
RE-AspectLua - Achieving Reuse in AspectLua

Thaís Batista
(Federal University of Rio Grande do Norte, Brazil

thais@ufrnet.br)

Maurício Vieira
(Federal University of Rio Grande do Norte, Brazil

mauricio.vieira@gmail.com)

Abstract: AspectLua is a Lua-based dynamic aspect-oriented language that follows the original
AspectJ concepts. It suffers from the same problem of AspectJ-like languages with regard to
limitations in terms of aspect reusability, modularity and heterogeneous interaction. In this
paper we propose RE-AspectLua, a new version of AspectLua that combines aspect interfaces
with abstract joinpoints and the use of a connection language, the Lua language, to instantiate,
at application composition time, the abstract joinpoints. Thus, the connection language defines
the composition of reusable aspects with base code. Using these concepts RE-AspectLua
intends to break away from the syntactically manifest coding of aspects in which joinpoints are
hard-coded into aspects, thereby promoting general reusability and the heterogeneous
composition of an aspect with different base codes. In order to illustrate RE-AspectLua
concepts we present two case studies.

Keywords: AOP, Lua, dynamic aspects, reusability, heterogeneity
Categories: D.2.3, D.3.3

1 Introduction

Aspect-Oriented Programming (AOP) [kiczales 97] has emerged to modularize
elements that cut accross the basic decomposition modules of a system and that
traditional object-oriented programming cannot modularize. In order to modularize
such crosscutting concerns AOP introduces a new abstraction named aspect. The
modularization of these concepts aims to reduce development costs and to improve
comprehensibility, reusability and adaptability. AspectJ [Kiczales et al. 01] was a
pioneer aspect-oriented language that introduced a set of concepts: joinpoints, advice,
pointcuts and intertype declarations. The main problem of traditional AOP
approaches following AspectJ original concepts is that they promote a new
modularity mechanism but the internal aspect code contains a direct reference to the
element that the aspect crosscuts. The first drawback of this approach is that it limits
the aspect reuse in different context. As the aspect internal code is tightly associated
with the element that it crosscuts, it cannot be reused in other context, with other
elements. The second drawback is that the aspect is coupled to details of the base
code that the base coder programmer is free to change. The third drawback, also
related to the first one, is that the way that the aspect composes with other elements is
also fixed within the aspect code. Ideally, an aspect should compose with different
elements, in a different way. This heterogeneous composition ability is essential to

Journal of Universal Computer Science, vol. 13, no. 6 (2007), 786-805
submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07 © J.UCS

promote aspect reusability. Reusability can be defined as the ability to reuse the
aspect behaviour (advice) in different compositions. Heterogeneity is the ability to use
the aspect behaviour in a different way for each composition where the aspect is
applied.

AspectLua [Cacho et al. 05] is an AOP language based on the Lua programming
language [Ierusalimschy 06]. Lua is an interpreted and dynamically typed language.
These features introduce a different style for aspect-oriented programming where
dynamism is a key issue, weaving is done at runtime and both the basic elements and
aspects can be inserted into and removed from the application at runtime. In addition,
the Lua philosophy is to be simple and small and AspectLua keeps this philosophy.
AspectLua is built upon a meta-object protocol, LuaMOP [Fernandes and Batista 04]
that provides an abstraction over the reflective features of Lua and allows application
methods and variables to be affected by the aspect definition. AspectLua follows
AspectJ concepts and, as a consequence, presents the aforementioned reusability
limitations.

In order to promote the reusability of aspects and the ability to support
heterogeneous composition, in this work we defined important abstractions useful to a
better separation of concerns and we implement these abstraction in a new version of
AspectLua, named RE-AspectLua. In RE-AspectLua aspects are defined at aspect
specification time and their instantiation is defined later at application composition
time. An aspect is defined by a set of aspect interfaces. Each aspect interface specifies
an abstract join point and an advice. Abstract join points instantiation is defined at
application composition time via a connection language. The connection language is
the Lua language itself since it is a scripting language. The fact of using a scripting
language as the connection language introduces a great flexibility to the aspect
composition process as the glue code can contain conditional statements to decide, at
runtime, which composition must be defined. In addition, as Lua is a dynamically
typed and interpreted language, it allows the dynamic connection and even the
adaptation of the aspect connection at runtime. This is a new application domain of
scripting languages: as a glue language between aspects and classes.

The use of a scripting language to support the composition between aspects and
advised code also benefit adaptability and evolution. The independence of an aspect
from the advised code allows the evolution of both the aspect and the base code. In
addition, the composition language can define glue code that address possible
composition mismatches between the two codes. Furthermore, the use of an
interpreted language improves even more adaptability support by allowing adaptation
at runtime.

Some recent work also address some limitations of the AspectJ-based AOP
[Aracic et al. 05], [Gal et al. 03], [McDirmid and Hsieh 03], [Suvée et al. 05], [Suvée
at al. 03], [Sullivan et al. 05]. However, none of them is based on an interpreted
language and provides the set of AOP features supported by AspectLua (see [Cacho et
al. 05]). The related work in terms of AOP languages built on top of scripting
languages [Dechow 04], [Bryant and Feldt 02], [Hirschfeld 03], are based on AspectJ
concepts and none of them promotes reusability of aspects that is the main goal of
RE-AspectLua.

Although some researchers do not associate the use of AOP with scripting
languages because, in general, such languages are not intended to write large and

787Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

complex software systems, we argue that the benefits of AOP target not only large
and complex software systems but it also has an important role in embedded systems
where the problem of composition is even harder. This type of system needs to
maintain the application code small. Thus, separation of concerns is essential and
AOP is a good technique to manage crosscutting concerns in embedded systems
[Sztipanovits et al. 02].

This work is organized as follows. Section 2 presents some background concepts
about Lua, AspectLua and LuaMOP. It also introduces a running case study that is
used through the paper. Section 3 presents our proposal to support reuse and
heterogeneous interaction in AOP and how they are supported by RE-AspectLua.
Section 4 re-examines the case study previously introduced and also presents a new
case study that exploits the versatile support of a scripting language to define
heterogeneous aspectual composition. Both the case studies illustrate the concepts of
RE-AspectLua. Section 5 discusses related work. Section 6 contains the final remarks.

2 Aspect-Oriented Programming

This section presents the background of this work. Section 2.1 presents the main
concepts of Lua and AspectLua. Section 2.2 presents LuaMOP, the meta object
infrastructure used by AspectLua.

2.1 Basic Concepts

AspectLua [Cacho et al 05] is an aspect-oriented programming language based on the
Lua language. AspectLua implementation uses LuaMOP, a meta-object protocol that
allows the dynamic weaving of aspects and components. Lua is dynamically typed,
which means that variables are not bound to types but each value has an associated
type. Lua syntax and control structures are similar to those of Pascal. Some non-
conventional features of Lua: (i) functions are first-class values; (ii) Lua tables are the
main data structuring facility in Lua. Tables implement associative arrays, are
dynamically created objects, and can be indexed by any value in the language, except
nil. Tables may grow dynamically. Lua offers reflective facilities and metatables are
the main reflective abstraction in Lua. Metatables allow modification of the behavior
of a table. More details about Lua can be found in [Ierusalimschy 06].

AspectLua combines a set of features to make AOP easier and powerful: (i)
insertion and removal of aspects at runtime, (ii) the definition of precedence order
among aspects, (iii) the possibility of using wildcards, (iv) the possibility of
associating aspect with undeclared elements (anticipated join points), and (v) a
dynamic weaving process via a meta-object protocol.

AspectLua follows AspectJ philosophy and, as a consequence, presents the same
problems related to lack of reusing support. In particular, AspectLua supports the
following set of join points:

call for method invocations;
callone for the specification of aspects that must be executed only once;
introduction to add functions in objects (intertype declarations);
get and set join points to capture operations on variables.

788 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

AspectLua aspect also defines an advice to be executed when the set of join
points specified is reached.

1 a = Aspect:new()
2 a:aspect({name = 'aspect-name'},
 {pointcutname = 'pointcut-name',
 designator = 'designator-type',
 list = {'some-class.method1()','anotherclass.*'},
 {type ='advice-type', action = advice})
3 function advice()
4 -- do something
5 end

Figure 1 : Metatable definition

Figure 1 illustrates the syntax of aspects definition in AspectLua:
the first aspect parameter is its name.
the second parameter is a Lua table that defines the elements of the join
points: its name, its designator type (call, callone, introduction, get or set),
and functions or variables that must be intercepted. The designator field
indicates the join point type. The list field contains the functions or variables
that will be intercepted. The '*' wildcard can be used. For instance, another-
class.* means that the aspect must be applied to all methods of a class
another-class.
 the third parameter is a Lua table that defines the elements of the advice:
the type (after, before or around), and the action that is executed when a
join point is reached. In the example, the action is the function declared with
the name advice.

As the aspect defines an explicit association with the affected components, aspect
reusing is not possible. Also, the heterogeneous composition is limited in AspectLua.
To illustrate the lack of aspect reusing in AspectLua, let us consider a simple banking
application. Suppose that a client wishes to register the access to the bank component
(Figure 2). It has two operations: deposit and cash.

1 Bank = {balance = 0}
2 function Bank:deposit(amount)
3 self.balance = self.balance + amount
4 end
5 function Bank:cash(amount)
6 self.balance = self.balance - amount
7 end

Figure 2: Bank Component

Figure 3 shows two aspects, written in AspectLua, that affect the bank
component. These two aspects are needed to log methods of the Bank component.

789Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

laspect_before aspect (lines 1-6) determines that the cash method is preceded by the
logbalance advice. The second aspect (lines 8-13) is used to advise deposit and cash
just after they are called.

1 a = Aspect:new()
2 a:aspect({name = 'laspect_before'},
3 {pointcutname = 'logged_methods',
4 designator = 'call',
5 list = {'Bank.cash'},
6 {type ='before', action = logbalance})
7
8 b = Aspect:new()
9 b:aspect({name = 'laspect_after'},
10 {pointcutname = 'logged_methods',
11 designator = 'call',
12 list = {'Bank.cash','Bank.deposit'},
13 {type ='after', action = logbalance})
14
15 function logbalance(self)
16 print ('Balance is now: ', self.balance)
17 end

Figure 3: Bank Component Logging

There is a clear lack of reuse illustrated by the example in Figure 3. The aspect
code is directly bound to its pointcuts, thus the aspect must be directly changed if one
wishes to affect other joinpoints, and the heterogeneous interaction, i.e. aspect acting
in a different way (before and after), can be achieved only by code duplication.

AspectLua provides the concept of anticipated joinpoints. Anticipated joinpoints
are join points related to elements that do not exist at the aspect specification time.
This joinpoint is useful to avoid the need of loading an application code before
loading the aspect code that contains a joinpoint to the application. This facility is
useful to allow lazy loading at the aspect execution time. More details can be found in
[Cacho et al. 05].

2.2 LuaMOP

The Aspect weaving process used in AspectLua is supported by LuaMOP. LuaMOP
is a meta-object protocol that supports the creation of a meta-representation to each
element that composes the Lua runtime environment: variables, functions, tables,
userdata and so on. Each element is represented by a meta-class that provides a set of
methods to query and to modify the behavior of each element of the base class. They
are organized in a hierarchical way where MetaObject is the base meta-class (Figure
4). Derived from this meta-class are MetaVariables, MetaFunctions, MetaCoroutine,
MetaTable, and MetaUserData meta-class. Furthermore, LuaMOP also provides a
Monitor class to monitor the occurrence of events in the Lua runtime environment.

790 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

Figure 4: LuaMOP class diagram. X should be replaced by Pre and Pos,
Y should be replaced by Get and Set and Z should be replaced by Pre, Pos

or Wrap

The meta-representation provided by LuaMOP is created via the invocation of
the getInstance(instance) method. This method returns the meta-object corresponding
to the object with name or reference described by the instance parameter. This meta-
object is an instance of a meta-class described above. For each meta-class there are
methods that describe it and that support changing the behavior of a meta-object.
Thus, getType() and getName() methods can be invoked by all meta-classes, since
these methods are part of the MetaObject meta-class. These methods return,
respectively, the meta-object type and name. The destroy() method is used to
disconnect the meta-object from the base object and to destroy the meta-object. The
getInstance(instance) method can also be invoked, using as an input parameter a non-
determined name. For instance: getInstance(“string.*”) returns a Lua table with
meta-objects that represent the functions of the string package.

For the sake of brevity, only some MetaFunction methods are commented here,
an extensive explanation of LuaMOP can be found in [Cacho et al. 05]. The
MetaFunction meta-class offers the addPreMethod, addPosMethod, and
addWrapMethod methods. These methods define the place where the behavior is

LuaMOP

-
-

metaObjects
monitors

: [] MetaObject
: [] Monitor

+
+
+
+
+

getInstance ()
getMetaObject ()
createMonitor ()
getMonitor ()
getAllMonitors ()

: MetaObject

MetaObject

+
+
+

getType ()
getName ()
destroy ()

MetaVariable

+
+
+
+
+
+
+

getValue ()
setValue ()
addXY ()
getXY ()
setXY ()
delXY ()
setAvalXY ()

MetaTable

-
-

fields
monitor

: [] MetaField
: Monitor

+
+
+
+
+

getField ()
getAllFields ()
setField ()
setMonitor ()
getMonitor ()

MetaFunction

+
+
+
+
+
+
+
+
+
+
+

getNameFunction
getSrcDefined ()
getLineDefined ()
getTypeFunction (
getNameWhat ()
getFunction ()
setFunction ()
addZMethod ()
getZMethods ()
setZMethods ()
delZMethods ()

MetaField

- value : MetaObject

MetaCoroutine

+
+
+
+

resume ()
yield ()
status ()
setFunction ()

MetaUserData

Monitor

+
+
+
+

addEvent ()
getEvent ()
getAllEvents ()
delEvent ()

791Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

added: Pre(before), Pos(after), and wrap the execution of a function. An example of
the use of these functions is illustrated in Figure 5.

1 function reglog(self,value)
2 print("Deposited Value: ",value)
3 end
4 metafun = LuaMOP:getInstance("Account.deposit")
5 metafun:addPosMethod(reglog)
6 Account:deposit(10)

Figure 5: LuaMOP example with addPosMethod [Cacho et al. 05]

The meta-object is obtained at line 4. At line 5, the addPostMethod method is
invoked to add the reglog function defined from line 1 to 3. When the deposit method
is executed (line 6), the LuaMOP mechanisms automatically invoke the reglog
method.

LuaMOP functionality goes beyond the provision of a meta-representation. It can
also capture events from the runtime execution environment. A Monitor is created to
handle events related to elements that have not yet been declared in the application.
This facility is used to support the anticipated join points strategy (see [Cacho et al.
05]).

The integration of these properties in an aspect environment is straightforward.
For instance, the definition of the advice mechanism for a call join point is illustrated
in Figure 6.

1 function AspectDefinition:defineCall(id)
2 local aspect = AspectDefinition.aspectList[id]
3 local metaobject = LuaMOP:getInstance(aspect.pointcut.list)
4 if (aspect.advice.type == 'before') then
5 metaobject:addPreMethod (aspect.advice.action)
6 elseif (aspect.advice.type =='around') then
7 metaobject:addWrapMethod (aspect.advice.action)
8 else
9 metaobject:addPosMethod (aspect.advice.action)
10 end
11 aspect.mob = metaobject
12 end

Figure 6: Aspect Definition using LuaMOP features in AspectLua

For each aspect declared in AspectLua, it only suffices to define the advice
method as a pre, wrap, or pos method to the metaobject representing the join point
(Figure 6, lines 4-10), depending on the type of aspect that can be before, around or
after (Figure 1, line 6).

3 Reusability and Heterogeneity Improvement in AOP
In this section we discuss the features of aspect-oriented programming languages
needed to benefit aspect reuse, context independence and heterogeneous interaction
and then we introduce RE-AspectLua, a solution for these problems written in the Lua

792 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

language. Section 3.1 addresses the lack of reusability and heterogeneity in AOP
languages, presents a solution, the concepts of aspect interfaces and abstract join
points, and discusses how a connection language may help in supporting reusability
and heterogeneity in AOP languages. Section 3.2 presents how RE-AspectLua
supports the features discussed in section 3.1 in order to promote aspect reuse and
heterogeneous behavior.

3.1 Abstractions for Aspect Reuse

There are two essential features that aspect-oriented programming languages must
include to benefit from aspect reuse, context independence and heterogeneous
interaction:

Abstract Join Points. Abstract join points [Lieberherr et al. 99] are declarations of
join points that are not bound to the base element at specification time. The definition
of the real instance is done later, at application composition time. In this way, abstract
join points specify generic and context independent aspects. Different applications
can reuse the aspect and instantiate the abstract join points with different elements.
Thus, this strategy promotes aspect reuse and allows the heterogeneous interaction of
the aspect with different components. There is a lot of work [Aracic et al. 05], [Suvée
et al. 03], [Hermann and Mezini 01] that uses this concept, including the more recent
version of AspectJ.

Connection Language. Connectors are commonly used in component-based
languages to connect components in order to compose the final system [Szyperski
02]. In a similar way, connection languages can be used to support the connection
between aspects and components. Some works use connectors to yield component-
aspect composition [McDirmid and Hsieh 03, Suvée et al. 03, Suvée et. al 05]. The
use of such a mechanism, associated to abstract join points, is an interesting solution
to reduce dependence relationships between aspects and components and to improve
the flexibility of the interaction between them.

Aspect Interface. In order to address context independence, we borrow the concept
of aspect interface defined in [Chavez et al. 05] to model aspects at architectural
level. A connection language is used to define the instantiation of the join points and
the definition of the advice activation time. Thus, the connection language, also
named configuration language, makes it possible the independence of the aspect in
relation to the affected components. In this way, in the specification, the aspect does
not determine the code that it affects.

3.1.1 Aspect Interfaces

At the programming language level, we propose the concept of aspect interface.
Aspect interfaces are contract definitions of aspectual functionalities established at
specification time. The aspect interface defines refinements. Refinements contain (i)
the definition of the abstract join point (the elements that will be affected by the
aspect); (ii) the definition of action to be taken (the advice) when the join points are

793Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

reached. This set of join points and the advice type (before, after, or around) are
defined by the connection language at application composition time.

The aspect interface abstract syntax is BNF is illustrated in Figure 7.

1 <AspectInterfaceDeclaration> ::= <AspectInterfaceName> "="
 <AspectInterfaceInstantiation>
2 <AspectInterfaceName> ::= <identifier>
3 <AspectInterfaceInstantiation> ::= "AspectInterface:new()"
4 <RefinementDeclaration> ::= <AspectInterfaceName> ":"
 <RefinementInstantiation>
7 <RefinementInstantiation> ::= "refinement({name = '"<identifier> "'},"
 " {refine = '" <identifier> "',"
 " action = " <identifier> "})"

Figure 7: BNF Syntax of Aspect Interfaces

The BNF syntax defines the declaration of aspect interfaces, and its refinements.
An aspect interface has a identifier and is instantiated by the use of
AspectInterface:new(). It may have one or more refinements. The refinements are
declared for each aspect interface, and must define its name (name), the abstract
pointcut name (refine) and the method to act as advice for the abstract join point
(action).

3.1.2 Connection Language

In order to express the relationships between an aspect and base elements, the use of
connectors, as we previously discussed in section, can give a proper support to
promote the aspect independence in relation to the usage context.

Scripting languages have been used to support the interconnection of elements in
component-based systems [Batista 00]. It acts as a configuration language that defines
the relationship between the components. Scripts can also be used to adapt the
component interconnection when interfaces are not compatible and, in this case, are
called glue code.

In a similar way, scripting languages also act as connection language between
aspects and components. In this case, the scripting language must instantiate the
abstract join points. It cannot break the component interface contract and it must
define the precedence between aspects that act on the same join point. In addition, the
inherent flexibility of most scripting languages allows the definition of complex
relationships between aspects and advised code such as (i) the conditional removal of
an aspect behavior in the presence of other aspect, (ii) higher semantics by enabling
complex aspect protocols, (iii) the definition of glue code addressing compositional
mismatches.

The use of a scripting language as a connection language gives more flexibility
that the use of connectors. In general connectors have a fixed structure that imposes a
predefined way of expressing the composition. In contrast, with a scripting language
the composition code can include several commands to coordinate the composition.

3.2 RE-AspectLua

RE-AspectLua includes the abstractions aforementioned. An aspect in RE-AspectLua
is a component that contains a set of aspect interfaces (AspectInterface). An aspect

794 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

interface can have one or more definitions of refinements. Refinements are
declarations of abstract join points and advice (Figure 8).

Figure 8: Aspect Model

In RE-AspectLua, common aspects are also called aspectual components by
acting like a component with aspectual behaviour.

3.2.1 Aspect Definition

1 aspectA = Aspect:new({name = "Aspect A"})
2 aspectB = Aspect:new({name = "Aspect B"})
3
4 ai1 = AspectInterface:new()
5 ai1:refinement({name = 'interface1'},
6 {refine = 'abstractpointA',
7 action = advice1})
8
9 ai2 = AspectInterface:new()
10 ai2:refinement({name = 'interface2'},
11 {refine = 'abstractpointB',
12 action = advice2})
13
14 aspectA:interface(ai1)
15 aspectA:interface(ai2)
16
17 aspectB:interface(ai1)

Figure 9: Aspect Definition in RE-AspectLua

Figure 9 shows an example with two aspect interfaces declared: ai1 and ai2. The ai1
interface (line 4-7) defines a refinement that declares a behavior advice1 method) to
be executed when a set of abstract join points abstractpointA is reached. The moment
when the method will be executed (before, after or around), and the exact join points
that the refine declaration represents are defined at application composition time,
using a connection language. The ai2 interface (lines 9-12) is similar to the ai1
interface. However, it defines another behavior to be executed when the set of abstract
join points abstractpointB is reached.

In RE-AspectLua, the aspectual components can share definitions of aspect
interfaces. In the example of Figure 9, the aspectA aspect has two interfaces, while
aspectB has just the first interface declared. The two aspects have the same aspect
interface but interact in a different way with the application. This illustrates the
heterogeneity interaction ability of RE-AspectLua.

795Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

RE-AspectLua offers ''syntax sugar'' to reduce the code needed to define an
aspect interface and to associate it to an aspect. Figure 10 presents the syntax sugar
used to define aspect interfaces and aspects.

1 ai1 = AspectInterface:new_refinement({name = 'interface1'},
2 {refine = 'abstractPointA',
3 action = advice1})
4 ai2 = AspectInterface:new_refinement({name = 'interface2'},
5 {refine = 'abstractPointB',
6 action = advice2})
7
8 aspectA = aspect ({ai1, ai2})

Figure 10: Syntax Sugar for the Definition of Aspects in RE-AspectLua

Figure 10 (lines 1-3) illustrates the creation of the same interface1 of Figure 9.
The aspectA aspect is created containing the two interfaces ai1 and ai2 (line 8). In this
case the aspect name is not explicitly defined.

3.2.2 Aspect Instantiation

1 int1 = aspectA:get_interface{'interface1'}
2 int1.abstractpointA =
3 {designator = 'call',
4 pointcut-list = {'some-class:method1()'},
5 type = 'before'}
6
7 int2 = aspectA:get_interface{'interface2'}
8 int2.abstractpointB =
9 {designator = 'callone',
10 pointcut-list = {'another-class.*'},
11 type = 'after'}

Figure 11: Instantiating the interfaces of aspectA

The interaction and precedence relationships of the aspects are defined also via scripts
of the connection language. In RE-AspectLua, the language used to connect the
elements is the Lua language itself with a library that allows the instantiation of join
points and the definition of the relationships between aspects. This library offers the
get_interface method, to dynamically get an aspect interface by its name, and the
bind_refinement method to bind a refinement by instantiating concrete join points for
it.

Figures 11 and 12 illustrate the definition of the aspectual connection to the
aspects defined in Figure 9.

Figure 11 shows how the connection language is used to declare the instantiation
of aspectA's aspect interfaces. First, the ai1 aspect interface is retrieved by a
get_interface() call on aspectA (line 1). Then the abstractpointA refinement has its
instantiation defined: the advice1 method (Figure 9, line 7) will be executed just
before some-class:method1() call. In this language it is possible to quantify the join
points using the wildcard '*' as can be seen in the declaration of the join points of the
abstractpointB refinement (Figure 11, line 8).

796 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

Figure 12: AspectA model

1 int3 = aspectB:
2 get_interface{'interface1'}
3 int3.abstractpointA =
4 {designator = 'execution',
5 pointcut-list = 'third_class.*',
6 type = 'before'}

Figure 13: Instantiating the interfaces of aspectB

Figure 14: AspectB model

Another crosscutting relationship is illustrated in Figures 13 and 14. The
interface1 aspect interface in aspectB has a set of join points that intercepts the
executions of all methods of the third-class component and executes the advice1
advice (defined in the aspect interface ai1 at Figure 9, line 7).

Aspect A

Interface 1 Interface 2

some_class
method1()

another_class
methodA()
methodB()
methodC()

Aspect A

Interface 1 Interface 2

some_class
method1()
some_class
method1()

another_class
methodA()
methodB()
methodC()

another_class
methodA()
methodB()
methodC()

797Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

3.3 Application Development in RE-AspectLua

Figure 15: Application Development in RE-AspectLua

Figure 15 illustrates the application development process in RE-AspectLua. The
programmer is responsible for the development of : (i) the base code that implement
the main functionality of the application in Lua; (ii) the aspect code written in RE-
AspectLua; (iii) the connection code in Lua that defines the combination of base code
and aspects.

Lua does not offer support for aspect-oriented programming. In order to support
it RE-AspectLua extends the language by including support for reusable aspects. Due
to the Lua reflexive features it is not necessary to modify the Lua interpreter to
support RE-AspectLua. AspectLua exploits the powerful of Lua tables and uses them
to the definition of aspects, aspects interfaces, abstract join points and advices. These
elements are defined using the Lua features and no special commands are needed.

The two codes are executed by the Lua interpreter that invokes RE-AspectLua
when executing commands associated with aspect-oriented programming. This is
done transparently for the programmer and supported by the reflexive facilities
offered by Lua. In contrast to the traditional aspect-oriented programming, in this
approach there is no need of a special compiler to join aspect with the functional
modules, the interpreter does this mixing at runtime. Thus, it is possible to support
dynamic reconfiguration – new base code and aspects can be selected dynamically
according to runtime conditions.

4 Case Studies

4.1 A Banking Application

A simple banking application is shown to illustrate advices in RE-AspectLua.
AspectLua does not offer a suitable solution for this case unless by some code
duplication. This section shows how RE-AspectLua handles it.

Figure 16 contains a RE-AspectLua generic aspect code for logging bank
transactions. The logaspect aspect is declared at line 3. The logged_methods

Aspects
in RE-AspectLua

Re-
AspectLua

Lua

Base Code
in Lua

PROGRAMMER
LEVEL

Lua Interpreter

EXECUTION
LEVEL

Connection Code
in Lua

Aspects
in RE-AspectLua

Re-
AspectLua

Lua

Base Code
in Lua

PROGRAMMER
LEVEL

Lua Interpreter

EXECUTION
LEVEL

Connection Code
in Lua

Re-
AspectLua

Lua

Base Code
in Lua

PROGRAMMER
LEVEL

Lua Interpreter

EXECUTION
LEVEL

Connection Code
in Lua

798 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

refinement is associated to the logging aspect interface at lines 5-7; and the interface
is linked to the logaspect. The advice code is at lines 10-12.

1 require 'REAspectLua'
2
3 logaspect = Aspect:new({name = "logaspect"})
4 aint = AspectInterface:new ()
5 aint:refinement ({name = 'logging'},
6 {refine = 'logged_methods',
7 action = logbalance})
8 logaspect:interface(aint)
9
10 function logbalance(self)
11 print ('Balance is now: ', self.balance)
12 end

Figure 16: RE-AspectLua Aspect Declaration

In order to instantiate the logged_methods refinement, a connection script is
needed. Figure 18 shows multiple refinement instantiation. First, the aspect and the
aspect interfaces are retrieved by their names (lines 1-2). Then, the refinement is
instantiated (or bound) 3 times. The logbalance advice is executed after the deposit
method of the Bank component (lines 4-6); and before and after the invocation of the
cash method.

Figure 17: Instantiating the Interface of logaspect

1 laspect = Aspect:get("logaspect")
2 log_int = laspect:get_interface('logging')
3
4 log_int:bind_refinement("logged_methods", { designator = 'call',
5 pointcut_list = {'Bank.deposit'},
6 type = 'after'})
7 log_int:bind_refinement("logged_methods", { designator = 'call',
8 pointcut_list = {'Bank.cash'},
9 type = 'after'})
10 log_int:bind_refinement("logged_methods", { designator = 'call',
11 pointcut_list = {'Bank.cash'},
12 type = 'before'})

Figure 18: Instantiation Script

The pure AspectLua implementation of this functionality would need more than
one aspect due to lack of reuse and heterogeneity abilities of AspectLua (discussion in
section 2.1, Figure 3).

799Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

4.2 A Petroleum Fields Monitoring System

A Petroleum Fields Monitoring System has the main goal of registering the individual
characteristics associated with the operational process of oil extraction in each
automated well of a petroleum field. Based on the collected information, it provides
descriptive and behavioral results in order to make possible an efficient monitoring
process.

The system is composed of a Central Monitor that receives information from the
fields and sends commands to them. CM performs an automatic data sampling that is
a periodic task that accesses the monitoring data collected in every well of a field.
 Figure 19 illustrates the class diagram of the system. The CentralMonitor class
requires data from the Field class that, in turn, collect data from the Well class.

Figure 19: Monitoring System Class Diagram

Two crosscutting functionalities are essential to this system: (i) persistence; (ii)
security. The system must store in a database the information collected from the field
and the well. It must also support user authentication and different classes of users
may have different views of the system. These two functionalities are implemented by
the following generic aspect in RE-AspectLua: PersistenceAspect and SecurityAspect.
Figure 20 shows a graphical view, using AsideML notation [Chavez et al. 05], the
interaction of these generic aspects when applied in the system.

Figure 20: Persistence and Security Aspects

PersistenceAspect contains an aspect interface (persisting) (Figure 21) that
defines a refinement that implements persistence via the advicepersist advice (lines 3-
8). Note that it is a generic aspect that can be applied in this case study or in any other
that requires persistence.

800 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

1 function advice_persist(self, ...)
2 parameters = DBUtils:getInstance().getSQLInfo(self, ...)
3 -- generic code for SQL insertion data into tables
4 end
5
6 p_asp = Aspect:new({name = 'PersistenceAspect'})
7 p_int = AspectInterface:new({name = 'persisting'})
8 p_int:refinement ({refine = 'persist_methods',
9 action = advice_persist})
10 p_asp:interface(p_int)

Figure 21: Persistence Aspect

Figure 22 contains the composition code indicating that after (type = 'after')
invoking the get method from the Well component (pointcut_list = 'Well.get*'), the
results are intercepted and stored in a database according to the persisting_methods
refinement defined by the aspect code.

1 p_int:bind_refinement('persist_methods',{designator = 'call',
 pointcut_list = 'Well.get*',
 type = 'after'})

Figure 22: Binding Code of the Persistence Aspect

The security aspect contains two aspect interfaces, Security and Logging (Figure
23). The Security interface contains a refinement to user authorization. The Logging
interface contains a refinement to register the invocation of some methods that need to
be monitored.
1 function permission_check(self, ...)
2 su = SecurityUtils:getInstance()
3 if su:authorized(enviroment:user,self) then
4 proceed(self, unpack(arg))
5 else
6 su:security_exception("Access denied. Unauthorized role")
7 end
8 end
9
10 security_asp = Aspect:new({name = 'SecurityAspect'})
11 security_int = AspectInterface:new()
12 security_ref = security_int:refinement ({name =
 'security_interceptor'},
 {refine =
 'authorized_methods',
 action = permission_check})
13 security_asp:interface(security_int)

Figure 23: The Security Aspect

The permissioncheck advice consults the SecurityUtils component to verify if the
user has the permission to execute the method.

The logging refinement contains the logmessages advice to log the invocations to
some methods. It must log the invocation whenever a trainne change the idletime but
it is not necessary to log the invocation if engineering do the same action. This

801Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

behavior is defined in the connection language as this is a typical information of the
context.

The connection between the security aspect and the base code is defined by the
script illustrated in Figure 24. The abstract pointcut authorizedmethods is bound to all
invocations of all methods of the CentralMonitor class. The declaration before
specifies that all methods are intercepted before their execution and the security
aspect checks if the user has the permission to invoke the method.

The connection code contains a conditional statement (lines 7-12) to verify if the
logging aspect must be executed. The user identity is verified and if it is not a
engineering that is trying to change the idletime, the invocation is logged.

1 s_int = security_asp:get_interface('security_interface')
2 s_int:bind_refinement('authorized_methods',{designator = 'call',
3 pointcut_list = CentralMonitor.*',
4 type = 'before'})
5
6 l_int = security_asp:get_interface('logging_interface')
7 if enviroment.user.getRole() != 'engineering' then
8 l_int:bind_refinement('logged_methods',
9 {designator = 'call',
10 pointcut_list = 'CentralMonitor.setIdleTime',
11 type = 'after'})
12 end

Figure 24: Connection code of the Security Aspect

This flexible scenario is possible due to the decoupling between the aspect
specification and the connection with the base code and also because the use of a
scripting language to specify the composition. Without the connection language, the
aspect would include the conditional test that is specific to the context of this system.
As a consequence reusability in other context would be impossible.

5 Related Work
[Sullivan et al 05] addresses the problem of decoupling aspects from advised code by
defining an interface, based on design rules, that base code implements and that
aspects depend upon. While this strategy modularizes both aspect and base code,
aspects reusability is not a central issue. Our approach aims to modularize the aspect
code and make aspects reusable. In order to support reusability we use abstracts join
points and a connection language.

AspectLagoona [Gal et al. 03] defines aspects as component-like modules
containing advices. The pointcut language is the method definition in component
interface. The aspect is defined for component interface, not for component
implementation, crosscutting all implementations. This way, there is low
independence of aspect from the component, leading to limited reuse of aspect. RE-
AspectLua allows context independence, providing more reusable aspects than
AspectLagoona.

Jiazzi [McDirmid and Hsieh 03] supports component developments for Java.
Components are linked by a connection language. The connection language does not
allow advice-like behaviour, although it permits that some crosscutting concerns are
better modularized by the use of open classes and open signatures. New code

802 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

statements and a post-compilation phase are needed in Jiazzi. RE-AspectLua also
defines aspect interaction by using a connection language, but it does not require any
further step to bind aspect behaviour into component code.

JasCo [Suvée et al. 03] provides aspects in JavaBeans component model.
Aspectbeans are defined containing advice associated to abstract pointcuts. Special
connector entities instantiate the abstract pointcuts, supporting a high level of reuse.
RE-AspectLua is inspired on JAsCo, by providing abstract pointcuts to be instantiated
later, at the instantiation phase. RE-AspectLua uses Lua as connection language, in
consequence dynamic advice implementation is simpler than in JAsCo, where all
JavaBeans must be traced in the execution environment.

CaesarJ [Aracic et al. 05] integrates components and aspects with mixin
composition of family classes. This way, CaesarJ does not use a connection language
to link aspect to components. A wrapper mechanism is used to adhere crosscutting
structure and behavior to components of different family classes. RE-AspectLua does
not use a wrapper mechanism, but refinements in aspect interface, to link crosscutting
behavior to base components.

LAC -- Lua Aspectual Components [Hermann and Mezini 01] -- is a Lua
extension whose main goal is to support the idea of Aspectual Components (AC)
[Lieberherr et al.99]. It defines an explicit connector module to bind the
participants. In contrast, RE-AspectLua is more flexible as it uses the Lua scripting
capabilities in the definition of the connection between aspects and base elements.
This flexibility allows the definition of complex aspect composition.

6 Final Remarks
The abstractions to the modularization of the crosscutting concerns at traditional
aspect-oriented languages are limited in terms of reusability and heterogeneous
interaction capability. In this paper we use the concepts of aspect interface and
connection language, commonly used in component-based systems, in order to
promote aspects reuse. Thus, we adopt the idea that AOP must follow fundamental
concepts of information hiding modularity. We also propose the use of a scripting
language, the Lua language, to the definition of the interaction between aspects
and base elements. Thus, we suggest a new application domain of scripting
languages: as a glue language between aspects and classes.

We highlight the importance of splitting the aspect-oriented development in two
phases: (i) aspect specification time where reusable aspects are defined in an
independent way of its target application; (ii) application composition time where the
composition of aspects and base code are defined. These two phases are essential to
promote the independence of aspects from the base code and to allow the
heterogeneity interaction between an aspect and different base codes.

Although the concept of abstract join points is commonly found in some
works, we use this concept in conjunction with a dynamically typed and
interpreted connection language, that adds a great deal of flexibility to the
composition of the reusable aspect and the base code. AspectJ supports the concept
of abstract pointcuts however, the flexibility provided by using abstract pointcuts with
a connection language is not addressed in AspectJ.

803Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

The concepts of abstract join points, aspect interface and connection language
are instantiated in the definition of a new version of AspectLua, RE-AspectLua,
that promotes reusability, context independence and a better organization of
the heterogeneous interaction between aspects and base elements.

The two case studies presented in this paper show that RE-AspectLua enriches
the modularization approach of AOP to allow a more effective reuse and
heterogeneous interaction. In addition, we could illustrate the importance of using a
scripting language, at application composition time, to select different compositions
between aspects and base code according to runtime conditions.

Acknowledgements

This work has been partially supported by the Brazilian National Agency of under
grant 2001.7999-5 for Mauricio B. C. Vieira.

References

[Aracic et al. 05] Aracic, I., Gaiunas, V., Mezini, M., and Ostermann, K.: “An Overview of
CaesarJ”. Technical Report TUD-ST-2005-01, Darmstadt University of Technology,
Darmstadt, Germany. (2005)

 [Batista 00] Batista, T. V.: “LuaSpace: Um Ambiente para Reconfiguração Dinâmica de
Aplicações baseadas em Componentes”, PhD Thesis, Pontifícia Universidade Católica do Rio
de Janeiro (PUC-Rio), Rio de Janeiro. (2000)

[Bryant et al. 02] Bryant, A. and Feldt, R.: “AspectR – Simple Aspect-Oriented Programming
in Ruby”. http://aspectr.sf.net/. Last visualization in May 2007. (2002)

[Cacho et al. 05] Cacho, N., Batista, T. and Fernandes, F.: “AspectLua – A Dynamic AOP
approach”, In: Journal of Universal Computer Society (J.UCS), 11(7):1177-1197. (2005)

[Chavez 05] Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C. and Lucena, C.: “Taming
Heterogeneous Aspects with Crosscutting Interfaces”. In SBES2005: Proceedings of the XIX
Brazilian Symposium on Software Engineering, , Uberlândia, Brasil, (2005), 216-231.

[Dechow 04] Dechow, D.R.: “Advanced Separation of Concerns for Dynamic, LightWeight
Languages”. In 5th Generative Programming and Component Engineering. (2004)

[Fernandes et al. 04] Fernandes, F. and Batista, T.: “A Dynamic Approach to Combine
Components and Aspects”, In: Proceedings of the XVIII Brazilian Symposium on Software
Engineering (SBES), Brasilia, Brazil, (2004), 102-112.

[Gal et al. 03] Gal, A., Franz, M., Beuche, D.: “Learning from components: Fitting AOP for
Systems Software”, In Proceedings of the AOSD 2003 Workshop on Aspects, Components,
and Patterns for Infrastructure Software, Boston, MA, USA. (2003)

[Herrmann et al. 01] Herrmann, S. and Mezini, M. Combining Composition Styles in the
Evolvable Language LAC. In Workshop on Advanced Separation of Concerns in Software
Engineering. (2001)

[Hirschfeld et al. 03] Hirschfeld, R.: AspectS – Aspect-Oriented Programming with Squeak. In
NODe’02: Revised Papers from the International Conference NetObjectDays on Objects,
Components, Architectures, Services and Applications for a Networked Worls, (2003), 216-
232, London, UK. Springer-Verlag.

804 Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

[Ierusalimsky et al. 06] Ierusalimsky, R.: Programming in Lua. Lua.org, Rio de Janeiro, Brazil.
(2006)

 [Kiczales et al. 97] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.,
Loingtier, J., Irwin, J.: “Aspect-oriented programming”, In: ECOOP’97 — European
Conference on Object-Oriented Programming”, Proceedings of ECOOP´97. Springer-Verlag,
Finland. (1997)

[Kiczales et al. 01] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold,
W.G.: “An Overview of AspectJ”, In: ECOOP’2001 — European Conference on Object-
Oriented Programming, Budapest, Hungary. (2001)

 [Lierberherr et al. 99] Lierberherr, K., Lorenz, D., Mezini M.: “Programming with Aspectual
Components”, In: Technical Report NU-CCS99 –01, Notheastern University. (1999)

[McDirmid et al. 03] McDirmid, S. and Hsieh, W. C.: “Aspect-Oriented Programming with
Jiazzi”, In AOSD’03: Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development, pp 70-79, New York, NY, USA, ACM Press. (2003)

[Suvée et al. 03] Suvée, D., Vanderperren, W., and Jonckers, V.: “Towards a Symbiosis
Between Aspect-Oriented and Component-Based Software Development”, In Proceedings of
the SCI 2003 International Conference, , Orlando, USA, (2003), 442-447.

[Suvée et al. 05] Suvée, D. Vanderperren, W., Wagelaar, D., and Joncker, V. There are no
Aspects. In Electronic Notes in Theorical Computer Science, vol. 114, Elsevier Science,
(2005), 153-174.

[Sztipanovits et al. 02] Sztipanovits, J. and Karsai, G. Generative Programming for Embedded
Systems. In PPDP 02: Proceedings of the 4th ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, , New York. ACM Press, (2002), 180-
190.

[Sullivan et al. 05] Sullivan, G., Griswold, Y. et al: “Information Hiding Interfaces for Aspect-
Oriented Design. Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, (2005), 166 – 175.

[Szyperski 02] Szyperski, C. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, USA, (2002).

805Batista T., Vieira M.: RE-AspectLua - Achieving Reuse in AspectLua

