(s, ν → τ), defined above, was introduced in [Baird, 1993]
and called advantage. Our Theorem 1 parallels a result by Kakade and Lang-
ford [Kakade and Langford, 2002].

4.2 Focused Batch Reinforcement Learning

Recall from Section 3.1 that, in batch RL, a set of training data TQ∗ is provided in the
form (8) and the learning task is to approximate the optimal policy π∗.

We now introduce an appropriate measure of state importance for this task. Intu-
itively, a state s is important from a decision-theoretic perspective if making a wrong
decision in s can have significant repercussions. Formally, it is defined as the difference
in the optimal values of a∗(s) and the other action ā(s):3

G∗(s) = Q∗(s, a∗(s))−Q∗(s, ā(s)). (18)

Similarly, G∗(s, π) is defined as:

G∗(s, π) = Q∗(s, a∗(s))−Q∗(s, π(s))

= G∗(s) · I(π(s) �= π∗(s)), (19)

where I(e) is the indicator function that equals 1 when e is true and 0 otherwise. The
next corollary follows from Theorem 1.

Corollary 2. For any policy π,

L(π) =
∑
s∈S

G∗(s, π) · dπ,D(s) . (20)

Proof. In Theorem 1, let τ = π and ν = π∗, then

Gν(s, ν → τ) = Q∗(s, π(s))−Q∗(s, π∗(s)) = −G∗(s, π).

Then the policy loss can be computed by Theorem 1,

L(π) = −
(
V(π)− V(π∗)

)
= −

∑
s∈S

(
−G∗(s, π) ·

∞∑
t=0

γtμτ,D
t (s)

)

=
∑
s∈S

(
G∗(s, π) · dτ,D(s)

)
.

�
3 For simplicity, we focus on the binary-action case in this paper. To extend to multiple-action

cases, we could simply define the state importance as the difference between the best and the
worst state values, but then the bounds may be too loose to be useful. A future study will
involve a cost matrix rather than a real-valued cost, which makes the problem significantly
more challenging.
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This result is still, however, of a limited practical use since the quantity dπ,D, which
is related to the state-visitation distribution μπ,D

t , is usually unavailable to the agent.
Here, we instead minimize the following upper bound of L(π):4

L(π) ≤
∑
s∈S

(
G∗(s, π) ·

∞∑
t=0

γt

)
=

1
1− γ

∑
s∈S

G∗(s, π).

This suggests the following practical approximation approach to policy loss:

arg min
π∈Π
L(π) ≈ arg min

π∈Π

1
1− γ

∑
s∈S

G∗(s, π) = arg min
π∈Π

∑
s∈S

G∗(s, π). (21)

Thus, given a set of training data TQ∗ described in (8), the agent can first compute
G∗(s) for all training states s ∈ T by (18), build a training set with state importance:

TCS = {〈s, a∗(s), G∗(s)〉 | s ∈ T } (22)

and then solve the optimization problem:5

π∗
CS = arg min

π∈Π

∑
s∈S

G∗(s, π). (23)

By replacing G∗(s, π) in (23) with (19), solving for π∗
CS is turned precisely into

the cost-sensitive classification problem with the misclassification costs conditioned on
individual cases [Turney, 2000]. Indeed, in this setting, s is the attribute, a∗(s) is the
desired class label, and G∗(s) is the misclassification cost.

This importance-sensitive (or cost-sensitive) algorithm is called CS (as opposed to
CI in Section 3.1) and is summarized in Algorithm 3. It calls a subroutine, CS-Learn,
which is a cost-sensitive classification algorithm.

A problem of both theoretical and practical interest is whether it is preferable to
find π∗

CS as opposed to π∗
CI. We see below that the answer is Yes. Theorem 3 below

provides an upper bound of the policy loss of π∗
CS. In contrast, Theorem 4 establishes

that π∗
CI can be arbitrarily poor in the sense that the policy loss can be arbitrarily close

to its upper bound,
∑

s∈S G∗(s)/(1− γ), even if the policy it produces agrees with the
optimal policy in almost all states.

Theorem 3. If π∗
CS has a sufficiently high quality, that is, there exists ε > 0 such that∑

s∈S G∗(s, π∗
CS)∑

s∈S G∗(s)
< ε, (24)

then

L(π∗
CS) ≤

ε

1− γ

∑
s∈S

G∗(s).

4 In practice, we may use density estimation techniques (e.g., [Duda et al., 2000]) to estimate
μπ,D . This can lead to tighter bounds than the general results we provide in this paper.

5 Note the summation is over the whole state space rather than the set of training states.
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Algorithm 3 CS: Cost-Sensitive batch RL based on classification. CS-Learn is a sub-
routine that induces a cost-sensitive classifier from the input training data.
0: Input:

– TQ∗ : set of training data
1: TCS ← ∅
2: for all s ∈ T do
3: a∗ ← arg maxa∈A Q∗(s, a)
4: ā← the other (suboptimal) action
5: g ← Q∗(s, a∗)−Q∗(s, ā)
6: TCS ← TCS ∪ {〈s, a∗, g〉}
7: end for
8: π̂∗ ← CS-Learn(TCS)
9: return π̂∗

Proof. According to Corollary 2,

L(π∗
CS) =

∑
s∈S

(
G∗(s, π∗

CS) ·
∞∑

t=0

γt μ
π∗

CS,D
t (s)

)

≤
∑
s∈S

(
G∗(s, π∗

CS) ·
∞∑

t=0

γt

)

=
1

1− γ

∑
s∈S

G∗(s, π∗
CS)

≤ ε

1− γ

∑
s∈S

G∗(s).

The last step above is due to condition (24). �

Theorem 4. Let ε be the classification error of π∗
CI defined in (10), then for any ε, ξ ∈

(0, 1), there exists an MDP and π∗
CI such that:

L(π∗
CI) >

1− ξ

1− γ

∑
s∈S

G∗(s). (25)

Note that the quantity
∑

s∈S G∗(s)/(1− γ) is the upper bound of L(π∗
CI).

Proof. We prove this theorem by providing an MDP and a policy that has an arbitrary
low classification error (bounded by ε), but has an arbitrarily poor policy value. For
that MDP, we show that its parameters can always be tuned to satisfy (25), with the
classification error no greater than ε.

As depicted in Figure 3, the MDP has N states: S = {s1, s2, · · · , sN} and two
actions for each state: one is the optimal action a∗, the other is the suboptimal action
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Figure 3: The MDP used by the proof of Theorem 4. Since next-state transition proba-
bilities of all states are identical, only the probabilities for state s1 are depicted.

ā. Taking a∗ in state s1 leads to a positive reward R∗ while the reward is r∗ in all
other states; taking ā always results in a zero reward. The next-state distribution is
independent of the current state and actions taken: there is a probability p to go to s1

and a probability 1−p
N−1 to transition to any other state. The start state distribution is:

D(s) =

{
p if s = s1

1−p
N−1 otherwise .

We let R∗ � r∗ > 0 and p be close to 1. Intuitively, s1 is much more important than
any other state from the sequential-decision-making point of view. Note that this is an
ergodic, infinite-horizon MDP, and the optimal policy always chooses action a∗.

Consider the following policy π:

π(s) =
{

ā if s = s1

a∗ otherwise.
(26)

Clearly,

G∗(s) =
{

R∗ if s = s1

r∗ otherwise
and G∗(s, π) =

{
R∗ if s = s1

0 otherwise.

Observe that for all π, t:

μπ,D
t (s) =

{
p if s = s1

1−p
N−1 otherwise

dπ,D(s) =

{
p

1−γ ifs = s1

1−p
(N−1)(1−γ) otherwise

.

By Corollary 2, the policy loss of π is:

L(π) =
∑
s∈S

(
G∗(s, π)

∞∑
t=0

γtμπ,D
t (s)

)
=

pR∗

1− γ
+

(1− p)r∗

1− γ
. (27)

1262 Li L., Bulitko V., Greiner R.: Focus of Attention ...



Note that the classification error of π is 1
N . By letting 1

N ≤ ε, or equivalently,
N ≥ � 1ε �, the policy has a classification error of at most ε. We want to find a positive
ξ ∈ (0, 1) such as

L(π) ≥ 1− ξ

1− γ

∑
s∈S

G∗(s) =
1− ξ

1− γ

(
R∗ + (N − 1)r∗

)
.

Using (27), this holds if

pR∗

1− γ
+

(1− p)r∗

1− γ
≥ 1− ξ

1− γ

(
R∗ + (N − 1)r∗

)
(p− 1 + ξ)R∗ ≥

(
(1− ξ)(N − 1)− (1− p)

)
r∗,

which is true if p− 1 + ξ > 0, or p > 1− ξ. This can always be achieved with a large
enough R∗:

R∗ ≥
(
(1− ξ)(N − 1)− (1− p)

)
p− 1 + ξ

r∗.

�

4.3 Focused Online Reinforcement Learning

In this section, we extend the idea of focused learning to the online RL problem, where
the agent interacts with the environment online to obtain experiences in the form of
〈st, at, rt+1, st+1〉, but the Q∗(s, a) values are not available for any (s, a)-pair. Our
work is based on the API implementation CI-cRL (Algorithm 1). Note that this algo-
rithm does not compute the exact greedy policy π′ in (11). Instead, it uses a learning
algorithm in each iteration to construct a classifier π′

CI-cRL to approximate π′ by solving
the following cost-insensitive classification problem:

π′
CI-cRL = arg min

π̂′∈Π

1
|S|
∑
s∈S
I(π̂′(s) �= π′(s)). (28)

In other words, π′
CI-cRL tries to agree with π′ in as many states as possible, hoping that

this will mean that V(π′
CI-cRL) is close to V(π′).

Below, we develop the cost-sensitive counterpart of this algorithm following steps
similar to the ones in the previous subsection. Similar to the batch-RL case, we define
the importance of a state as:

Gπ(s) = Qπ(s, a∗
π(s))−Qπ(s, āπ(s)). (29)

where a∗
π(s) and āπ(s) are the greedy and non-greedy actions in s with respect to π.

Intuitively, Gπ(s) measures how much additional reward can be obtained by switch-
ing the action from āπ(s) to a∗

π(s) in state s, and then following policy π thereafter.
Likewise, we define

Gπ(s, τ) = Qπ(s, a∗
π(s))−Qπ(s, τ(s))

= Gπ(s) · I(τ(s) �= a∗
π(s)). (30)
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Corollary 5. If during policy improvement a policy π is changed to π̂′, which is an
approximation to the greedy policy π′, and

∀s ∈ S, |dπ′,D(s)− dπ̂′,D(s)| < ε, (31)

then

V(π′)− V(π̂′) ≤
∑
s∈S

Gπ(s, π̂′) · dπ̂′,D(s) + ε
∑
s∈S

Gπ(s). (32)

Proof. In Theorem 1, fix ν = π; let τ be π′ and π̂′, respectively. Then we have

V(π′)− V(π) =
∑
s∈S

(
Gπ(s, π → π′) · dπ′,D(s)

)
,

V(π̂′)− V(π) =
∑
s∈S

(
Gπ(s, π → π̂′) · dπ̂′,D(s)

)
.

By subtracting these two equations we obtain

V(π′)− V(π̂′) =
∑
s∈S

g(s) ,

where

g(s) = Gπ(s, π → π′) · dπ′,D(s)−Gπ(s, π → π̂′) · dπ̂′,D(s).

If π(s) = a∗
π(s), then

Gπ(s, π → π′) = 0

Gπ(s, π → π̂′) = −Gπ(s) · I(π̂′(s) �= π′(s))

g(s) = Gπ(s) · I(π̂′(s) �= π′(s)) · dπ̂′,D(s)

= Gπ(s, π̂′) · dπ̂′,D(s).

If π(s) �= a∗
π(s), then

Gπ(s, π → π′) = Gπ(s)

Gπ(s, π → π̂′) = Gπ(s) · I(π̂′(s) = π′(s))

= Gπ(s) ·
(
1− I(π̂′(s) �= π′(s))

)
g(s) = Gπ(s) · dπ′,D(s)−Gπ(s) ·

(
1− I(π̂′(s) �= π′(s))

)
· dπ̂′,D(s)

= Gπ(s)
(
dπ′,D(s)− dπ̂′,D(s) + I(π̂′(s) �= π′(s)) · dπ̂′,D(s)

)
= Gπ(s)

(
dπ′,D(s)− dπ̂′,D(s)

)
+ Gπ(s) · I(π̂′(s) �= π′(s)) · dπ̂′,D(s)

≤ ε ·Gπ(s) + Gπ(s) · I(π̂′(s) �= π′(s)) · dπ̂′,D(s)

= ε ·Gπ(s) + Gπ(s, π̂′) · dπ̂′,D(s)

In either case, g(s) ≤ ε · Gπ(s) + Gπ(s, π̂′) · dπ̂′,D(s). The corollary follows
immediately since V(π′)− V(π̂′) =

∑
s g(s). �
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This corollary bounds V(π′) − V(π̂′) via Gπ(s, π̂′) in each individual state. Note
that π′ and V(π′) are constant if π is fixed. Hence,

arg max
π̂′∈Π

V(π̂′) = arg min
π′∈Π

[V(π′)− V(π̂′)] .

In other words, we can find the greedy policy π̂′ to maximize V(π̂′) by maximizing
V(π′) − V(π̂′). The representation (32) is, however, still of a limited practical value
since dπ̂′,D(s) and ε are usually unavailable to the agent. Thus, we propose a similar
practical approximation:

π′
CS-cRL = arg min

π̂′∈Π

∑
s∈S

Gπ(s, π̂′) (33)

≈ arg min
π̂′∈Π

[V(π′)− V(π̂′)] . (34)

We prefer π′
CS-cRL as opposed to π′

CI-cRL since it takes state importance into account,
which is highly related to the policy value according to Corollary 5. Again, by replacing
Gπ(s, π) in (33) with (30), solving π′

CS-cRL is turned precisely into a cost-sensitive
classification problem, where s is the attribute, a∗

π(s) is the desired class label, and
Gπ(s) is the misclassification cost.

The analysis above becomes the basis of our new algorithm called CS-cRL (Cost-
Sensitive classification-based RL), which is depicted in Algorithm 4. It is a cost-
sensitive version of CI-cRL (cf. Algorithm 1). The algorithm relies on the subroutine
CS-Learn that returns a cost-sensitive classifier based on the presented training data.

The following two theorems answer the questions: (i) whether the approximation in
(34) is sound, and (ii) whether it is preferable to solve π′

CS-cRL as opposed to π′
CI-cRL.

Theorem 6 below states that if ε is small and if the classifier is of a sufficiently high
quality, then π′

CS-cRL will be close to π′ in terms of policy value. In contrast, Theorem 7
asserts that as long as π′

CI-cRL has a non-zero classification error, the difference V(π′)−
V(π′

CI-cRL) can be arbitrarily close to its upper bound,
∑

s∈S Gπ(s)/(1− γ).

Theorem 6. If π′
CS-cRL has a sufficiently high quality, i.e., there exists ε > 0 such that∑

s∈S Gπ(s, π′
CS-cRL)∑

s∈S Gπ(s)
< ε,

then, using the notation in (31), we have

V(π′)− V(π′
CS-cRL) ≤

(
ε

1− γ
+ ε

)∑
s∈S

Gπ(s).
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Algorithm 4 CS-cRL: Cost-Sensitive classification-based RL. CS-Learn is a sub-
routine that induces a cost-sensitive classifier from the input training data.
0: Input:

– M : generative model
– T : set of training states
– γ: discount factor
– K: number of trajectories
– H: maximum length of trajectories

1: π̂′ ← random policy
2: repeat
3: π ← π̂′

4: TCS-cRL ← ∅
5: for all s ∈ T do
6: for all a ∈ A do
7: Q̂π(s, a)← Rollout(M, s, a, γ, π,K,H)
8: end for
9: â∗

π ← arg maxa∈A Q̂π(s, a)
10: if Q̂π(s, â∗

π) > Q̂π(s, a) for all a �= â∗
π then

11: g ← Q̂π(s, â∗
π)− Q̂π(s, a)

12: TCS-cRL ← TCS-cRL ∪ {〈s, â∗
π, g〉}

13: end if
14: end for
15: π̂′ ← CS-Learn(TCS-cRL)
16: until π ≈ π̂′

17: return π

Proof. According to Corollary 5,

V(π′)− V(π′
CS-cRL) ≤

∑
s∈S

(
Gπ(s, π′

CS-cRL) ·
∞∑

t=0

γt

)
+ ε ·

∑
s

Gπ(s)

=
1

1− γ

∑
s∈S

Gπ(s, π′
CS-cRL) + ε ·

∑
s

Gπ(s)

<
ε

1− γ

∑
s∈S

Gπ(s) + ε ·
∑

s

Gπ(s) =
(

ε

1− γ
+ ε

)∑
s∈S

Gπ(s).

The second inequality above is due to the condition stated in the theorem. �

Theorem 7. Let ε be the classification error of π′
CI-cRL (i.e., the objective function in

(28)), then for any ε, ξ ∈ (0, 1), there exists an MDP and π′
CI-cRL such that:

V(π′)− V(π′
CI-cRL) >

1− ξ

1− γ

∑
s∈S

Gπ(s).
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Proof. This existential proof is similar to the proof of Theorem 4, using the same ex-
ample, except setting π = π′ = π∗. Let π̂′ be defined by (26). Then following the same
calculations in the proof with the fact that ε = 0, we can always find N , p, r∗, and R∗

such that π′ has an ε-classification error but V(π′) − V(π̂′) can be arbitrarily close to
its upper bound,

∑
s∈S Gπ(s)/(1− γ). �

5 Future Work and Conclusions

Our results open several avenues for future research. First, by placing a threshold on the
importance of a training state we can prune down the training data set. An immediate ad-
vantage is a reduction of the training time. Another direction is to investigate alternative
ways of defining state importance. Note that Corollary 5 depends on the factor ε, and the
approximation steps were taken in (21) and (34). Thus, it may be possible to find better
measures of state importance and/or better approximations (e.g., estimating dπ,D(s) via
density estimation [Duda et al., 2000] or online sampling [Barto et al., 1995]) leading
to better RL algorithms. Finally, it is interesting to extend our results to multiple-action
cases as well as to situations without generative models.

In this paper, we have investigated the problem of focusing attention in
classification-based RL, considering two settings using two suitable state importance
measures. We showed theoretically that focused learning leads to reasonable perfor-
mance guarantees, while their non-focusing counterparts do not.
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