
Achieving Atomicity for Web Services

Using Commutativity of Actions

P. Michael Melliar-Smith
(Department of Electrical and Computer Engineering

University of California, Santa Barbara, USA

pmms@ece.ucsb.edu)

Louise E. Moser
(Department of Electrical and Computer Engineering

University of California, Santa Barbara, USA

moser@ece.ucsb.edu)

Abstract: Web Services enable the creation of complex business activities through
the cooperation of independently developed software programs. However, Web Ser-
vices incur the risk of long delays and locked data when using the classical distributed
transaction strategy, and the risk of inconsistency when using the compensating trans-
actions strategy. If the benefits of Web Services are to be fully realized, a better strategy
must be employed. In this paper we describe an extended transactions strategy that
can be used in conjunction with existing Web Services infrastructures, and that is
compatible with existing business practices. The strategy exploits local transactions
and commutativity of local actions at each data item to achieve global atomicity for
business activities.

Keywords: Web Services, Distributed Transactions, Atomicity, Concurrency
Control, Commutativity.

Categories: H.2.1 Information Systems, Database Management, Logical Design.

1 Introduction

During the past several decades, the great successes of computing and networking
for enterprise applications have included:

– The Internet
– The World Wide Web
– Distributed Systems
– Transaction Processing
– Concurrency Control.

These technologies have come together as the foundation of Web Services [Cham-
pion et al. 2002] which, in the future, will dominate computer interactions within
and between enterprises, and will facilitate cooperation and competition among
enterprises.

Journal of Universal Computer Science, vol. 13, no. 8 (2007), 1094-1109
submitted: 15/1/07, accepted: 23/4/07, appeared: 28/8/07 © J.UCS



Web Services enable the creation of complex business activities through the
cooperation of independently designed and implemented software programs. To
be able to couple together the computer systems of enterprises world-wide, so
that they can cooperate without prior arrangements or prior knowledge of each
other and without human intermediation, is a wonderful objective. Business ac-
tivities based on Web Services will have major impacts on computing, business
practices and international relationships. Such business activities must be reli-
able and must maintain data consistency, despite hardware and software faults.

The classical transaction processing paradigm [Gray and Reuter 1993], with
its associated concurrency control [Bernstein et al. 1987], is effective in protecting
business data against faults. It allows the construction of complex systems with
efficiency, concurrency, reasonable development costs and acceptable levels of
reliability. Each transaction can be designed separately, even though it is to
be executed concurrently with other transactions. Moreover, a problem in one
transaction can be recovered without adversely affecting other transactions. Most
importantly, the transaction processing paradigm is easy to understand and to
use.

However, classical transactions are quite centralized and are not well matched
to the highly decentralized world of the Internet and the World Wide Web.
Applying the traditional transaction processing paradigm in a wide-area dis-
tributed environment, with the XA Protocol [OpenGroup 1992] or the Web
Services Atomic Transactions [Cabrera et al. 2005a], exposes the participants
in the transactions to delays due to the locking of business data. Even without
faults, the transactions might take quite a long time to complete, during which
database records are locked.

If a transaction in one enterprise locks data in the database of another en-
terprise and then the server of that first enterprise fails, the data in the second
enterprise might remain locked for an indeterminate period of time until the
server in the first enterprise is recovered from the fault. The risk of such de-
lays is unacceptable, particularly when the other participants in the business
activity are unknown or of uncertain dependability. Consequently, in practice,
Web Services Atomic Transactions are not used across a wide-area distributed
environment.

The problems of distributed transactions, based on the two-phase commit
protocol, can be reduced, but not eliminated, by use of the three-phase com-
mit protocol [Skeen 1983]. However, the three-phase commit protocol increases
transaction processing overhead and latency in the normal fault-free case. Con-
sequently the three-phase commit protocol is not used in practice.

The Web Services Business Activity Specification [Cabrera et al. 2005b] ad-
dresses these problems by means of an extended transactions strategy with com-
pensating transactions [Garcia-Molina and Salem 1987]. Compensating trans-

1095Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



actions are difficult to design and program, have a high error rate, and incur
a high risk of leaving the databases in an inconsistent state. Detecting and re-
moving such inconsistencies are difficult, labor intensive and time consuming,
particularly when the inconsistencies span the databases of different enterprises.

We present below the results of our analysis of the probability that a business
activity will leave the databases in an inconsistent state. For entirely reasonable
values of parameters, that probability approaches unity. The designers and users
of the Web Services Business Activity Specification appear to be unaware of the
high risk of inconsistency resulting from compensating transactions.

The potential advantages of Web Services are impaired by the risk of long
delays and locked data when using the distributed transaction strategy based
on two-phase commit and conservative locking, and by the risk of inconsistency
when using the extended transactions strategy with compensating transactions.
If the benefits of Web Services are to be fully realized, a better strategy must
be employed.

1.1 Business Activities and Transactions

We propose an alternative strategy for Web Services that is based on:

– Business activities that span multiple enterprises or sites
– Transactions that are strictly local to one site.

A business activity comprises a sequence of actions, typically but not nec-
essarily at multiple sites. A business activity has a start and an end, and may
involve multiple actions on the same data item.

An action is a part of a single business activity and is local to one site. A
client program at one site invokes a Web Service to cause a server program at
another site to perform a particular action. An action may involve one or more
data items. The data items are also local to one site.

A transaction is a sequence of actions potentially but not necessarily at multi-
ple sites. A transaction satisfies the classical ACID properties [Gray and Reuter
1993]. A local transaction is a transaction that involves a sequence of actions
at one site that has no interactions with other sites. A local transaction also
satisfies the classical ACID properties.

Figure 1 shows two business activities, each of which has actions that involve
a single data item. Those actions are encapsulated in local transactions.

1.2 Preceding and Concluding Actions

For each data item, such as a database record, accessed by a business activity,
the first action of the business activity on that data item is a preceding action.
A preceding action imposes a constraint on the actions of the business activity,
and also on the data item for the duration of the business activity.

1096 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



Figure 1: Two business activities, A and B. Business activity A invokes actions
a1, a2, a3, a4 and a5 that are performed by multiple servers. Business activity B
invokes actions b1, b2, b3, b4, b5 and b6 that are performed by multiple servers.
Actions a1, a3, a5, b2, b4 and b5 all involve the same data item. The actions
are encapsulated in local transactions.

The constraint imposed by the preceding action must ensure that the actions
of the business activity on that data item commute with the actions of other
business activities on that same data item. In [Weihl 1988], Weihl demonstrated
that local commutativity of the actions of transactions on a data item suffices
to maintain global atomicity for transactions, as illustrated in Figure 2.

The actions of a business activity on a data item are followed by a conclud-
ing action which, typically, records the effects of the actions and removes the
constraints imposed by the preceding action.

The preceding and concluding actions are local to a single site and, indeed,
to a single data item. A local sequential order on preceding actions on each data
item individually suffices to guarantee commutativity and thus global atomicity.

The nature of the preceding action, and of the constraint imposed by that ac-
tion, depend on the nature of the data item. For many business processes of the
kind involved in Web Services, preceding actions and constraints are easily de-
signed. For example, a constraint might limit the actions of the business activity
to some specific amount of resources involving the data item. Correspondingly,
the constraint might reduce the resources available to other business activities.

1097Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



Figure 2: The commutativity of actions a1, a3 and a5 with actions b2, b4 and
b5 is exploited to complete business activity A before starting business activity
B, which illustrates how atomicity of business activities is provided by local
commutativity of actions.

In effect, the resources have been allocated to, or reserved for, that particular
business activity.

Commutativity, provided by the preceding and concluding actions, supports
the separation of business activities and facilitates the design of reliable business
activities and of recovery actions and abort actions. This commutativity-based
strategy:

– Is easy to understand and to program
– Matches existing business practices
– Allows increased concurrency
– Provides higher reliability
– Extends existing database systems and Web Services infrastructures.

1098 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



2 Implementing the Commutativity Strategy

There are two implementation methods for the preceding and concluding actions:
– An implicit method in which a client program invokes a server program to

perform an action. The client program is unaware of the commutativity strat-
egy used by the server program and of the preceding and concluding actions
in the server program. The client program and the server program operate as
if they were participating in a distributed transaction. The implicit method
bears some resemblance to the escrow transactional method [O’Neil 1986].

– An explicit method in which a client program invokes a server program to
perform an action. The client program is designed to accommodate the use
of the commutativity strategy, typically a reservation strategy, by the server
program and the reservation action that the server program employs. The
explicit method exposes more of the mechanisms to the client program.

2.1 The Explicit Method

The description here of the explicit method is deliberately abstract because an
implementation of the explicit method is rather tightly integrated into business
logic mechanisms, such as reservations, and into the messages and protocols of
the business logic, which are likely to be application specific. The explicit method
allows application programs to include additional business logic mechanisms
into the preceding and concluding actions, described below, such as a fee for
a reservation. More details of a specific explicit method based on reservations
can be found in [Zhao et al. 2005] and [Zhao et al. to appear].

We assume that a business activity has been started and has been assigned a
unique identifier. The client program, as a part of the business activity, invokes
an action to be performed by a server program in a request message that includes
the identifier of the business activity.

The server program receives the request message to perform the action, ex-
tracts the business activity identifier from the request, and determines whether
the server program is already participating in the business activity. If the server
program is not yet participating in the business activity, the server program ini-
tiates a preceding action before executing the requested action. The preceding
action also has a unique identifier, the reservation identifier.

The preceding action creates a record of the participation of the server pro-
gram in the business activity. That record contains:
– The identifier of the business activity
– The identifier of the preceding action
– The reservations of resources that the preceding action has made on behalf

of the business activity
– The actions the server program has performed for the business activity.

1099Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



The preceding action then examines the request to perform the action and
determines from the request which data items, or other resources, are involved in
the request. The preceding action also determines which reservations of the data
items or resources must be made to ensure that the action and other subsequent
actions of the business activity will commute with the actions of other business
activities. That commutativity is what ensures the atomicity and recoverability
of the business activity, as Weihl demonstrated [Weihl 1988].

The preceding action records the reservations in the record it created for its
participation in the business activity. It also records the reservations against the
data items or resources it reserved, to ensure that other preceding actions cannot
subsequently reserve those resources and that the actions of other business activ-
ities will commute with the actions of the business activity. Even though multiple
business activities may proceed concurrently, and even though multiple actions
may proceed concurrently, if several preceding actions involve the same data item
or the same resource, those preceding actions must be executed sequentially, so
that one preceding action can complete its reservations before another preceding
action can make reservations that involve the same data items or resources.

The preceding action in the server program communicates with the client
program that invoked the action, in order to offer the reservation. The server’s
offer may contain a time limit on the reservation. It may also contain a fee to be
charged for the reservation. Alternatively, the server program informs the client
program that insufficient resources are available and that the server program
cannot perform the action requested by the client program. Another possibility
is that the server program informs the client program that only some of the
requested resources are available and can be reserved for it.

The client program communicates with the server program to accept the
reservation. Alternatively, the client program might decline the reservation that
the server program offered, in which case the server removes the reservation from
the record and makes the resources available to other business activities or even
to this business activity, if it makes a subsequent request for the resource. It is
possible that, for some business activities, the acceptance is unnecessary, or that
both the offer of the reservation and its acceptance are unnecessary.

At this point, the server program can invoke the action that the client pro-
gram requested. Once the server program has performed the action, it records
the action and also the resources that the action has consumed.

As part of the business activity, the client program might invoke the server
program several times to perform actions that involve the same data item or
resource, with each such request including the business activity identifier. Such
actions are restricted to the resources that have been reserved for the business
activity. If an action requires additional instances of a resource, the client pro-

1100 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



gram must make an additional reservation with a corresponding preceding action
to reserve the additional resources before the action can be executed.

Once all of the actions associated with a particular preceding action have been
invoked, the client program confirms the actions associated with the preceding
action in the confirmation request, including the business activity identifier and
the reservation identifier. The confirmation request may be combined with a
request for an action on the data item or resource. Following the confirmation
request, the business activity cannot invoke further actions on the data item or
resource without another preceding action.

The client’s confirmation request causes the server program to invoke a con-
cluding action that determines which resources have been consumed by the ac-
tions of the business activity associated with the particular preceding action.
Resources that have not been consumed are restored, so that they become avail-
able to subsequent actions of the same business activity or different business
activities. Resources that have been consumed are removed, so that they are not
available to subsequent actions of the same or different business activities. The
record created to represent the participation of the server program in the busi-
ness activity is deleted, or possibly logged for subsequent auditing or for fault
recovery.

Alternatively, the client program might decide to cancel the actions associ-
ated with the preceding action. It then communicates that cancellation together
with the activity identifier and the preceding action (reservation) identifier to
the server program, which invokes the concluding action to cancel the actions
associated with the preceding action. Another possibility is that the reservation
time limits expire, in which case the server program also invokes a concluding
action to cancel the actions associated with the preceding action.

The concluding action to cancel the actions associated with the preceding
action determines, from the record for the business activity, which actions have
been performed. The concluding action invokes actions to reverse any effects
of actions subsequent to the preceding action. Because the actions commute, in
general it is easy to design and program actions to reverse the effects of an action
that has been taken. It is even possible that actions have no effects that must
be reversed. Once the effects of the actions have been reversed, the concluding
action deletes the reservations and restores the resources, so that they can be
reserved by subsequent actions of the same or different business activities. The
concluding action also deletes, or logs, the record that it had created for the
business activity.

The commutativity strategy does not preclude deadlocks that might arise
from the reservation of resources. Conventional deadlock detection, avoidance
and recovery strategies can be exploited or, alternatively, resource allocation
strategies specific to the business application might be employed.

1101Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



2.2 The Implicit Method

In the implicit method, the client program is unaware of the use of the commuta-
tivity strategy by the server program and of the preceding and concluding actions
in the server program. The client program and the server program operate as
if they were participating in a distributed transaction, using the protocols and
messages that they would use for such a distributed transaction. The implicit
method does, however, depend on operations that can be made to commute. For
example, operations that add or subtract values from a data field can commute,
while operations that assign values to such a data field cannot commute with
other similar operations on that data field.

When the client program sends a request message to the server program to
perform an action, it includes in its request a business activity context. The
business activity context contains a business activity identifier and the address
of the business activity coordinator. For the implicit method, the behavior of the
server program is substantially similar to the behavior described for the explicit
method, except for the differences noted below.

When the server program receives the request to perform the action, it es-
tablishes reservations of resources substantially as described above. However,
instead of communicating with the client program to offer a reservation, the
server program communicates with the business activity coordinator to register
its participation in the business activity. As part of that communication, it may
inform the coordinator of a time limit on the duration of the business activity.

Within the business activity, the client program may invoke the server pro-
gram several times to perform actions that involve a data item or resource, with
each such request including the context of the business activity. If an action
requires additional quantities of a resource, an additional reservation must be
made before the action can be executed or, alternatively, the server program
may communicate with the coordinator to cancel the reservation and abort the
business activity.

When the coordinator completes the business activity, it communicates with
each server that has registered its participation in the business activity. The
server performs the concluding action and sends its confirmation to the coordi-
nator. It is possible to use the classical two-phase commit protocol to complete
the business activity, but that would expose the participants to a risk of delay
and uncertainty in the event of coordinator failure. A one-phase commit protocol
suffices if the granting of the reservation by the server and the registration of
the server as a participant in the business activity is regarded as a promise by
the server that the actions involving those resources and the concluding actions
will be performed, as such a promise would be regarded in conventional business
practice.

1102 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



3 Evaluation of the Commutativity Strategy

We have performed several analyses to evaluate the commutativity strategy in
comparison with the extended transactions strategy with compensating trans-
actions, and the distributed transactions strategy based on two-phase commit
and conservative locking. The analyses apply to both the explicit method and
the implicit method, described above. More complete details of the performance
analyses are given in [Zhao et al. to appear].

Figures 3(a) and 3(b) show the probabilities of potential database inconsis-
tency for the commutativity strategy and the extended transactions strategy
with compensating transactions. Concluding actions and compensating trans-
actions are assumed to incur the same fault rate as regular transactions. The
commutativity strategy has superior performance because there are fewer addi-
tional transactions for each fault recovery. It is our assessment that the difference
in the probabilities that the databases are left in a potentially inconsistent state
presents a decisive advantage for the commutativity strategy.

If the distributed transactions strategy based on two-phase commit and con-
servative locking is used instead of the extended transactions strategy with com-
pensating transactions, the risk of inconsistency is reduced but there is an in-
creased risk that data will be locked for an arbitrarily long period of time due
to a fault.

We have also investigated the probability density functions (pdfs) for the
duration of a business activity with delays due to lock contention, for both the
commutativity strategy and the transactional locking strategy.

Figure 4 shows the pdfs for the duration of a business activity for different
values of lock contention. When the probability of lock contention is low, the
pdfs for the duration of a business activity using transactional locking are sub-
stantially as expected, and the effects of delays due to contention for a single
lock and for two locks are clearly visible. As the probability of contention for a
lock increases, the business activities are delayed, locks are held longer, delays
due to lock contention are longer, and the probability that a business activity
claims a lock that is already held by another business activity increases. The
resulting pdfs have long tails and, thus, there is a high probability of lengthy
delays for the business activity.

It is worth noting that, for transactional locking, there are probabilities for
lock contention for which the system is not stable, representing unbounded delays
and essentially no progress for the business activity. Such lock contention and
instability leads to system collapse under heavy load.

Also shown in Figure 4 are pdfs for the duration of a business activity for
the commutativity strategy. It is evident that even high probabilities of lock
contention do not result in substantial delays for the business activity, because
locks are held only briefly during the preceding and concluding actions and are

1103Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



0 1 10 102 103 104 105 106 107 108 109

Number of Business Activities

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

b
a
b

il
it

y
th

a
t

d
a
ta

b
a
s
e

b
e
c
o

m
e
s

p
o

te
n

ti
a
ll
y

in
c
o

n
s
is

te
n

t

10-3

10-4

(a) Commutativity strategy.

0 1 10 102 103 104 105 106 107 108 109

Number of Business Activities

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

b
a

b
il

it
y

th
a

t
d

a
ta

b
a

s
e

b
e

c
o

m
e

s
p

o
te

n
ti

a
ll

y
in

c
o

n
s

is
te

n
t

10-3 10-4 10-5

10-6

(b) Compensating transactions strategy.

Figure 3: The probability that the databases are left in a potentially inconsis-
tent state after increasing numbers of business activities for the commutativity
strategy and the compensating transactions strategy.

not held for the full duration of the business activity. In summary, the commu-
tativity strategy is more resilient to high loads and high probabilities of lock
contention than the transactional locking strategy.

If, instead of distributed transactions based on conservative transactional
locking, local transactions and compensating transactions are used, the concur-
rency achieved is substantially equivalent to the concurrency achieved for the
commutativity strategy.

1104 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



Figure 4: The probability density functions for the duration of a business activ-
ity with delays due to lock contention, for the commutativity strategy and the
transactional locking strategy.

4 Related Work

Atomic transactions [Gray and Reuter 1993], with their associated concurrency
control mechanisms [Bernstein et al. 1987], provide strong properties, the ACID
properties, that allow the development of enterprise applications that are reliable
and efficient. In [Weihl 1988] [Weihl 1989] [Fekete et al. 1990] [Weihl 1993],
Weihl and his associates demonstrated that local commutativity of the actions of
transactions on a data item suffices to maintain global atomicity for transactions.
Our work is based on the work of Weihl.

Several researchers have investigated extended transaction models with the
aim of providing greater flexibility and higher concurrency than traditional trans-
actions with conservative concurrency control, by relaxing the traditional ACID
properties.

The open nested transactions model [Weikum 1993] focuses on the compati-
bility of operations on abstract data types. If an operation on a particular data
type is open, a new sphere of control can be spawned. Open nested transactions
are naturally hierarchical and allow the results of a subtransaction to be viewed
by other transactions before the top-level transaction is committed. Our strategy
can be viewed as a specific kind of open nested transactions.

Multi-level transactions [Weikum 1991] are a special case of open nested
transactions, where the transaction hierarchy is strictly layered. Likewise, the
sagas strategy [Garcia-Molina and Salem 1987] can be characterized as a kind of
open nested transactions. Sagas allow a long-running transaction to be executed

1105Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



as a number of ACID transactions. Sagas can see intermediate results of other
sagas, and rely on compensating transactions to handle exceptions and to provide
relaxed ACID properties for long-running transactions. The work of Garcia-
Molina and Salem has lead directly to the strategies based on compensating
transactions that we seek to improve.

In contrast, the traditional nested transactions [Lynch 1983] are closed nested
transactions, where the sphere of control of a closed operation is its parent
operation. Such transactions have the goal of ensuring atomicity, even if some
of the operations fail, by exploiting the hierarchical structure.

The escrow transactional method [O’Neil 1986] bears some similarity to reser-
vations and is one of the inspirations for our work. However, for distributed
transactions, the escrow transactional method relies on the two-phase commit
protocol. Moreover, it must be implemented as an integral part of a database
system which, consequently, must understand the nature of the applications.
Thus, its use has been limited.

The ConTract model [Wachter and Reuter 1992] is intended for defining and
controlling business activities at a level above the level of atomic transactions.
It addresses issues such as persistency, consistency, recovery, synchronization,
cooperation, and the use of assertions as invariants on entry to and exit from
business activities.

Other strategies [Barga et al. 2004] that provide stronger properties for long
running transactions focus on recovery by ensuring that all operations are re-
peatable. Repeatability depends on strict concurrency control. Such strategies
can be used in conjunction with the commutativity or reservation strategies.

Web Services standards have been developed to extend transactions into
the domain of Web Services. The Atomic Transactions Specification [Cabrera
et al. 2005a] provides classical distributed atomic transactions based on two-
phase commit. The Business Activity Framework [Cabrera et al. 2005b] provides
greater flexibility with the aim of supporting different kinds of business activities.
The protocols in the Business Activity Framework are not explicitly two-phase,
and depend on compensating transactions to handle exceptions and faults.

The Tentative Hold Protocol (THP) [Roberts and Srinivasan 2001] [Roberts
et al. 2001], which has been considered for Web Services composition [Limthan-
maphon and Zhang 2004], is used to exchange information between enterprises
before a transaction begins. Unlike a reservation protocol, THP allows multiple
clients to hold the same resource temporarily. It is possible that one client places
an order for a resource when another client has already taken the resource. In
this case, the business activity must be rolled back, and the client must apply a
compensating transaction to cancel the committed transaction.

Other researchers [Fekete et al. 2003] [Greenfield et al. 2003a] [Greenfield et
al. 2003b] have also focused on maintaining consistency in loosely-coupled dis-

1106 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



tributed environments. They have proposed a language to express consistency
conditions, tools to check whether the system maintains consistency, and guid-
ance in using the infrastructure.

Related to a reservation protocol, but more expansive, is the protocol of [Ginis
and Chandy 2000] for reserving resources in a free market. In their protocol,
a consumer makes timed-reservation requests to the service providers in the
form of purchasing options for using resources that the service providers supply.
However, their protocol is not necessarily appropriate for implementing loosely-
coupled, long-running business activities for which our strategy is intended.

5 Conclusion

The current direction of Web Services faces the danger of losing many of the
advantages provided to enterprise computing by the ACID properties of atomic
transactions. Business activities incur the risk of long delays and locked data
when using the distributed transaction strategy based on two-phase commit and
conservative locking, and the risk of inconsistency between databases when using
the extended transactions strategy based on compensating transactions.

We have presented a strategy for achieving atomicity for loosely-coupled,
long-running business activities. The strategy is derived from the work of Weihl,
who demonstrated that local commutativity of operations on each data item
suffices to maintain global atomicity for transactions. We have described an im-
plicit protocol that can be hidden from the applications, and an explicit protocol
that makes reservations of resources visible to the applications. The presented
strategy can be used in conjunction with existing Web Services infrastructures,
and is compatible with existing business practices.

References

[Barga et al. 2004] Barga, R., Lomet, D, Shegalov, G., Weikum, G.: “Recovery
Guarantees for Internet Applications”; ACM Transactions on Internet Technol-
ogy, 4 3 (2004) 289-328.

[Bernstein et al. 1987] Bernstein, P. A., Hadzilacos, V, Goodman, N.: “Concur-
rency Control and Recovery in Database Systems”; Addison Wesley (1987).

[Cabrera et al. 2005a] Cabrera, L. F., Copeland, G., Feingold, M., Freund,
T., Johnson, J., Kaler, C., Klein, J., Langworthy, D., Nadalin, A., Orchard,
D., Robinson, I., Storey, T., Thatte, S.: “Web Services Atomic Transactions”;
http://download.boulder.ibm.com/ibmdl/pub/software/dw/library/WS-Atomic
Transaction.pdf.

1107Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



[Cabrera et al. 2005b] Cabrera, L. F., Copeland, G., Freund, T., Klein, J.,
Langworthy, D., Leymann, F., Robinson, I., Storey, T., Thatte, T.: “Web Ser-
vices Business Activity Framework”; http://download.boulder.ibm.com/ibmdl
/pub/software/dw/library/WS-BusinessActivity.pdf.

[Champion et al. 2002] Champion, M., Ferris, C., Newcomer, E., Orchard, D.:
“Web Services Architecture”; http://www.w3c.org/TR/2002/WD-ws-arch-
20021114/.

[Fekete et al. 2003] Fekete, A., Greenfield, P., Kuo, D., Jang, J.: “Transactions in
Loosely Coupled Distributed Systems”; Proc 14th Australasian Database Con-
ference, Adelaide, Australia (2003) 7-12.

[Fekete et al. 1990] Fekete, A., Lynch, N., Merritt, M., Weihl. W,: “Commutati-
vity-Based Locking for Nested Transactions”; Journal of Computer and System
Sciences, 41 (1990) 65-156.

[Garcia-Molina and Salem 1987] Garcia-Molina, H., Salem, K.: “Sagas”; Proc
ACM SIGMOD Conference, San Francisco, CA (1987) 249-259.

[Ginis and Chandy 2000] Ginis, R., Chandy, K. M.: “Micro-Option: A Method
for Optimal Selection and Atomic Reservation of Distributed Resources in a
Free Market Environment”; Proc ACM Conference on Electronic Commerce,
New York, NY (2000) 207-214.

[Gray and Reuter 1993] Gray, J., Reuter, A.: “Transaction Processing: Concepts
and Techniques”; Morgan Kaufmann (1993).

[Greenfield et al. 2003a] Greenfield, P., Fekete, A., Jang, J., Kuo, D.: “Com-
pensation Is Not Enough”; Proc 7th IEEE International Enterprise Distributed
Object Computing Conference, Brisbane, Australia (2003) 232-239.

[Greenfield et al. 2003b] Greenfield, P., Fekete, A., Jang, J., Kuo, D.: “What
Are the Consistency Requirements for B2B Systems?”; Proc High Performance
Transaction Systems Workshop, Asilomar, CA (2003)

[Limthanmaphon and Zhang 2004] Limthanmaphon, B., Zhang, Y.: “Web Ser-
vice Composition Transaction Management”; Proc 15th Australasian Database
Conference, Conferences in Research and Practice in Information Technology,
Dunedin, New Zealand (2004) 171-179.

[Lynch 1983] Lynch, N.: “Multilevel Atomicity - A New Correctness Criterion
for Database Concurrency Control”; ACM Transactions on Database Systems,
8, 4 (1983) 484-502.

[O’Neil 1986] O’Neil, P. E.: “The Escrow Transactional Method”; ACM Trans-
actions on Database Systems, 11, 4 (1986) 405-430.

[OpenGroup 1992] The Open Group: “Distributed TP: The XA Specification”;
http://www.opengroup.org/public/pubs/catalog/c193.htm (1992).

1108 Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...



[Roberts and Srinivasan 2001] Roberts, J., Srinivasan, K.: “Tentative Hold Pro-
tocol Part 1: White Paper”; http://www.w3.org/TR/tenthold-1.

[Roberts et al. 2001] Roberts, J., Collier, T., Malu, P., Srinivasan, K.: “Ten-
tative Hold Protocol Part 2: Technical Specification”; http://www.w3.org/TR/
tenthold-2.

[Skeen 1983] Skeen, D.: “A Formal Model of Crash Recovery in a Distributed
System”; IEEE Transactions on Software Engineering, 9, 3 (1983) 219-228.

[Wachter and Reuter 1992] Wachter, H., Reuter, A.: “The ConTract Model”;
Database Transaction Models for Advanced Applications, ed. Elmagarmid, A.
K., Morgan Kaufmann (1992) 219-263.

[Weihl 1988] Weihl, W. E.: “Commutativity-Based Concurrency Control for Ab-
stract Data Types”; IEEE Transactions on Computers, 37, 12 (1988) 1488-1505.

[Weihl 1989] Weihl, W. E.: “Local Atomicity Properties: Modular Concurrency
Control for Abstract Data Types”; ACM Transactions on Programming Lan-
guages and Systems, 11, 2 (1989) 249-282.

[Weihl 1993] Weihl, W. E.: “The Impact of Recovery on Concurrency Control”;
Journal of Computer and System Sciences, 47 (1993) 157-184.

[Weikum 1991] Weikum, G.: “Principles and Realization Strategies of Multi-
level Transaction Management”; ACM Transactions on Database Systems, 16,
1 (1991) 132-180.

[Weikum 1993] Weikum, G.: “Extending Transaction Management to Capture
More Consistency with Better Performance”; Proc 9th French Database Confer-
ence (1993).

[Zhao et al. 2005] Zhao, W., Moser, L. E., Melliar-Smith, P. M.: “A Reservation-
Based Coordination Protocol for Web Services”; Proc IEEE International Con-
ference on Web Services, Orlando, FL (2005) 49-56.

[Zhao et al. to appear] Zhao, W., Moser, L. E., Melliar-Smith, P. M.: “A Reserva-
tion-Based Extended Transaction Protocol”; IEEE Transactions on Parallel and
Distributed Systems (to appear).

1109Melliar-Smith P.M., Moser L.E.: Achieving Atomicity for Web Services ...


