
Using Visitor Patterns in Object-Oriented Action

Semantics

André Murbach Maidl
(Federal University of Paraná, Brazil

murbach@inf.ufpr.br)

Cláudio Carvilhe
(Catholic University of Paraná, Brazil

carvilhe@ppgia.pucpr.br)

Martin A. Musicante
(Federal University of Rio Grande do Norte, Brazil

mam@dimap.ufrn.br)

Abstract: Object-Oriented Action Semantics is a semantic framework for the defi-
nition of programming languages. The framework incorporates some object-oriented
concepts to the Action Semantics formalism. Its main goal is to obtain more readable
and reusable semantic specifications. ObjectOriented Action Semantics provides sup-
port for the definition of syntax-independent specifications, due to the way its classes
are written. In a previous work, a library of classes (called LFL) was developed to
improve specification reuse and to provide a way to describe semantic concepts, inde-
pendent from the syntax of the programming language. This paper aims to address
some problematic aspects of LFL, and presents a case study, where a specification is
built by using the Visitor Pattern technique. The use of this pattern allows a clear
separation between the syntax of a programming language and its different semantic
aspects.

Key Words: formal semantics, action semantics, object-oriented specifications.

Category: F.3.2, D.1.5

1 Introduction

Action Semantics [Mosses 1992, Watt 1991] is a formal framework for defining
the semantics of programming languages. A main goal of Action Semantics is
to provide a notation that is intuitive for programmers. This notation has been
used to describe the semantics of real programming languages and presents good
reusability and extensibility properties [Mosses and Musicante 1994]. However,
the standard Action Semantics lacks of some syntactic support for the definition
of libraries and reusable components [Gayo 2002].

Several approaches that introduce modularity to Action Semantics have been
proposed. Modular Action Semantics is presented in [Doh and Mosses 2001].
Their goal is to extend the Action Semantics notation to define modules. The
interpretation of modules introduces some new, potential, problems to the se-
mantics of the whole specification [Doh and Mosses 2001]. These problems are
related to the way the modules and their hierarchy are interpreted.

Journal of Universal Computer Science, vol. 13, no. 6 (2007), 891-919
submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07 © J.UCS

Based on the modular approach, an object-oriented view of Action Semantics
is proposed in [Carvilhe and Musicante 2003]. This approach is called Object-
Oriented Action Semantics (OOAS). Using OOAS it is possible to organize Ac-
tion Semantics descriptions into classes. OOAS does not have the problems of
Modular Action Semantics since the class hierarchy is taken into account for the
interpretation of a semantics description.

The LFL (Language Features Library) is a library of OOAS classes, proposed
in [Araújo and Musicante 2004]. Its goal is to aid in the creation of new OOAS
descriptions by composing and reusing classes. The main goal of LFL is to de-
fine generic classes to describe general semantic concepts. These classes can be
instantiated to be used in conjunction to the syntax of a specific programming
language. However, LFL introduced some syntactic problems to Object-Oriented
Action Semantics descriptions. In particular, the way in which generic classes
were defined is cumbersome, resulting in less readable specifications.

In this work, we propose LFLv2 (read LFL version 2), a new version of LFL to
solve the problematic issues in the original library. Moreover, we incorporate in
LFLv2 some of the ideas presented in [Mosses 2005, Iversen and Mosses 2005], in
order to separate the syntax of the programming language from the specification
of its semantics. In addition to it, we give examples of Object-Oriented Action Se-
mantics descriptions using the Language Features Library version 2 and also us-
ing the Visitor Pattern technique [Gamma et al. 1998, Appel and Palsberg 2003]
to improve the modularity aspects observed in the object-oriented approach.

This work is organized as follows: the next section briefly introduces Action
Semantics and OOAS. Section 3 sumarizes the LFL. In section 4 we introduce
the use of the Visitor Patterns technique, as well as LFLv2. A simple imperative
language is specified as a case study in section 5. Section 6 gives the conclusions
of this work.

2 Action Semantics and OOAS

Action Semantics [Mosses 1992, Watt 1991] is a formal framework developed
to improve the readability and the way of describing programming languages
semantics. The framework is based on Denotational Semantics and Operational
Semantics. In Action Semantics, semantic functions specify the meaning of the
phrases of a language using actions. These actions represent the denotation of
the language phrases. The Action Notation is defined operationally and contains
the actions and action combinators needed in Action Semantics descriptions.

The three main mathematical entities that compose Action Semantics de-
scriptions are: actions, data and yielders. Actions can be performed to repre-
sent the concepts of many programing languages, such as: control, data flow,
scopes of bindings, effects on storage and interactive process. When an action

892 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

is performed it can produce one of the following outcomes: normal termination
(complete), exceptional termination (escape), unsuccessful termination (fail) or
non-termination (diverge). Action Notation provides some basic actions which
are written using English words in order to improve readability in semantics
specifications. These actions can be combined to obtain more complex actions.

A data notation is used in Action Semantics to provide the needed sorts of
data and operations related to them. These sorts of data can be: truth-values,
numbers, characters, strings, tuples, maps, tokes, messages, etc.

Yielders are entities that can produce data during an action performance.
Such produced data are called yielded data. The produced data depend on the
current information processed, for instance: the transient data passed, the bind-
ings received and the current storage state. Actions have facets, according to
their data flow:

– basic - deals with pure control flow;

– functional - deals with actions that process transient data;

– declarative - deals with actions that produce or receive bindings;

– imperative - deals with actions that manipulate the storage;

– reflective - deals with abstractions;

– communicative - deals with actions that operate under distributed sys-
tems.

Object Oriented Action Semantics (OOAS) [Carvilhe and Musicante 2003]
is a method to organize Action Semantics specifications. Its main goal is to
provide extensibility and reusability in Action Semantics by splitting semantic
descriptions into classes and treating semantic functions as methods.

In order to overcome the lack of modularity in Action Semantics, as reported
by [Gayo 2002], Object-Oriented Action Semantics introduces an extension of
the standard Action Notation. Class constructors and several other object-based
operators are available, to provide an object-oriented way of composing spec-
ifications. An Object-Oriented Action Semantics description is a hierarchy

of classes. Each class encapsulates some particular Action Semantics features.
Those features can be easily reused or specialized by other objects, using well-
known object-orientation concepts. As an example, we will take a look at a
simple command language, whose BNF is defined as follows:

Command ::= Identifier “:=” Expression Command “;” Command
“if” Expression “then” Command ‘else” Command “end-if”
“while” Expression “do” Command

893Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

This equation defines syntactic trees for commands, containing assignments,
sequences, conditionals and iterations. A simple strategy for defining an Object-
Oriented Action Semantics description of this language is to define Command as
an abstract class, and to define sub-classes of commands for each class of phrase.
A base-class can be written as:

Class Command
syntax:

Cmd
semantics:

execute : Cmd → Action
End Class

Notice that Command is the abstract class. Initially it introduces the syntactic
sort Cmd, detailed in the syntax section. Semantics part defines the semantics
of a Command, using standard Action Notation. In this case, it establishes that
a semantic function execute maps a Command to an Action. A plain semantic
function like execute is seen as a method.

The Command definition provides a foundation to specify the other classes.
We can now define every particular class as a sub-class of Command. Lets take a
look at the Selection class as follows:

Class Selection
extending Command
using E :Expression, C1:Command, C2:Command
syntax:

Cmd ::= “if” E “then” C1 “else” C2 “end-if”
semantics:

execute [[“if” E “then” C1 “else” C2 “end-if”]] =
evaluate E then execute C1 else execute C2

End Class

Selection is the specialized class. The extending directive states a particular
Command behavior (in this case, a conditional command). The using directive
makes other objects available.

A complete Object Oriented Action Semantics specification can be found in
[Carvilhe and Musicante 2003].

3 Language Features Library (LFL)

In programming languages specifications it is common to find pieces of the spec-
ification that have similar concepts. When it happens is interesting to reuse
these pieces instead of having duplicated code. The classes concept introduced
by Object-Oriented Action Semantics [Carvilhe and Musicante 2003] helps with

894 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

code reuse due to the common structure provided by organizing the specification
into classes.

In [Araújo and Musicante 2004], was proposed a library of classes which was
called LFL (Language Features Library). The function of LFL is to congregate
and organize classes, that have common specifications, into a structure and work
as a repository of classes for Object-Oriented Action Semantics descriptions.

A tree structure was adopted to represent the classes’ organization in LFL.
LFL was branched off into three main classes: Syntax, Semantics and Entity.

The node Semantics was the only one implemented in the initial version of
LFL and it also forked into another three nodes: Declaration, Command and
Expression. Pieces of code that manipulate bindings are treated in Declaration;
Command represents semantic definitions that are concerned about data flow
and the storage; while those classes for the manipulation of values belong to
Expression.

Each one of the above-defined nodes was split into two: Paradigm and Shared.
The first one is responsible to represent classes that contain features from a spe-
cific programming language paradigm, such as: Object-Oriented, Functional, Log-
ical and Imperative. The node Shared contains classes which represent features
that are common to more than one programming paradigm.

The following example illustrates the definition of a LFL class. This class
defines the semantics of an if-then-else command:

Class Selection
� Command implementing < execute : Command → Action >
Expression implementing < evaluate : Expression → Action > �

locating LFL.Semantics.Command.Shared
using E :Expression, C1:Command, C2:Command
semantics:

execute-if-then-else(E , C1, C2) =
evaluate [[E]] then
check(the given TruthValue is true) and then execute [[C1]]

or
check(the given TruthValue is false) and then execute [[C2]]

End Class

The Selection class provides the semantics of a selection command in a syntax-
independent style. The classes Command and Expression are passed as (higher
order) parameters. Notice that the generic arguments must comply with the re-
strictions defined by the implementing directive: They must provide some methods
with a specific type as sub-parameters.

The directive locating identifies the place where the class is located in the
LFL structure.

The programming language specifications which use the LFL are similar to
the plain Object-Oriented Action Semantics descriptions. Let us now exemplify

895Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

the use of the generic Selection class to define the semantics of a selection com-
mand:

Class MyCommand
syntax:

Com
semantics:

myexecute : Com → Action
End Class

Class MySelection
extending MyCommand
using E:MyExpression, C1:MyCommand, C2:MyCommand,

objSel:LFL.Semantics.Command.Shared.Selection �
MyCommand<myexecute>, MyExpression<myevaluate> �

syntax:
Com ::= “if” E “then” C1 “else” C2 “end-if”

semantics:
myexecute [[“if” E “then” C1 “else” C2 “end-if”]] =

objSel.execute-if-then-else(E, C1, C2)
End Class

The classes MyCommand and MySelection, as defined above, specify the be-
haviour of a selection command using the LFL. Notice that the LFL generic class
Selection is instantiated. The argument for this LFL class are the MyCommad and
MyExpression classes. Notice that the sub-parameters are also provided.

LFL brings an interesting concept to Object-Oriented Action Semantics: the
definition of semantic descriptions which are independent from the syntax of the
programming language. This definition uses the inclusion of classes provided by
a library of classes. A main issue with the way in which LFL is defined is that
its parameter-passing mechanism is obscure and let us back to the readability
problems found in other semantic descriptions of programming languages.

4 Visitor Patterns

In the previous sections we have presented Object-Oriented Action Semantics,
an approach for language definition using Action Semantics, and object-oriented
concepts. We also have presented LFL, a library of classes for Object-Oriented
Action Semantics descriptions. The former is based on the modularity in Ac-
tion Semantics by splitting descriptions into classes, the latter is a collection of
Object-Oriented Action Semantics classes to be used and instancied in different
programming languages projects.

As it is proposed in [Mosses 2005, Iversen and Mosses 2005], we are looking
for approaches that allow us to describe programming languages semantics syn-

896 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

tax independently. LFL clearly does it, however it has a main problematic issue,
related to the way instantiation of classes is done.

In this work, we propose some changes in LFL for its improvement, namely,
using LFL with no parameters passing. Visitor Patterns [Gamma et al. 1998]
are added to OOAS descriptions that use LFL in order to try to increase the
modularity aspects observed in the object-oriented framework. Visitor Patterns
are used to define operations that can be performed in the elements of an object
structure. They allow the definition of a new operation without changing the
classes of the elements in which these operate.

4.1 Object-Oriented Action Semantics and Visitor Patterns

Visitor Pattern is a common object-oriented technique used in compiler con-
struction. Visitor Pattern helps the compiler writer to provide several semantics
to the same syntactic tree.

We can use the Visitor Pattern technique to give an interpretation to each
syntax tree in OOAS. This interpretation is an (OOAS) object, which has a
visit method for each syntax tree defined. Each Object-Oriented Action Se-
mantics class should implement an accept method to serve as a hook for all
interpretations. When an accept method is called by a visitor, the correct visit

method is invoked. Such control can go back and forth between visitors and
classes [Appel and Palsberg 2003].

Informally, when the visitor calls the accept method it is in fact asking: “who
are you?”. The question is answered by the accept method as a result of the
calling of the correspondent visit method of the visitor. The following examples
illustrate how to use Object-Oriented Action Semantics with the Visitor Pattern.
Notice that each accept method takes a visitor as a parameter and that each
visit method takes a syntax tree object as a parameter.

Class Command
syntax:

Cmd
semantics:

accept : Visitor → Action
End Class

Class Selection
extending Command
using E :Expression, C1:Command, C2:Command
syntax:

Cmd ::= “if” E “then” C1 “else” C2 “end-if”
semantics:

accept V :Visitor = visit V
End Class

897Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Visitor
syntax:

Vis ::= Command
semantics:

visit : Command → Action
End Class

Class Interpreter
extending Visitor
semantics:

visit [[“if” E “then” C1 “else” C2 “end-if”]] =
evaluate E then accept C1 else accept C2

End Class

Notice that a visitor is in fact a Command syntax tree object encapsulated by
the Visitor class. When the accept method is performed, the correct visit method is
called to interpret the syntax tree argument that actually is a visitor. In section
2 the interpreter was implemented in the execute methods while now it is in
the Interpreter class. The evaluate method is still used in the traditional way of
Object-Oriented Action Semantics.

With the Visitor Patterns we can add new interpretations without editing
existing classes since that each class has its own accept method. In section 5 we
will see that accept and visit methods can be used with different names when
we need more than just one visitor, as was used in this section.

4.2 LFLv2 and Visitor Patterns

LFL is a good approach to be used as a programming language semantics descrip-
tion tool for specifying programming languages semantics syntax independently
since it has support for generic classes definitions [Araújo and Musicante 2004].
Nonetheless, the obscure LFL syntax took us back to the readable problems
found in semantic frameworks. An alternative way to inhibit parameters passing
in LFL is the use of abstractions of actions to specify the semantics of some
common concepts of programming languages.

Furthermore, we also propose the LFL usage just for semantic concepts.
It implies in the exclusion of the LFL nodes: Syntax, Semantics and Entity.
Thereby, we can bind the nodes Declaration, Command and Expression directly
to the main LFL class since we will use LFL just to represent semantic concepts.
The nodes Shared and Paradigm are maintained, as well as their respective
subdivisions. The former is concerned with constructs that commonly appear
in programming languages and the latter represents some specialized constructs
that appear in specific programming paradimgs.

898 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

As in the first version of the library, the set of classes is very reduced and
can be extended to support new classes. According to our proposal, the Selection

class example shown in section 3 would be written in the following way:

Class Selection
locating LFL.Command.Shared.Selection
using: Y1:Yielder, Y2:Yielder, Y3:Yielder
semantics:

if-then-else(Y1,Y2,Y3) = enact Y1 then enact Y2 else enact Y3

End Class

Now, LFL classes are more compact since they just define their own location
in the LFL hierarchy, the methods that describe the semantics of some concepts
of programming languages and the objects used in the specified methods.

Instead of using methods that have to be passed as parameters, each method
implemented by the new library of classes receives a number of abstractions
that are performed according to the language behavior that is being represented.
The enact action receives yielders that result in abstractions (and encapsulate
actions). These actions are performed independently from the methods described
in the programming language specification. Notice that the use of the Visitor
Pattern technique is something that is not tied to the new library. Althoug it
has been used since it might improve modularity in OOAS descriptions that use
LFL. Let us now see how to use the new LFL with the Visitor Pattern:

Class MyCommand
syntax:

Com
semantics:

myexecute : Visitor → Action
End Class

Class MySelection
extending MyCommand
using E :MyExpresssion, C1:MyCommand, C2:MyCommand
syntax:

Com ::= “if” E “then” C1 “else” C2 “end-if”
semantics:

myexecute V :Visitor = visit V
End Class

Class Visitor
using O :LFL
syntax:

Vis ::= MyCommand
semantics:

visit : MyCommand → Action
End Class

899Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Interpreter
extending Visitor
semantics:

visit [[“if” E “then” C1 “else” C2 “end-if”]] =
O .Command.Shared.Selection.execute-if-then-else(

closuse abstraction of (myevaluate E),
closuse abstraction of (myexecute C1),
closuse abstraction of (myexecute C2))

End Class

The classes are again defined as in Object-Oriented Action Semantics using
Visitor Patterns. The language syntax and the semantic function myexecute are
also defined in function of the visitors approach. In this way, the semantics
descriptions by the library usage are given in the visitor implementation.

The object O, defined in the Visitor class, represents all LFL classes and they
can be used due to the hierarchy of classes created by the library. The visit

method describes the semantics of the selection command used in the language
passing the abstractions to the execute-if-then-else method specified in LFL.

The specification above defines a language with static bindings. If the lan-
guage being described has dynamic bindings, the directives closure should be
taken from the specification.

The notation encapsulate X will be used in the rest of this paper as an abbre-
viation of closure abstraction of (X).

5 A case study

In this section we present the specification of a toy language called µ-Pascal.
This language is fairly similar to the Pascal language. µ-Pascal is an impera-
tive programming language containing basic commands and expressions. The
µ-Pascal language will be specified using Object-Oriented Action Semantics, the
new LFL proposed in section 4.2 and using the Visitor Pattern technique.

5.1 Abstract syntax

Now we present the abstract syntax for the µ-Pascal language:

(1) Program ::= “begin” Declaration “;” Command “end”
(2) Declaration ::= “var” Identifier “:” Type 〈= Expression 〉?

“const” Identifier “:” Type “=” Expression
Declaration “;” Declaration

(3) Type ::= “boolean” “integer”
(4) Command ::= Identifier “:=” Expression Command “;” Command

“if” Expression “then” Command 〈 “else” Command 〉? “end-if”
“while” Expression “do” Command

(5) Expression ::= “true” “false” Numeral Identifier
Expression 〈 “+” “-” “*” “<” “=” 〉 Expression

900 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

(6) Identifier ::= Letter 〈Letter Digit 〉∗
(7) Numeral ::= Digit 〈Digit 〉∗

In the above abstract syntax we have defined that a Program is a sequence
of Declaration and Command. Declarations can be integer or boolean constants
and variables. Assignments, sequences, selections and iterations are defined as
Commands. Expressions might be arithmetical or logical.

5.2 µ-Pascal semantics using LFLv2 and Visitor Patterns

In this section we will demonstrate the use of the Object-Oriented Action Se-
mantics approach with the advantages of the new LFL and the Visitor Pattern
technique.

First of all, we will define the basic classes that implement some particular
concepts of the example language, like identifiers, numerals and types. After
that we will exemplify how declarations, commands and expressions are treated.
Then we will show how the visitors can join all together, giving the semantics
of the language.

Class Identifier
syntax:

Id ::= letter [letter digit]∗

End Class

The class Identifier has just the syntactic part since it is used only for repre-
senting the name of variables and constants used in the language.

Class Numeral
syntax:

N ::= digit+

semantics:
valuation : N → integer

End Class

In the class Numeral we define what kind of numbers are used by the example
language. In this case the numbers are integers and the method valuation is defined
to map a numeral received as a parameter to its respective integer. Notice that
the valuation parameter is a syntactic entity.

Class Type
syntax:

T ::= “boolean” “integer”
semantics:

sort-of : T → Sort
sort-of [[“boolean”]] = truth-value
sort-of [[“integer”]] = integer

End Class

901Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

The Type class is used to define that the language data types can be boolean

or integer. The method sort-of maps the language data types to their correct
Object-Oriented Action Semantics sorts.

Hence, we will see the methods parameters as visitors that carries syntactic
entities. In fact, the syntactic entities are encapsulated by the visitor objects
and they will be interpreted by the visitor which implements the semantics of
the encapsulated syntax.

Class Declaration
syntax:

Dec
semantics:

elaborate : Visitor → Action
End Class

The class Declaration works as an abstract class. It introduces the sort Dec

which will be redefined in the sub-classes to represent each Declaration. Both
methods accept and visit, from section 4, are represented by elaborate and visitDec.
Notice that Declaration is just an abstract class, reason why visitDec appears just
in its sub-classes.

Class Variable
extending Declaration
using I :Identifier, E :Expression, T :Type
syntax:

Dec ::= “var” I “:” T [“=” E]
semantics:

elaborate V :Visitor = visitDec V
End Class

Constructing the declarations classes hierarchy, now we have defined the
Variable class. The Dec token is redefined giving the variables declarations syntax
used in the language. The elaborate method is overloaded to express the semantics
of a variable declaration using the visitDec method.

The method elaborate takes a visitor as an argument and through the method
visitDec gives the declaration performance in the Visitor class. The declaration is
possible to be performed in the Visitor class since V represents the encapsulated
syntax. In this manner, the syntax carried by the visitor object can be checked
by the correct visit method.

Class Command
syntax:

Cmd
semantics:

execute : Visitor → Action
End Class

902 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

We now have the Command class. In this class we introduce the syntactic sort
Cmd which will be redefined in Command sub-classes. In commands we will define
the accept method as execute and the visit method as visitCmd. Notice that, like
Declaration, Command also is an abstract class.

Class While
extending Command
using C :Command, E :Expression
syntax:

Cmd ::= “while” E “do” C
semantics:

execute V :Visitor = visitCmd V
End Class

In the While class we express how a while-loop works in the language. To
achieve the before mentioned result, we have created the super-class Command

and the sub-class While. Using Visitor Patterns, in the abstract class we specify
just the abstract method which defines that a visitor results in an action. A
command is correctly executed by calling the execute method with the command
syntax. The correct semantics will be given by the visitCmd method since it takes
the visitor object and interprets the syntax, that is in the object, in the Visitor

class.

Class Expression
syntax:

Exp
semantics:

evaluate : Visitor → Action
End Class

Again we have an abstract class, like Declaration and Command. The Expression

class is the super-class for the expressions definitions. The accept and visit meth-
ods will be represented by evaluate and visitExp, respectively. The sub-classes of
Expression can be defined similarly to Declaration and Command sub-classes defini-
tions. Now we will see how the Visitor class works.

Class Visitor
using: O :LFL
syntax:

Vis ::= Declaration Command Expression
semantics:

visitDec : Declaration → Action
visitCmd : Command → Action
visitExp : Expression → Action

End Class

903Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

In the Visitor class we specify all the signatures of the visit methods which
represent the maps of a class, containing a syntactic tree that will be visited, to
an action. We also specify that a Visitor may carry a Declaration, a Command or an
Expression syntax tree object. The Object-Oriented Action Semantics descriptions
are given in the Interpreter class using the methods provided by LFL. The LFL
methods are accessed through the object O which is a LFL instance.

Class Interpreter
extending Visitor
semantics:

visitDec [[“var” I “:” T]] =
O.Declaration.Paradigm.Imper.VarDec.elaborate-variable(

I , sort-of T)
visitDec [[“var” I “:” T “=” E]] =

O .Declaration.Paradigm.Imper.Variable.elaborate-variable(
I , sort-of T , encapsulate evaluate E)

...
visitCmd [[C1 “;” C2]] =

O .Command.Shared.Sequence.execute-sequence(
encapsulate execute C1, encapsulate execute C2)

...
visitCmd [[“while” E “do” C]] =

O .Command.Shared.While.execute-while(
encapsulate evaluate E , encapsulate execute C)

...
visitExp [[N]] =

give valuation N
visitExp [[I]] =

O .Expression.Shared.Identifier.evaluate-identifier(I)
visitExp [[E1 “+” E2]] =

O .Expression.Shared.Sum.evaluate-sum(
encapsulate evaluate E1, encapsulate evaluate E2)

...
End Class

Notice that the visitors visit a syntax tree, specified in the Object-Oriented
Action Semantics classes, and give the correct semantics to the syntax tree vis-
ited. It is possible by calling the accept method, this method takes a visitor
represented by a syntax tree object and then the correct visit method will be
performed to give the semantics of the syntax tree carried by the visitor.

The semantics expressed by the visit methods might be merely an action,
like in the numeral valuation, just a LFL method that results in an action,
like in the identifiers evaluation, or we can use accept calls to visit the needed
syntactic entities to be used with LFL methods; in the example the actions
are encapsulated for generating abstractions and these abstractions are passed

904 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

to some LFL method that implements the desired semantics. We can also pass
tokens and sorts to the new LFL [Maidl 2007].

Class Micro-Pascal
using D :Declaration, C :Command
syntax:

Prog ::= “begin” D “;” C “end”
semantics:

run : Prog → Action
run [[“begin” D “;” C “end”]] = elaborate D hence execute C

End Class

Since Object-Oriented Action Semantics allow us to organize the specification
into classes, we can define a main class. The main class in this example is the
Micro-Pascal class. In this class we specify the syntax of a µ-Pascal program
and that it is mapped to an action. The declaration semantics and command
semantics are given by calling their accept methods and passing their respective
visitors.

The complete case study can be cheked in the appendix B. A version of it
using just plain OOAS and Visitor Patterns is also provided in the appendix A.

6 Conclusions

Object-Oriented Action Semantics was designed to improve modularity in Action
Semantics descriptions. LFL has improved the reusability in the object-oriented
approach and also has provided a way to describe the semantics of programming
languages in a syntax-independent style. The problems found in the first version
of LFL were solved in the new version of it, through the use of abstractions of
actions, instead of passing classes and methods as arguments to LFL classes.
The library of classes was also restructured to implement only those pieces that
are concerned with representing the semantics of programming languages.

LFL became more concise and simplified due to the use of the reflective facet.
The use of the Visitor Pattern improves modularization in OOAS. Notice that
this pattern can be used either with just plain OOAS or with OOAS plus LFL.
Since the definition of the Visitor Pattern is inherently related to the object-
oriented paradigm, the use of this pattern in conjunction with an object-oriented
specification language, like OOAS, leads to clear and modular specifications.

In [Maidl 2007], the author proposes an implementation of Object-Oriented
Action Semantics in Maude and implements LFLv2 as a case study of it.

As future work, we would investigate the use of the Visitor Pattern technique
for compiler generation from OOAS descriptions and we also would trace a care-
ful comparsion between LFLv2 and the constructive approach [Mosses 2005,
Iversen and Mosses 2005].

905Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

The main contributions of this work can be summarized as:

– Modularity is improved. The use of Object-Oriented Action Semantics and
Visitor Patterns provide a new view of modularity in semantic descriptions
of programming languages.

– LFL is patched. We propose a cleaner and usable library of classes by its
own restructuration and for the fact of changing arguments by abstractions.

– LFLv2 can help to describe programming languages syntax-independently.
The new hierarchy of classes made this possible.

Acknowledgments

We would like to thank the anonymous referees for their constructive comments
and also Flávia Erika Shibata for her careful English review.

References

[Appel and Palsberg 2003] Appel, A. W. and Palsberg, J. (2003). Modern Compiler
Implementation in Java. Cambridge University Press, New York, NY, USA.

[Araújo and Musicante 2004] Araújo, M. and Musicante, M. A. (2004). Lfl: A library
of generic classes for object-oriented action semantics. In XXIV International Con-
ference of the Chilean Computer Science Society (SCCC 2004), 11-12 November
2004, Arica, Chile, pages 39–47. IEEE Computer Society.

[Carvilhe and Musicante 2003] Carvilhe, C. and Musicante, M. A. (2003). Object-
oriented action semantics specifications. Journal of Universal Computer Science,
9(8):910–934.

[Doh and Mosses 2001] Doh, K. and Mosses, P. (2001). Composing programming lan-
guages by combining action semantics modules. In First Workshop on Language
Descriptions, Tools and Applications.

[Gamma et al. 1998] Gamma, E., Vlissides, J., Johnson, R., and Helm, R. (1998).
Design Patterns CD: Elements of Reusable Object-Oriented Software, (CD-ROM).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Gayo 2002] Gayo, J. E. L. (2002). Reusable semantic specifications of programming
languages. In SBLP 2002 - VI Brazilian Symposium on Programming Languages.

[Iversen and Mosses 2005] Iversen, J. and Mosses, P. D. (2005). Constructive action
semantics for core ML. IEE Proceedings Software. Special issue on Language Def-
initions and Tool Generation. Also in Brics RS-04-37 (BRICS, Aarhus University,
Denmark).

[Maidl 2007] Maidl, A. M. (2007). A maude implementation for object-oriented action
semantics. Master’s thesis, Universidade Federal do Paraná. (In Portuguese).

[Mosses 1992] Mosses, P. (1992). Action semantics. In Action Semantics. Cambridge
University Press.

[Mosses 2005] Mosses, P. D. (2005). A constructive approach to language definition.
Journal of Universal Computer Science, 11(7):1117–1134.

[Mosses and Musicante 1994] Mosses, P. D. and Musicante, M. A. An action seman-
tics for ML concurrency primitives. In Proc. FME’94 (Formal Methods Europe,
Symposium on Industrial Benefits of Formal Methods). Lect. Notes Comp. Sci. 873,
Springer, Berlin (Oct 1994).

[Watt 1991] Watt, D. (1991). In Programming Language Syntax and Semantics. Pren-
tice Hall International (UK).

906 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

A µ-Pascal using OOAS + Visitor Patterns

Class Identifier
syntax:

Id ::= letter [letter digit]∗

End Class

Class Numeral
syntax:

N ::= digit+

semantics:
valuation : N → integer

End Class

Class Type
syntax:

T ::= “boolean” “integer”
semantics:

sort-of : T → Sort
sort-of [[“boolean”]] = truth-value
sort-of [[“integer”]] = inteter

End Class

Class Declaration
syntax:

Dec
semantics:

elaborate : Visitor → Action
End Class

Class Constant
extending Declaration
using I :Identifier, E :Expression, T :Type
syntax:

Dec ::= “const” I “:” T “=” E
semantics:

elaborate V :Visitor = visitDec V
End Class

Class Variable
extending Declaration
using I :Identifier, E :Expression, T :Type
syntax:

Dec ::= “var” I “:” T [“=” E]
semantics:

elaborate V :Visitor = visitDec V
End Class

907Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class VarSeq
extending Declaration
using D1:Declaration, D2:Declaration
syntax:

Dec ::= D1 “;” D2

semantics:
elaborate V :Visitor = visitDec V

End Class

Class Command
syntax:

Cmd
semantics:

execute : Visitor → Action
End Class

Class Assign
extending Command
using I :Identifier, E :Expression
syntax:

Cmd ::= I “:=” E
semantics:

execute V :Visitor = visitCmd V
End Class

Class Selection
extending Command
using E :Expression, C1:Command, C2:Comando
syntax:

Cmd ::= “if” E “then” C1 [“else” C2] “end-if”
semantics:

execute V :Visitor = visitCmd V
End Class

Class While
extending Command
using C :Command, E :Expression
syntax:

Cmd ::= “while” E “do” C
semantics:

execute V :Visitor = visitCmd V
End Class

908 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Sequence
extending Command
using C1:Command, C2:Comando
syntax:

Cmd ::= C1 “;” C2

semantics:
execute V :Visitor = visitCmd V

End Class

Class Expression
syntax:

Exp
semantics:

evaluate : Visitor → Action
End Class

Class Sum
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “+” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

Class Subtraction
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “-” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

Class Product
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “*” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

909Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Number
extending Expression
using N :Numeral
syntax:

Exp ::= N
semantics:

evaluate V :Visitor = visitExp V
End Class

Class IdentifierExp
extendig Expression
using I :Identifier
syntax:

Exp ::= I
semantics:

evaluate V :Visitor = visitExp V
End Class

Class True
extending Expression
syntax:

Exp ::= “true”
semantics:

evaluate V :Visitor = visitExp V
End Class

Class False
extending Expression
syntax:

Exp ::= “false”
semantics:

evaluate V :Visitor = visitExp V
End Class

Class LessThan
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “<” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

910 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Equal
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “=” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

Class Visitor
syntax:

Vis ::= Declaration Command Expression
semantics:

visitDec : Declaration → Action
visitCmd : Command → Action
visitExp : Expression → Action

End Class

Class Interpreter
extending Visitor
semantics:

visitDec [[“const” I “:” T “=” E]] =
evaluate E
then
bind token I to the given value

visitDec [[“var” I “:” T]] =
allocate a cell [sort-of T]
then
bind token I to the given cell

visitDec [[“var” I “:” T “=” E]] =
evaluate E
and
allocate a cell [sort-of T]

then
bind token I to the given cell
and
store the given value in the given cell

visitDec [[D1 “;” D2]] =
elaborate D1

before
elaborate D2

visitCmd [[I “:=” E]] =
evaluate E
then
store the given value in the cell bound to I

911Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

visitCmd [[“if” E “then” C1 “end-if”]] =
evaluate E
then
execute C1

else
complete

visitCmd [[“if” E “then” C1 “else” C2 “end-if”]] =
evaluate E
then
execute C1

else
execute C2

visitCmd [[“while” E “do” C]] =
unfolding
evaluate E
then
execute C and then unfold else complete

visitCmd [[C1 “;” C2]] =
execute C1

and then
execute C2

visitExp [[E1 “+” E2]] =
evaluate E1

and
evaluate E2

then
give sum(the integer #1, the integer #2)

visitExp [[E1 “-” E2]] =
evaluate E1

and
evaluate E2

then
give difference(the integer #1, the integer #2)

visitExp [[E1 “*” E2]] =
evaluate E1

and
evaluate E2

then
give product(the integer #1, the integer #2)

visitExp [[N]] =
give valuation N

visitExp [[I]] =
give the value bound to token I
or
give the value stored in the cell bound to token I

912 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

visitExp [[“true”]] =
give true

visitExp [[“false”]] =
give false

visitExp [[E1 “<” E2]] =
evaluate E1

and
evaluate E2

then
give less(the integer #1, the integer #2)

visitExp [[E1 “=” E2]] =
evaluate E1

and
evaluate E2

then
give equal(the integer #1, the integer #2)

End Class

Class Micro-Pascal
using D :Declaration, C :Command
syntax:

Prog ::= “begin” D “;” C “end”
semantics:

run : Prog → Action
run [[“begin” D “;” C “end”]] =

elaborate D
hence
execute C

End Class

913Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

B µ-Pascal using OOAS + LFLv2 + Visitor Patterns

Class Identifier
syntax:

Id ::= letter [letter digit]∗

End Class

Class Numeral
syntax:

N ::= digit+

semantics:
valuation : N → integer

End Class

Class Type
syntax:

T ::= “boolean” “integer”
semantics:

sort-of : T → Sort
sort-of [[“boolean”]] = truth-value
sort-of [[“integer”]] = integer

End Class

Class Declaration
syntax:

Dec
semantics:

elaborate : Visitor → Action
End Class

Class Constant
extending Declaration
using I :Identifier, E :Expression, T :Type
syntax:

Dec ::= “const” I “:” T “=” E
semantics:

elaborate V :Visitor = visitDec V
End Class

Class Variable
extending Declaration
using I :Identifier, E :Expression, T :Type
syntax:

Dec ::= “var” I “:” T [“=” E]
semantics:

elaborate V :Visitor = visitDec V
End Class

914 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class VarSeq
extending Declaration
using D1:Declaration, D2:Declaration
syntax:

Dec ::= D1 “;” D2

semantics:
elaborate V :Visitor = visitDec V

End Class

Class Command
syntax:

Cmd
semantics:

execute : Visitor → Action
End Class

Class Assign
extending Command
using I :Identifier, E :Expression
syntax:

Cmd ::= I “:=” E
semantics:

execute V :Visitor = visitCmd V
End Class

Class Selection
extending Command
using E :Expression, C1:Command, C2:Comando
syntax:

Cmd ::= “if” E “then” C1 [“else” C2] “end-if”
semantics:

execute V :Visitor = visitCmd V
End Class

Class While
extending Command
using C :Command, E :Expression
syntax:

Cmd ::= “while” E “do” C
semantics:

execute V :Visitor = visitCmd V
End Class

915Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Sequence
extending Command
using C1:Command, C2:Comando
syntax:

Cmd ::= C1 “;” C2

semantics:
execute V :Visitor = visitCmd V

End Class

Class Expression
syntax:

Exp
semantics:

evaluate : Visitor → Action
End Class

Class Sum
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “+” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

Class Subtraction
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “-” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

Class Product
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “*” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

916 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Number
extending Expression
using N :Numeral
syntax:

Exp ::= N
semantics:

evaluate V :Visitor = visitExp V
End Class

Class IdentifierExp
extendig Expression
using I :Identifier
syntax:

Exp ::= I
semantics:

evaluate V :Visitor = visitExp V
End Class

Class True
extending Expression
syntax:

Exp ::= “true”
semantics:

evaluate V :Visitor = visitExp V
End Class

Class False
extending Expression
syntax:

Exp ::= “false”
semantics:

evaluate V :Visitor = visitExp V
End Class

Class LessThan
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “<” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

917Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

Class Equal
extending Expression
using E1:Expression, E2:Expression
syntax:

Exp ::= E1 “=” E2

semantics:
evaluate V :Visitor = visitExp V

End Class

Class Visitor
using: O :LFL
syntax:

Vis ::= Declaration Command Expression
semantics:

visitDec : Declaration → Action
visitCmd : Command → Action
visitExp : Expression → Action

End Class

Class Interpreter
extending Visitor
semantics:

visitDec [[“const” I “:” T “=” E]] =
O .Declaration.Paradigm.Imper.Constant.elaborate-constant(

I , sort-of T)
visitDec [[“var” I “:” T]] =

O .Declaration.Paradigm.Imper.VarDec.elaborate-variable(
I , sort-of T)

visitDec [[“var” I “:” T “=” E]] =
O .Declaration.Paradigm.Imeper.Variable.elaborate-variable(

I , encapsulate evaluate E)
visitDec [[D1 “;” D2]] =

O .Declaration.Shared.VariableSequence(
encapsulate elaborate D1,
encapsulate elaborate D2)

visitCmd [[I “:=” E]] =
O .Command.Paradigm.Imper.Assign.execute-assignment(

I , ecapsulate evaluate E)
visitCmd [[“if” E “then” C1 “end-if”]] =

O .Command.Shared.Selection.execute-if-then(
encapsulate evaluate E , encapsulate execute C1)

visitCmd [[“if” E “then” C1 “else” C2 “end-if”]] =
O .Command.Shared.Selection.execute-if-then-else(

encapsulate evaluate E , encapsulate execute C1,
encapsulate execute C2)

918 Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

visitCmd [[“while” E “do” C]] =
O .Command.Shared.While(

encapsulate evaluate E , encapsulate execute C)
visitCmd [[C1 “;” C2]] =

O .Command.Shared.Sequence.execute-sequence(
encapsulate execute C1, encapsulate execute C2)

visitExp [[E1 “+” E2]] =
O .Expression.Shared.Sum.evaluate-sum(

encapsulate evaluate E1, encapsulate evaluate E2)
visitExp [[E1 “-” E2]] =

O .Expression.Shared.Subtract.evaluate-sub(
encapsulate evaluate E1, encapsulate evaluate E2)

visitExp [[E1 “*” E2]] =
O .Expression.Shared.Product.evaluate-prod(

encapsulate evaluate E1, encapsulate evaluate E2)
visitExp [[N]] =

give valuation N
visitExp [[I]] =

O .Expression.Shared.Identifier.evaluate-identifier(I)
visitExp [[“true”]] =

O .Expression.Shared.True.evaluate-true()
visitExp [[“false”]] =

O .Expression.Shared.False.evaluate-false()
visitExp [[E1 “<” E2]] =

O .Expression.Shared.LessThan.evaluate-less-than(
encapsulate evaluate E1, encapsulate evaluate E2)

visitExp [[E1 “=” E2]] =
O .Expression.Shared.Equality.evaluate-equality(

encapsulate evaluate E1, encapsulate evaluate E2)
End Class

Class Micro-Pascal
using D :Declaration, C :Command
syntax:

Prog ::= “begin” D “;” C “end”
semantics:

run : Prog → Action
run [[“begin” D “;” C “end”]] =

elaborate D
hence
execute C

End Class

919Maidl A.M., Carvilhe C., Musicante M.A.: Using Visitor Patterns ...

