
Improving Program Correctness with Atomic Exception

Handling

Christof Fetzer
(TU Dresden, Germany

christof.fetzer@tu-dresden.de)

Pascal Felber
(University of Neuchâtel, Switzerland

pascal.felber@unine.ch)

Abstract: Exception handling is a powerful mechanisms for dealing with failures at
runtime. It simplifies the development of robust programs by allowing the programmer
to implement recovery actions and tolerate non-fatal errors. Yet, exception handling
is difficult to get right! The complexity of correct exception handling is a major cause
for incorrect exception handling. It is therefore important to reduce the complexity
of writing exception handling code while, at the same time, making sure it is correct.
Our approach is to use atomic blocks for exception handling combined with optional
compensation actions.

Key Words: exception handling, transactional memory

Category: D.2.m, D.3.3.

1 Introduction

Developing robust software is a challenging, yet essential, task. A robust program
has to be able to detect and recover from a variety of faults such as the temporary
disconnection of communication links, resource exhaustion, and memory corrup-
tion. Ideally, robust software has to be able to tolerate runtime errors without
a substantial increase in the code complexity. Indeed, this would augment the
probability of design and coding faults and thus decrease the robustness of the
application. Of course, code complexity and robustness are not antonymous if
one can avoid or remove design and coding faults in the error handling code.

Language-level exception handling mechanisms allow programmers to handle
errors with only one test per block of code. In programming languages without
exceptions, such as C, programmers have to check for error return codes after
each function call. The use of exception handling mechanisms can thus simplify
the development of robust programs.

Unfortunately, exception handling is no panacea. First, it is difficult to be
concise: a large percentage of an application’s code is dedicated to exception
handling because it needs to take into account all the possible causes of er-
rors and perform various recovery actions. Second, it is difficult to be right :
although the use of exceptions simplifies the detection of failures, the elegance

Journal of Universal Computer Science, vol. 13, no. 8 (2007), 1047-1072
submitted: 2/2/07, accepted: 23/4/07, appeared: 28/8/07 © J.UCS

of language-level exception handling mechanisms might lead to the neglect of
recovery issues [Cargill 1994] and produce buggy code. Notably, the premature
exit of a method due to an exception might leave an object in an inconsistent
state because it does not guarantee atomicity, i.e., “all-or-nothing” semantics. If
this inconsistency is not resolved in the error handling code, it might prevent a
later recovery and thus, decrease the robustness of the program. Other sources
of problems include nested exceptions and concurrency.

In this paper, we argue that atomic block constructs, as provided by software
transactional memory, provide effective mechanisms to implement concise and
correct exception handling code. They take care of rolling back partial effects
on the application state between the beginning of a method execution and the
throwing of an exception when necessary, thus freeing the programmer from
writing complex and error-prone recovery code. Optional compensations actions
can be added to take care of the “external” effects of the partial execution of
the atomic block. Also, forward error recovery with the help of alternatives in
the form of do/or else blocks is supported.

Our main emphasis is on the composability of exception handling code. Ex-
perience indicates that good exception handling code often requires that the
programmer knows details about other components’ failure causes and has a
strategy to handle them. This usually breaks information hiding—which is the
most powerful mechanism we have to deal with complexity. In this paper, we
promote a novel approach where we want to increase the composability of excep-
tion handling code by hiding the details of failures from the programmers. The
selection of a good recovery strategy is assigned to a recovery manager which
will typically use statistical knowledge to select an adequate recovery strategy.

The rest of the paper is organized as follows: Section 2 gives an overview of
exceptions and presents their limitations. In Section 3, we propose an alternative
approach to implement error handling using atomic blocks and we illustrate it
by the means of examples in Section 4. Finally, Section 5 concludes.

2 Exception Handling
(and why it is no Panacea)

2.1 Exceptions

Modern programming languages, such as C++ and Java, provide explicit excep-
tion handling support (see Figure 1). When a semantic constraint is violated or
when some exceptional error condition occurs, an exception is thrown (line 23).
This causes a non-local transfer of control from the point where the exception
occurred to a point, specified by the programmer, where the exception is caught
(line 10). An exception that is not caught in a method is implicitly propagated
to the calling method (line 17). The use of exceptions is a powerful mechanism

1048 Fetzer C., Felber P.: Improving Program Correctness ...

1 void main() {
2 ...
3 try {
4 openFile();
5 readFile ();
6 testFormat();
7 }
8 catch(SecurityException e) { ... }
9 catch(FileNotFoundException e) { ... }

10 catch(EOFException e) { ... }
11 catch(IOException e) { ... }
12 catch(InvalidFormatException e) { ... }
13 ...
14 }
15 void readFile() {
16 while(true) {
17 readLine();
18 ...
19 }
20 }
21 void readLine() {
22 if (read (...) == −1)
23 throw EOFException;
24 ...
25 }

Figure 1: Error handling based on exceptions.

that separates functional code from the error handling code and allows a clean
path for error propagation. It facilitates the development of applications that
are robust and dependable by design. Compare the clean error handling based
on exceptions in Figure 1 with the intricate error handling based on return codes
in Figure 2.

1 void main() {
2 ...
3 int err = openFile();
4 if (err == NO SUCH FILE) { ... }
5 else if (err == NOT ALLOWED) { ... }
6 else { // OK, file open
7 err = readFile();
8 if (err == READ ERROR) { ... }
9 else { // OK, read it

10 err = testFormat();
11 if (err == INVALID FORMAT) { ... }
12 else { // OK, keep going
13 ... } } } }

Figure 2: Error handling based on return codes.

1049Fetzer C., Felber P.: Improving Program Correctness ...

2.2 Exception handling code is buggy

Despite its elegance and relative simplicity (as compared to return codes), ex-
ception handling still accounts for a large portion of critical software because
(1) exceptions introduce significant complexity in the application’s control flow,
depending on their type and the point where they are thrown, and (2) sophis-
ticated recovery actions must be taken upon exception to preserve state con-
sistency. Cristian [Cristian 1995] notes that often more than two thirds of the
code is devoted to detecting and handling errors and exceptions. According to
Utas [Utas 2004], three quarters of carrier grade code is dedicated to error and
exception handling. Weimar and Necular also observe [Weimer and Necula 2004]
that between 3% and 46% of an application’s code is reachable from exception
handling blocks and this percentage grows with the size and the maturity of the
code.

It has also been noted [Cristian 1995] that exception handling code is more
likely to contain software bugs (called exception errors [Maxion and Olszewski
2000]) than any other part of an application, because in addition to its com-
plexity, exception handling code is rarely exercised and hence not well tested:
two third of system failures have been traced to design failures in exception
handling code in telephone switching systems. A study [Traupman et al. 2002]
of several prominent open source applications (emacs, apache, BerkeleyDB) has
shown that, when forcing a system call to fail and return a documented er-
ror code, the behavior of the application ranges from correct error handling to
dropped requests, halting, crashing, and even database corruption. This high-
lights that exception handling code does indeed contain severe bugs. Another
study [Maxion and Olszewski 2000] has shown that reducing the occurrence of
exception handling failures would eradicate a significant proportion of security
vulnerabilities. Therefore, removing errors in exception handling code would not
only lead to more robust programs, but also more secure programs. One can
use static analysis [Weimer and Necula 2004] or dynamic testing tools based on
exception injection [Fetzer et al. 2004] to verify the correctness of exception han-
dling code, but such solutions are typically time-expensive, achieve only partial
coverage, and are not widely available.

2.3 Why it is hard to get it right

There are several reasons why it is hard to write correct exception handling
code. First, exceptions modify the flow of control of the application. A throw

statement behaves similarly to a goto statement—known to be dangerous—but
the destination of the jump is not known a priori. Exceptions propagate from
callee to caller in a controlled manner, which implicitely disposes of data on
the stack, but there is no guarantee that all resources are indeed cleaned up

1050 Fetzer C., Felber P.: Improving Program Correctness ...

1 class BoundedStack {
2 ...
3 void push(Object o) {
4 if (items < MAX)
5 array[items++] = o;
6 else ...
7 }
8 Object pop() {
9 if (items > 0)

10 return array[−−items];
11 else ...
12 }
13 ...
14 }

Figure 3: Bounded stack backed by an array with error in garbage collection
code.

even in garbage-collected languages such as Java, for keeping a reference to an
object is sufficient to prevent it from being freed. Consider the bounded stack
implementation of Figure 3: popping elements from the stack does not fully
dispose of them, because references are kept in the underlying array (line 10)
until they are overwritten. Therefore, calling pop() is not sufficient to undo the
effect of a previous call to push() during exception handling. Avoiding such
problems requires discipline from the programmer to make sure that exceptions
are caught and handled at the right place, and that cleanup code is correct and
complete.

Second, exception handling code must be programmed carefully to ensure
that the application is in a consistent state after catching an exception. Re-
covery is often based on retrying failed methods. Before retrying, the program
might first try to correct the runtime error condition to increase the probability
of success. However, for a retry to succeed, a failed method also has to leave
changed objects in a consistent state. Consistency is ensured if any modification
performed by the method prior to the occurrence of the exception is reverted
before the exception is propagated to the calling method, i.e., we need atomic
(all-or-nothing) semantics. Note that this is typically not the case when using
exceptions to simply report on partial results.

Consider the stack implementation of Figure 4. The call to method push()

on line 28 may throw on exception if the argument is null (this can be the case
if the user hits CTRL-D in the terminal) and the developer has correctly enclosed
the call within a try-catch block. Unfortunately, the stack is buggy because
the number of elements is incremented (line 6) before the construction of the
new node that throws the exception (line 7). Consequently, the stack is left in
an inconsistent state, with the size updated but the element not inserted. The
exception handling code on line 30 cannot take corrective actions because the

1051Fetzer C., Felber P.: Improving Program Correctness ...

1 class Stack {
2 int nb elements;
3 Node head;
4 ...
5 void push(Object o) {
6 nb elements++;
7 head = new Node(o, head);
8 }
9 Object pop() throws EmptyStackException {

10 if (nb elements == 0)
11 throw new EmptyStackException();
12 ...
13 }
14 ...
15 }
16 class Node {
17 ...
18 Node(Object o, Node next) {
19 if (o == null)
20 throw new IllegalArgumentException();
21 ...
22 }
23 }
24 ...
25 Stack stack = new Stack();
26 try {
27 String s = in.readLine();
28 stack.push(s);
29 } catch(Exception e) {
30 // Handle exception (how?)
31 }

Figure 4: Stack (version 1).

internal state of the stack is corrupted. Lines 6 and 7 should be swapped to solve
this problem.

Consider now the corrected version of the stack in Figure 5 where lines 4
and 5 are in the correct order. There is a new method, pushAll(), that adds
several elements to the stack at once. The method call on line 18 pushes two
elements on the stack and may throw an exception if any of them is null.
Atomicity is violated if the second element is null because, even though the
stack is consistent, the effect of the pushAll() is only partial: the first element
has been pushed, but not the second, breaking all-or-nothing semantics. Again,
the exception handling code on line 20 cannot take corrective actions.

Typically, one would use compensation actions to restore a consistent state,
but these actions must be taken at the right place (e.g., in method push() of
Figure 4 and in method pushAll() of Figure 5). And even then, atomic behavior
is hard to implement. Consider the method in Figure 6 that moves an item
from one stack to another. The code includes compensation actions in case an
exception is thrown during the move, but it does not take into account the fact
that the call to push() on line 8 might as well throw an exception. As a general
rule, exception handling code should not throw exceptions because recursive

1052 Fetzer C., Felber P.: Improving Program Correctness ...

1 class Stack {
2 ...
3 void push(Object o) {
4 head = new Node(o, head);
5 nb elements++;
6 }
7 void pushAll(Object[] a) {
8 for(Object o : a) push(o);
9 }

10 ...
11 }
12 ...
13 Stack stack = new Stack();
14 try {
15 Object[] a = new Object[2];
16 a [0] = in.readLine();
17 a [1] = in.readLine();
18 stack.pushAll(a);
19 } catch(Exception e) {
20 // Handle error (how?)
21 }

Figure 5: Stack (version 2).

1 void move(Stack a, Stack b) {
2 Object item = null;
3 try {
4 item = a.pop(); // Might throw exception
5 b.push(item); // Might throw exception
6 } catch (Exception e) {
7 if (item != null) // Compensation
8 a.push(item);
9 throw e;

10 }
11 }

Figure 6: Moving an object from one stack to another.

exception handling is extremely complex to deal with. A programmer has to
consider all possible places where an exception might be thrown, and has to
make sure that none of these exceptions can cause a state inconsistency.

Figure 7 illustrates the difficulty to compose exception handling code. The
swap() method exchanges the top items of two stacks. It necessitates four calls
to pop() and push(), each of which might throw an exception. Depending on
which method fails, the exception handling code must take different compen-
sation actions and the resulting code is intricate and hard to follow. Again, it
is not trivial to determine the actions to take if an exception occurs in the er-
ror handling code on lines 12 to 14: should we retry the compensation action
or the original action in the try block in the hope that one of them succeeds,
or simply abort? The complexity of nested exception handling illustrates why
compensation actions should not throw exceptions.

Finally, consider that concurrency might interfere with compensation actions.

1053Fetzer C., Felber P.: Improving Program Correctness ...

1 void swap(Stack a, Stack b) {
2 Object item1 = null;
3 Object item2 = null;
4 boolean a pushed = false;
5 try {
6 item1 = a.pop(); // Might throw exception
7 item2 = b.pop(); // Might throw exception
8 a.push(item2); // Might throw exception
9 a pushed = true; // Item pushed on a

10 b.push(item1); // Might throw exception
11 } catch (Exception e) {
12 if (a pushed) try { a.pop(); } catch {...}
13 if (item2 != null) try { b.push(item2); } catch {...}
14 if (item1 != null) try { a.push(item1); } catch {...}
15 throw e;
16 }
17 }

Figure 7: Exchanging the topmost objects of two stacks.

In Figure 7, consistency will be violated if another thread modifies the top el-
ements of one of the stacks between the failed action and the compensation
code, even if the latter does not throw exceptions. Therefore, the catch block
should be properly synchronized, similar to the try block, to avoid inconsistency
resulting from concurrent accesses.

1 void move mt(Stack a, Stack b) {
2 Object item = null;
3 mutex.lock();
4 try {
5 item = a.pop(); // Might throw exception
6 b.push(item); // Might throw exception
7 } catch (Exception e) {
8 if (item != null) // Compensation
9 a.push();

10 throw e;
11 }
12 mutex.unlock();
13 }

Figure 8: Multi-threaded version of the move method of Figure 6.

In general, concurrency introduces subtle problems that are already complex
to manage in regular code, and become much harder when introducing exception
handling that modifies the flow of control. A classical example is that of a lock
being kept because an exception occurs before it is released. Consider the multi-
threaded move_mt() method in Figure 8. A lock correctly synchronizes both the
try and catch blocks, but it is not released when an exception is thrown from
the catch block (on line 9 or 10). In that case, the lock should be released in a
finally block.

1054 Fetzer C., Felber P.: Improving Program Correctness ...

In summary, the complexity of exception handling code results from several
factors: the modifications of the control flow induced by exceptions; the difficulty
of preventing resource leaks and inconsistent state after a failure during exception
propagation; the problems with nested exceptions and the complexity to compose
error handling routines; concurrency issues that interfere with compensation
actions; and the difficulty to test exception handling code because failures are
hard to reproduce.

3 Implementing Atomic Exception Handling

Language-level transactions have become popular recently. They allow program-
mers to perform arbitrary operations on in-memory data with transactional se-
mantics. Notably, updates are atomic and are rolled back in case the transaction
cannot commit. We propose to leverage transactional memory to implement
atomic exception handling.

3.1 Transactional Memory

The concept of transaction has recently been proposed as a lightweight and
safe mechanism to manage concurrent accesses to shared (in-memory) data in
multi-threaded applications. Software transactional memory (STM) [Shavit and
Touitou 1995] provides programmers with constructs to delimit transactional
operations and implicitly takes care of the correctness of concurrent accesses to
shared data. Transactions typically execute in a loop: if the transaction cannot
commit, e.g., because it conflits with another transaction, it aborts and restarts.
This process is generally automated and hidden behind a higher-level construct of
atomic block. Conflict resolution is often taken care of by a configurable module,
the contention manager, that defines the strategy for dealing with two conflicting
transactions.

STM has been an active field of research over the last few years, e.g., [Harris
and Fraser 2003, Herlihy et al. 2003, Herlihy 2005, Scherer III and Scott 2005,
Marathe et al. 2005, Cole and Herlihy 2005, Guerraoui et al. 2005b, Guerraoui et
al. 2005a]. It provides the programmer with a high-level construct—simple to use,
familiar, efficient, and safe—to delimit the statements of its application that need
to execute in isolation. In the following, we propose to use variants of STM atomic
blocks to implement atomic exception handling. Most related to our work is that
of Harris [Harris 2005]. Harris proposes to commit by default all changes when
an exception is thrown. We argue that by default an exception should result in
a rollback and extend the approach of Harris in several ways. Our approach also
also has commonalities with coordinated atomic actions (CAAs) [Xu et al. 1995],
a framework for achieving fault tolerance under cooperative and competitive
concurrency, although there are notable difference in the focus and design. The

1055Fetzer C., Felber P.: Improving Program Correctness ...

scope of CAAs as wider as they supports distributed systems and deal with
hardware faults, they require the use of explicit APIs, and they rely on full-
fledge ACID transactions.

3.2 Exception Handling using Atomic Blocks

1 // Guarded atomic block
2 atomic (C) { // Wait until C is true
3 S; // Sequential code.
4 }
5

6 // Atomic block with retry
7 atomic { // Wait or throws exception
8 if (!C)
9 retry ; // Retry until C holds or alternative path found

10 S; // Sequential code.
11 }

Figure 9: Two variants of atomic blocks [Harris and Fraser 2003,
Harris et al. 2005].

Harris proposes language support for atomic blocks using a new atomic key-
word [Harris and Fraser 2003] (see Figure 9). Atomic blocks had originally a con-
dition that must be valid for the program to execute the atomic block. In case no
guard is necessary, the atomic keyword takes no argument. The block contains
a sequence of statements and the block executes atomically and in isolation. A
newer variant of an atomic block [Harris et al. 2005] uses a retry statement in-
stead of a condition. Whenever the execution reaches this statement the atomic
block is retried. Alternatives can be specified with the help of do/or else blocks.
The execution of a retry within the do block will lead to the execution of the
or else block before the enclosing atomic block is retried.

The semantics of an atomic block when an exception is thrown from within
an atomic block is not obvious. On one hand, one could argue that an exception
terminates the execution of an atomic block and hence, all changes done so far
within the atomic block should be committed. On the other hand, one could
argue that an exception indicates that a block is only partially executed and
hence, the execution of the atomic block should be aborted by the exception,
i.e., all changes done within the atomic block until the exception is thrown
should be rolled back. We argue that the latter, which we call failure atomicity,
should be the default behavior: as we have seen in the previous examples, some
of the complexity of exception handling is caused by having to either deal with
partial changes performed by lower level functions or having to manually roll

1056 Fetzer C., Felber P.: Improving Program Correctness ...

back partial changes. Hence, if we can automatically roll back partial changes,
one should be able to reduce the complexity of exception handling.

Ensuring Failure Atomicity

Clearly, atomic blocks have the potential to alleviate some of the problems of
try/catch constructs. Indeed, upon failure, an STM can take care of rolling
back the modifications performed in memory by the statements inside the atomic
block. This frees the developer from the complex and error-prone task of iden-
tifying which ones of the statements in the try block have been executed and
writing compensation code to undo their effect.

1 void swap(Stack a, Stack b) {
2 atomic {
3 Object item1 = a.pop(); // Might throw exception
4 Object item2 = b.pop(); // Might throw exception
5 a.push(item2); // Might throw exception
6 b.push(item1); // Might throw exception
7 }
8 }

Figure 10: Exchanging the top most objects of two stacks using an atomic block.

As a first step, we can simply use atomic blocks as as a substitute to try/catch
constructs. The swap() method from Figure 7 that required to compose excep-
tion handling code can be advantageously replaced by the simpler and cleaner
implementation shown in Figure 10. If any of the methods called from within
the atomic block throws an exception, the modifications performed since the be-
ginning of the block’s execution are automatically undone without necessitating
complex compensation code. In particular, an STM takes care of disposing of
objects allocated on the heap without risks of resource leakage. It also allows
several threads to access shared data in isolation without necessitating locks.

Atomic blocks alone are however not sufficient to offer a complete solution
for exception handling. For instance, the general pattern employed for ensuring
isolation with STMs is to transparently abort and retry a transaction if it cannot
commit because of a concurrency conflict (race condition). In contrast, if the
code executed in the context of a transaction explicitely throws an exception,
e.g., because an overdraft occurs when transferring money between two accounts,
it is not clear what should be the proper behavior:

– Should we automatically abort the transaction and retry? Unless the problem
is due to a race condition, the same exception is in this example likely to be
thrown again. We might also want to take corrective actions before retrying.

1057Fetzer C., Felber P.: Improving Program Correctness ...

– Should we abort the transaction and propagate the exception? The main
issue is that an exception is thrown but its cause has been rolled back.
Further, this imposes strong restrictions on exceptions because they cannot
refer to data that has been allocated or modified in the atomic block (and
rolled back on exit).

– Should we commit the partial changes and propagate the exception? This
corresponds to the traditional behavior expected by the programmer for try
blocks, but it conflicts with the atomicity (all-or-nothing) property expected
from a transaction. However, this can be useful, for example, in situations in
which one can provide some graceful degradation by providing some weaker
semantics.

As we have previously argued, the first strategy should be preferred most of
the times as is helps writing more robust exception handling code. Yet, other be-
haviors are useful in some contexts and should be supported as well. Essentially,
we need to know whether the execution of the atomic block has completed suc-
cesfully; in case of a failure, we should be able to learn the cause of the problem
and retry the same block or an alternative execution path; finally, we must have
a way to exit an atomic block either discarding or commiting partial changes.

We must also be able to intervene in the roll back process to handle “external”
actions (e.g., writing to a file), which are not automatically reverted by STM.
Conversely, we should be able to let some information (e.g., details about error
conditions) leak out of atomic blocks upon failure and, hence, prevent automatic
undo on specific data items.

These various aspects are discussed in the rest of this section.

Atomic Block Syntax and Semantics

We propose using an extended form of atomic blocks for improving correctness
of exception handling. The general structure is shown in Figure 11. An atomic
block executes in the context of a transaction. When starting in the context of
another atomic block (line 4), it maps to a nested transaction: the inner atomic
block may fail without aborting the outer block, while a failure of the latter will
roll back the former.

If an atomic block cannot commit because of a concurrency conflict resulting
from optimistic scheduling in the underlying STM, then it will restart automat-
ically (after rolling back changes and possibly executing compensation actions).
If the transaction aborts due to an exception being thrown in the atomic block
via leave (see line 8), partial changes are rolled back by the underlying STM
and execution continues in the optional on failure block (line 10), which runs
outside of the scope of the aborted transaction but inside that of the enclosing

1058 Fetzer C., Felber P.: Improving Program Correctness ...

1 atomic {
2 // Sequential code executed atomically
3 ...
4 atomic {
5 // Atomic blocks may be nested
6 ...
7 if (error)
8 leave; // Roll back and jump to on failure block
9 ...

10 } on failure {
11 // Executed if nested block fails
12 if (canCorrectErrorCondition())
13 retry; // Retry nested block
14 }
15 ...
16 } on failure {
17 // Executed if outer block fails or nested block leaves
18 }

Figure 11: Atomic blocks for exception handling.

transaction, if any. If there is no on failure block, the exception propagates to
the enclosing atomic block (as a next—see below). Such propagation also occurs
if an exception is thrown from within an on failure block.

In the on failure block, one will typically try to fix runtime error conditions
that prevented the atomic block from succeeding, possibly modifying the envi-
ronment, and retry its excecution. To that end, one can use the retry keyword
(line 13) to restart the associated atomic block.1

1 void swap(Stack a, Stack b) {
2 atomic {
3 Object item1 = a.pop(); // Might throw exception
4 Object item2 = b.pop(); // Might throw exception
5 a.push(item2); // Might throw exception
6 b.push(item1); // Might throw exception
7 } on failure {
8 a.rejuvenate();
9 b.rejuvenate();

10 retry;
11 }
12 }

Figure 12: Exchanging the topmost objects of two stacks using an atomic block
and error handling code.

An implementation of the previously discussed swap() method using atomic
1 Note the semantics of retry is different to that of [Harris et al. 2005]: the latter

corresponds to our next. It also differs from the semantics of retry in Eiffel in that
it implies a rollback and it can appear at any point within an atomic block or an on
failure block.

1059Fetzer C., Felber P.: Improving Program Correctness ...

blocks and error handling code is shown in Figure 12. If the exchange fails, we
try to rejuvenate each of the stack objects (e.g., to correct their internal state
that might be corrupted) before retrying (lines 8 and 9).

Specifying Alternative Execution Paths

1 atomic {
2 // Do/or else blocks must be in atomic blocks
3 ...
4 do {
5 // First alternative (a)
6 ...
7 if (error ()) // Error cannot be fixed in (a)
8 next; // Try next alternative
9 ...

10 } or else {
11 // Second alternative (b)
12 ...
13 do {
14 // Do/or else blocks may be nested (b.a)
15 ...
16 if (fatalError ()) // Cannot deal with this error
17 // remaining alternatives do not fix this either
18 leave;
19 ...
20 } or else {
21 // (b.b)
22 ...
23 if (localFix()) // Might be fixed by retrying (b.b)
24 retry;
25 ...
26

27 }
28 } or else {
29 // Third alternative (c)
30 ...
31 }
32 ...
33 } on failure {
34 // Executed if all alternatives fail
35 }

Figure 13: Specifying alternative execution paths.

Failure blocks allow us to take different recovery actions. However, they do
not permit explicitly to take a different execution path in the atomic block after
a failure. To support this behavior, we introduce another language construct,
do/or else, also proposed by Tim Harris et al. [Harris et al. 2005], that specifies
alternatives to try before reporting a failure. The structure of this construct is
shown in Figure 13.

A do/or else block can only occur in the context of an atomic block. The
do clause contains the code of the default execution path (line 4); subsequent
or else clauses describe alternative execution paths (lines 10 and 28). One can

1060 Fetzer C., Felber P.: Improving Program Correctness ...

have several do/or else block in the same atomic block, and it is even possible
to nest them (line 13). All alternatives are explored sequentially before giving
up and executing the on failure block. In Figure 13, assuming that failures
systematically occur during execution of the do/or else blocks, the following
sequence of alternatives will be tried: the first alternative of the outer block
(line 4); the second alternative of the outer block (line 10) with the first path
in the inner block (line 13); the second alternative of the outer block with the
second path in the inner block (line 20); the third alternative of the outer block
(line 28).

b.a b.b

or

or

atomic

default
path

a
b

c

Figure 14: Execution tree representing the alternatives of Figure 13.

This process can be visualized as an execution tree (see Figure 14) in which
children correspond to nested blocks and sibling branches to alternatives, and
a complete successful execution maps to a root-to-leaf path. The leftmost path
corresponds to the default execution of the atomic block.

If an atomic block fails by the abort of a nested atomic block while executing
one of the alternatives of a do/or else block, it automatically executes the next
alternative. The programmer can control the selection of the next alternative
explicitly with the use of the keywords next, retry, and leave. Keywords retry
and leave are introduced for performance reason only. Ideally, the system would
chose automatically what alternative to execute next (see Section 5) and the
programmer would only need to use one keyword, e.g., next.

One can use the explicit next keyword to move to the next alternative. For
example, the next on line 8 will result in alternative (a) to be aborted and
instead alternative (b) is tried. In other words, a next tells the system that the
current alternative is not succeeding and the system should try the next one.

If the execution hits a retry, the programmer tells the system that a retry of
the same block might be successful. For example, the retry on line 24 indicates
that the system should retry block (b.b). An implementation has the choice to
either (1) rollback the outermost atomic block and execute again path (b, b.b)

1061Fetzer C., Felber P.: Improving Program Correctness ...

or (2) it could just rollback the effects of (b.b) and retry (b.b).
A leave tells the system that the current alternative cannot succeed and

also all successive alternatives will also fail. In other words, this is similar to a
next but it tells the system that it can skip executing the remaining alternatives
and immediately jump to the on failure block if it exists (and otherwise, just
abort the atomic block). For example, a leave on line 18 results in an abort of
alternative (b.a) and the on failure block on line 33 is tried next.

1 void swap(Stack a, Stack b) {
2 atomic {
3 do {
4 Object item1 = a.pop(); // Might throw exception
5 Object item2 = b.pop(); // Might throw exception
6 a.push(item2); // Might throw exception
7 b.push(item1); // Might throw exception
8 } or else {
9 Object value = a.top().getValue();

10 a.top().setValue(b.top.getValue());
11 b.top().setValue(value);
12 }
13 } on failure {
14 a.rejuvenate();
15 b.rejuvenate();
16 retry;
17 }
18 }

Figure 15: Exchanging the topmost objects of two stacks using an atomic block
and alternative execution paths.

The swap() method can also be implemented using alternative execution
paths, as shown in Figure 15. If the exchange fails in the do block, it is auto-
matically retried by executing the or else clause that uses another strategy. If
both fail, we rejuvenate the stack objects and retry the complete atomic block
(starting with the default execution path).

Semantics of On Failure

There are subtle differences between the semantics of the on failure and do/or

else constructs. Both specify alternatives that are executed when the primary
alternative fails. However, the on failure block is executed outside of the scope
of the transactions associated with the enclosing atomic block: its objective is
to make changes visible in the next retry of the atomic block. One can view
on failure as a special type of or else block.

For example, one reasonable approach for recovery is to perform changes to
the environment before performing a retry (e.g., see [Qin et al. 2005]). Figure 16
depicts a wrapper for methods that tries to change the environment before a retry

1062 Fetzer C., Felber P.: Improving Program Correctness ...

1 Object atomicWrapper(Object o, Method m, Object[] args) {
2 atomic {
3 Object ret = m.invoke(o, args);
4 if (checkState(o)) // Consistent state?
5 next; // No: failure
6 } on failure {
7 if (changeEnv()) // Try changing environment
8 retry; // Worked: retry
9 }

10 }

Figure 16: On failure semantics.

is performed. Since the environment changes should be visible in the next retry,
the semantics of the on failure block can be emulated with nested do/or else

blocks as depicted in Figure 17.

1 Object atomicWrapper(Object o, Method m, Object[] args) {
2 atomic {
3 do {
4 Object ret = m.invoke(o, args);
5 if (checkState(o)) // Consistent state?
6 next; // No: failure
7 } or else {
8 if (changeEnv()) {
9 Object ret = m.invoke(o, args);

10 if (checkState(o)) // Consistent state?
11 next; // No: failure
12 }
13 }
14 }

Figure 17: On failure semantics.

Controlling Rollback

Often, one needs to combine implicit rollback performed by STM with explicit
compensation actions, either when the code performs external actions (e.g., I/O)
or to improve performance (e.g., when some changes do not impact application
consistency and do not have to be rolled back).

To indicate that some fields are neither saved nor restored by the underlying
STM, we use the transient keyword.2

An example of a controlled rollback to handle external actions is shown in
Figure 18. This class allows us to read character from the terminal and put
2 The transient keyword is used in Java to indicate that a field should not be saved

nor restored by the standard serialization mechanisms.

1063Fetzer C., Felber P.: Improving Program Correctness ...

1 class CharacterInput {
2 transient char[] buf = new char[N]; // Kept on abort!
3 transient int nb = 0; // Kept on abort!
4 int idx = 0; // Rolled back
5

6 char getCharacter() {
7 while (idx >= nb)
8 fillBuffer ();
9 return buf[idx++ % N];

10 }
11

12 void fillBuffer () {
13 int err = System.in.read(buf, nb % N, 1);
14 if (err <= 0) // Couldn’t read at this time
15 next; // Use next alternative, if any
16 nb++;
17 }
18 }

Figure 18: Using transient fields to handle external actions.

them back in a buffer upon rollback for being subsequently read again. We use
transient fields to manage the buffer. For simplicity, this code assumes that there
are at most N calls to getCharacter() within an atomic block.

1 CharacterInput terminal;
2 Stack s;
3 ...
4 atomic {
5 // Read two characters and push them on stack
6 s.push(terminal. getCharacter());
7 s.push(terminal. getCharacter());
8 ...
9 } on failure {

10 // State of stacks is automatically reverted and
11 // characters are returned to the input buffer, but
12 // they are not returned to the operating system
13 ...
14 }

Figure 19: Reading characters from the terminal using a class that handles ex-
ternal actions.

Our intention is that the use of transient is limited to libraries written by
experts who are aware of the exact semantics of the underlying transactional
memory. Most programmers should restrict themselves to the use of libraries
that rollback external actions on abort of an atomic block. For example, Fig-
ure 19 illustrates how one can easily compose atomic blocks with the help such
library methods. We use the previously defined class CharacterInput to read
two characters within an atomic block. Whether the character reading method
uses an atomic block internally does not need to be known by the callee. In this

1064 Fetzer C., Felber P.: Improving Program Correctness ...

case, neither getCharacter() nor fillBuffer() need to be executed in a sep-
arate atomic block. Also, they can be called from within atomic blocks but also
from code outside atomic blocks (but the latter would not support automatic
rollback). Our goal is it to effectively combine atomic (and also non-atomic)
blocks by nesting them in an enclosing atomic block. This composability feature
allows us to perform complex operations on several objects without having to
know how each of them implements error handling.

4 Examples

In this section, we present some examples on how one can use atomic blocks to
recover from errors. To do so, we show how one can implement graceful degra-
dation, selective retries, and recovery blocks using atomic blocks.

4.1 Graceful Degradation

Graceful degradation means that an application can provide some desired se-
mantics (with possibly degraded quality of service) even in case that some com-
ponents exhibit failures. Consider, for example, an application that writes its
log messages to disk (see Figure 20). In case the disk is full, the application
should not abort only because the application cannot write to the log. Instead,
log messages might be written to the console. In case this fails too, e.g., because
the console output is redirected to the same full disk, log messages should be
ignored, i.e., instead of aborting the application or dropping requests.

Figure 20 shows that function log() uses function writeString() to write
the log message either to disk or to console, i.e., System.err. Note that function
writeString() can fail for various reasons but at the level of function log()

we do not care why: we assume that writeString() has already done all that
is needed to ensure that it succeeds whenever possible, e.g., attempted to free
some disk space. Function writeString() fails by issuing a leave. Hence, one
can use an atomic block with a nested do/or else block to switch to a degraded
service in case writing to the log fails.

4.2 Selective Retries

With selective retries we refer to the retry of an atomic block only in cases
where there is a chance that a retry succeeds, i.e., a transient failure prevented
the atomic block to commit. For example, a failure caused by too few available
resources might succeed on retry—if there are fluctuations in resource usage. Of
course, for some other types of failures a retry might not have any chance of
success, e.g., retrying a function with the same wrong arguments.

1065Fetzer C., Felber P.: Improving Program Correctness ...

1 void log(String msg) {
2 static PrintStream appLog = ...;
3 atomic {
4 do { // Write to application log
5 writeString(appLog, msg);
6 } or else { // If it fails , write to console
7 writeString(System.err, msg);
8 } or else { // Otherwise, do not log
9 ;

10 }
11 }
12 }

Figure 20: Graceful degradation: log messages are written to the application log
when possible. If that fails, messages are written to the console. If that fails too,
the messages are just ignored.

Figure 21 shows a selective retry when writing a string to a stream fails. In
this example, function writeBytes() returns the number of bytes written. If
the return value is different from the number of bytes that were requested to
be written, an error has occurred. Function getError() returns the reason why
not all bytes were written and function canRetry() uses this information to
decide if a retry is reasonable. If yes, retry automatically rolls back all changes,
including those of writeString(), and restarts the atomic block. If a retry is not
considered sensible, the atomic block is aborted via leave and recovery needs
to be attempted by the caller of function writeString().

1 void writeString(PrintStream out, String msg) {
2 atomic {
3 byte[] bytes = msg.getBytes();
4 if (writeBytes(bytes) != bytes.length) {
5 // Could not write all bytes: check error
6 int err = getError();
7 if (canRetry(err)) // Temporary problem?
8 retry; // Yes: retry
9 else

10 next; // No: give up
11 }
12 }
13 }

Figure 21: Selective retries: if there is a chance that a function can succeed during
retry, we restart the atomic block. Otherwise, we leave it and let the enclosing
block perform recovery at a higher level.

1066 Fetzer C., Felber P.: Improving Program Correctness ...

4.3 Repair and Retry

Selective retries are good to mask transient failures like temporary resource
shortages. However, in some situations, e.g., when there are longer lasting re-
source shortages like a full disk, one would like to perform some repair before
retrying an atomic block. The kind of repair that leads to successful execution of
an atomic block would typically depend on the root cause of the atomic block’s
failure.

Figure 22 shows that one could use a classification of the cause of an error
to decide what kind of environment changes might be needed. Note that the
environment needs to be modified within the on failure block to make sure
that changes are not rolled back before the next retry. We will show in Section 5
how this code can be simplified by delegating the task of identifying the cause
of an error and the selection of the appropriate recovery strategy.

1 void writeString(PrintStream out, String msg) {
2 transient int env = 0;
3 atomic {
4 byte[] bytes = msg.getBytes();
5 if (writeBytes(bytes) != bytes.length) {
6 // Could not write all bytes: check error
7 int err = getError();
8 // Fixable by a local change to the environment?
9 env = needsLocalEnvChange(err);

10 if (canRetry(err)) // Temporary problem?
11 retry; // Yes: retry
12 else
13 next; // No: give up
14 }
15 } on failure {
16 if (changeEnv(env)) // Try changing environment
17 retry; // Worked: retry
18 } // otherwise abort atomic block
19 }

Figure 22: Repair and retry recovery strategy: before the atomic block is retried,
one tries to increase the likelihood of success by changing the environment.

4.4 Recovery Block

A recovery block [Randell 1975] uses software diversity to mask software bugs.
A recovery block has a post-condition (the acceptance test) that needs to be
satisfied. Alternative implementation are tried in sequence. If an alternative does
not satisfy the post-condition, the state changes are rolled back and the next
alternative is tried. One can use atomic blocks to implement a recovery block in
a straightforward manner. Figure 23 shows an example where we use alternative
sort implementations to satisfy the post/condition.

1067Fetzer C., Felber P.: Improving Program Correctness ...

1 sort(Object[] array) {
2 atomic {
3 do {
4 quickSort(array); // Fast sort
5 if (! sorted(array)) // Check if sorted
6 next; // No: try next alternative
7 } or else {
8 mergeSort(array); // Fast sort
9 if (! sorted(array)) // Check if sorted

10 next; // No: try next alternative
11 } or else {
12 bubbleSort(array); // Slower but correct
13 if (! sorted(array)) // Check if sorted
14 next; // No: try next alternative
15 }
16 }
17 }

Figure 23: Recovery block: the atomic block terminates with success if one of
the three sort functions returns normally and the postcondition sorted() is
satisfied. The alternative sorting functions are executed in sequence and if none
succeeds, the function returns via a leave.

1 sort(Object[] array) {
2 atomic {
3 do {
4 quickSort(array); // Fast sort
5 if (! sorted(array)) // Check if sorted
6 next;
7 } or else {
8 mergeSort(array); // Fast sort
9 if (! sorted(array)) // Check if sorted

10 next;
11 } or else {
12 bubbleSort(array); // Slower but correct
13 // Trust that bubble sort is correct
14 }
15 }
16 }

Figure 24: Recovery block variant: we assume that bubbleSort is a very ma-
ture function but not very fast while the other functions, i.e., quickSort and
mergeSort and sorted, are less mature. Hence, we could drop the post-condition
for bubbleSort to tolerate possible bugs in sorted.

From a syntactical perspective, a recovery block has only one post-condition
while the use of an atomic block would need to specify the post-condition for
all alternatives. One could simplify the syntax by associating an atomic block
with post-conditions. In general, it might be a good idea to specify contracts for
atomic blocks, i.e., pre- and post-conditions and invariants. Note, however, that
the explicit specification of post-conditions has also advantages. For example,
experience indicates that pre- and postconditions are buggy too. Hence, one

1068 Fetzer C., Felber P.: Improving Program Correctness ...

could use redundant assertions to be able to tolerate bugs in assertions. For
example, in Figure 24 we drop the post-condition for one of the alternatives
(bubbleSort()) in case the likelihood that bubbleSort() fails is much smaller
than the likelihood that sorted() fails.

5 Concluding Remarks

We proposed the use of atomic blocks for error and exception handling. One
of the main advantages of atomic blocks is that state changes are rolled back
automatically. External changes are rolled back via the use of special “atomic”
library functions. In this way, one can avoid common programming errors that
result in inconsistent states after an exception was thrown. Atomic blocks can
be nested and, in particular, error handling code itself runs safely in an atomic
block. In some sense, error handling code is just an alternative (similar to the
alternative implementations in the recovery block concept) that is executed if
the default alternative fails. Therefore, we not only avoid synchronization issues
during recovery in multi-threaded applications but we can also gracefully handle
errors during the execution of error handling code itself. By using a combination
of nested blocks and alternatives, we can effectively get the benefits of both
backward and forward error recovery.

The second major advantage of atomic blocks for error handling is the in-
creased composability. Traditional exception handling usually exposes some of
the internals of components to external calls through the exception objects re-
turned. Our approach is simple: atomic blocks can either request to retry the
atomic block or to leave the atomic block (i.e., error recovery should be at-
tempted on a higher level). They do not carry explicit information about the
cause of a failure, unlike exceptions. A retry corresponds to the traditional re-
sumption semantics of exceptions while a leave corresponds to termination se-
mantics of exceptions. This restricted interface might however lead to situations
in which programmers want to optimize the recovery by passing information from
within an aborted atomic block via, e.g., transient variables as we demonstrated
in Figure 22. While this might be acceptable when done locally and by expert
programmers, such optimizations should in general be avoided. Instead, the de-
cision of what alternative to execute next should be performed by a recovery
manager. The recovery manager decides based on statistical and/or analytical
data which alternative should be executed. In other words, recovery decisions
that are difficult to decide based on information at design time are delegate to
the recovery manager that can use up-to-date runtime statistics to select the
recovery action that will most likely succeed.

The interface of the recovery manager should be as simple as possible. In our
proposal, the recovery manager implements a function select() that picks one

1069Fetzer C., Felber P.: Improving Program Correctness ...

1 ...
2 RecoveryManager rm;
3 ...
4 void writeString(PrintStream out, String msg) {
5 atomic {
6 byte[] bytes = msg.getBytes();
7 writeBytes a(bytes); // Atomic method
8 } on failure {
9 int choice = rm.select({NO RETRY, FREE MEM, FREE FD...});

10 if (choice != NO RETRY) { // Change environment?
11 changeEnv(choice); // Note: might issue leave
12 retry; // Retry with new environment
13 } // otherwise abort
14 }
15 }

Figure 25: Repair and retry using a recovery manager to select the next recovery
alternative.

1 ...
2 RecoveryManager rm;
3 ...
4

5 void writeString(PrintStream out, String msg) {
6 atomic {
7 byte[] bytes = msg.getBytes();
8 writeBytes a(bytes); // Atomic method
9 } on failure {

10 int choice = rm.select({false, true});
11 if (choice) // Should we retry?
12 retry; // Yes: retry atomic block
13 }
14 }

Figure 26: Semantics of atomic blocks: each atomic block has an implicit call to
select. Lines 9 to 13 are implicitly added to an atomic block.

of a given set of alternatives. For example, the code from Figure 22 can in this
way be simplified as depicted in Figure 25. Since retries can be performed on
different levels of abstractions, nested atomic blocks can result in an exponential
increase of retries (i.e., with the nested level). Similarly, if retries of a certain
function f() have not succeeded recently, e.g., because none of the needed re-
sources are freeing up, retrying f() might not make sense. Therefore, the decision
how many times an atomic block is retried should be delegated to the recovery
manager.

Note that, if the programmer needs to decide explicitly if a block should be
retried, s/he needs to gather information about the cause of an error (e.g., see
Figure 21). For an increased information hiding, the recovery manager should
instead decide if a retry or a leave should be performed. This would simplify the
code because we could remove the on failure block altogether from Figure 26
(i.e., one could discard lines 9 to 13).

1070 Fetzer C., Felber P.: Improving Program Correctness ...

While the advantage for the composability with respect to error handling
should be obvious, how to implement a recovery manager in an efficient and
general way is less obvious. We are currently working on evaluating several design
alternatives for recovery managers.

References

[Cargill 1994] Cargill, T. (1994). Exception handling: A false sense of security. C++
Report, 6(9).

[Cole and Herlihy 2005] Cole, C. and Herlihy, M. (2005). Snapshots and software
transactional memory. Science of Computer Programming. To appear.

[Cristian 1995] Cristian, F. (1995). Exception handling and tolerance of software
faults. In Lyu, M., editor, Software Fault Tolerance, pages 81–107. Wiley.

[Fetzer et al. 2004] Fetzer, C., Felber, P., and Högstedt, K. (2004). Automatic detec-
tion and masking of non-atomic exception handling. IEEE Transactions on Software
Engineering, 30(8):547–560.

[Guerraoui et al. 2005a] Guerraoui, R., Herlihy, M., Kapalka, M., and Pochon, B.
(2005a). Robust contention management in software transactional memory. In Pro-
ceedings of SCOOL.

[Guerraoui et al. 2005b] Guerraoui, R., Herlihy, M., and Pochon, S. (2005b). Toward
a theory of transactional contention managers. In Proceedings of PODC.

[Harris 2005] Harris, T. (2005). Exceptions and side-effects in atomic blocks. Sci.
Comput. Program., 58(3):325–343.

[Harris and Fraser 2003] Harris, T. and Fraser, K. (2003). Language support for
lightweight transactions. In Proceedings of OOPSLA, pages 388–402.

[Harris et al. 2005] Harris, T., Herlihy, M., Marlow, S., and Peyton-Jones, S. (2005).
Composable memory transactions. In Proceedings of PPOPP.

[Herlihy 2005] Herlihy, M. (2005). The transactional manifesto: software engineering
and non-blocking synchronization. In Proceedings of PLDI.

[Herlihy et al. 2003] Herlihy, M., Luchangco, V., Moir, M., and Scherer III, W. (2003).
Software transactional memory for dynamic-sized data structures. In Proceedings of
PODC, pages 92–101.

[Marathe et al. 2005] Marathe, V. J., III, W. N. S., and Scott, M. L. (2005). Adaptive
software transactional memory. In Proceedings of DISC, pages 354–368.

[Maxion and Olszewski 2000] Maxion, R. and Olszewski, R. (2000). Eliminating ex-
ception handling errors with dependability cases: a comparative, empirical study.
IEEE Transactions on Software Engineering, 26(9):888 – 906.

[Qin et al. 2005] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. (2005). Rx: treating
bugs as allergies—a safe method to survive software failures. In SOSP ’05: Pro-
ceedings of the twentieth ACM symposium on Operating systems principles, pages
235–248, New York, NY, USA. ACM Press.

[Randell 1975] Randell, B. (1975). System structure for software fault tolerance. In
Proceedings of the international conference on Reliable software, pages 437–449, New
York, NY, USA. ACM Press.

[Scherer III and Scott 2005] Scherer III, W. and Scott, M. (2005). Advanced con-
tention management for dynamic software transactional memory. In Proceedings of
PODC, pages 240–248.

[Shavit and Touitou 1995] Shavit, N. and Touitou, D. (1995). Software transactional
memory. In Proceedings of PODC.

[Traupman et al. 2002] Traupman, J., Broadwell, P., and Sastry, N. (2002). Fig: A
prototype tool for online verification of recovery mechanism.

[Utas 2004] Utas, G. (2004). Robust Communications Software: Extreme Availability,
Reliability and Scalability for Carrier-Grade Systems. Wiley.

1071Fetzer C., Felber P.: Improving Program Correctness ...

[Weimer and Necula 2004] Weimer, W. and Necula, G. C. (2004). Finding and pre-
venting run-time error handling mistakes. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 419–431, New York, NY, USA. ACM Press.

[Xu et al. 1995] Xu, J., Randell, B., Romanovsky, A. B., Rubira, C. M. F., Stroud,
R. J., and Wu, Z. (1995). Fault tolerance in concurrent object-oriented software
through coordinated error recovery. In Symposium on Fault-Tolerant Computing,
pages 499–508.

1072 Fetzer C., Felber P.: Improving Program Correctness ...

