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Abstract: The spreadsheet metaphor has, over the years, proved itself valuable for the 
definition and use of computations by non-programmers. However, the computation model 
adopted in commercial spreadsheets is still limited to non-recursive computations and lacks 
abstraction mechanisms that would provide modularization and better reuse (beyond copy and 
paste). We investigate these problems by identifying a minimal set of requirements for 
recursive computations, designing a spreadsheet-based language with an abstraction definition 
mechanism, prototyping an interpreter and evaluating it with examples. 

Keywords: Spreadsheet languages, End-user programming, Call-by-need, Lazy structures, 
Recursion, Abstraction. 
Categories: D.1.1, D.1.7, D.2.6, D.3.3, F.1.1, H.1.2 

1 Introduction 

Spreadsheets are a popular document model for structuring information and 
interacting with data. With spreadsheets a user can also define small computations 
with data that allow for instance statistical summarization, simulation and information 
highlighting provided that this user is able to express these computations in a formula 
language. Spreadsheet systems have also been used as a data entry interface for other 
software. 

While the textual paradigm of programming daunts the general user, we can see 
non-programmers using spreadsheets and defining simple computations expressed 
through spreadsheet formulae. This can be a good starting point for learning to 
program. A spreadsheet user will perceive desired computations that he is unable to 
describe in a spreadsheet and feel the urge to move to a textual programming 
language. It is expected that enhancements on the expressive power of spreadsheets to 
allow advanced computations would fill the gap between spreadsheet and textual 
programming. 

One criticism about current commercial spreadsheets is their lack of abstraction 
mechanisms. Users are limited to a set of predefined functions. Modularization is 
simulated by copy-and-paste of template spreadsheets. This makes spreadsheets hard 
to maintain. Code replication forces the users to keep track of all copies in order to 
update them properly when new information arrives or a bug is found. Proper reuse 
mechanism would allow tested and trustful components to be safely adopted and 
easily replaced. Additionally, some features can be implemented through spreadsheets 
but in a very cumbersome way. Long expressions referring to many cells are truly 
hard to decipher and maintain. Having means to define abstract operations and 
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creating instances of these operations as needed would make complex spreadsheets 
more readable just like subroutine calls make programs more readable. 

Another criticism is the lack of scalability. Although the supposition of infinite-
sized problems can strike us as superfluous, recursive computations are important 
when we deal with abstractions. Most of the times when the problem is bigger than 
the spreadsheet were prepared to handle, we need just to insert a number of columns 
or rows and get a new spreadsheet ready to do the calculation. In the case of abstract 
spreadsheet definition, nothing should be assumed about the size of the problem, we 
just need one abstraction to be able to solve the problem and we cannot manually 
create another spreadsheet instance for each “subroutine call” because the number of 
instances can grow rapidly. 

This paper investigates the problem of defining recursive and abstract 
computations in the tabular format, preserving important properties such as the spatial 
structuring of information and referential transparency. Usually an imperative 
scripting language is included in a spreadsheet system to add support to advanced 
computations. We intend to follow the reverse path, allowing complex computations 
to be defined in spreadsheet format and turning the spreadsheet into an environment 
for scripting application behavior or connecting software components. 

We point some application areas for spreadsheet programming. Spreadsheet 
programming can be used for the reconfiguration of software applications through 
defining small computations or data flow among software components. Particularly, 
Information Visualization is an area that would benefit from the reconfiguration 
capability and the representation of data and data transformation in the tabular format. 
Also, in Education, teaching of Math-related subjects could benefit from end-user 
definition of computations [Misner and Cooney 1991]. 

The paper is organized as follows. [Section 2] of the paper revisits many concepts 
on which spreadsheets are based and points to a few references from the literature. 
The respective design decisions for the proposed system are presented in [section 3]. 
The development of our contribution starts with the identification of a set of primitive 
constructs that allow a spreadsheet language to represent recursive computations 
[section 4]. A model of abstraction definition in the tabular format for the spreadsheet 
language is presented [section 5]. The prototype implementation of an interpreter for 
the defined language and a spreadsheet editor are described [section 6]. The prototype 
system is evaluated by implementing some examples [section 7]. In [section 8], we 
provide a general conclusion of the present work and point future directions. 

2 Design Issues Peculiar to Spreadsheet Languages 

The design of a language for spreadsheets is quite different from the design of a 
general programming language being the main differences, the presence of a visual 
editor and the requirement for fast updates for interactive computing. Another 
important difference is the organization of information in a tabular structure. We 
describe in this section some design issues that are considered in our design. 

Coordinate-based references are the foundation of the spatial organization of 
spreadsheets, but imply some design difficulties. On one hand, coordinates can be 
easily entered through point-and-click in the editor interface. Additionally, 
coordinate-based formulae can be copied, moved and extended (copied to a larger 
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area) maintaining appropriate relative references to, for instance, “the same line”, “the 
line above” or “two columns to the right”. On the other hand, formulae based on 
coordinate mnemonics are very difficult to read. Consequently, programs are difficult 
to write or maintain. Verifying correctness of choice between absolute, relative or 
mixed-coordinate references is pretty difficult. In Visicalc-based spreadsheets 
[Bricklin and Frankston 1999], absolute coordinates represented such as $A$1, when 
copied or extended are kept as $A$1. Relative coordinates like A1, when extended to 
the right becomes B1, when copied to the cell immediately below becomes A2. Mixed 
coordinates are represented like A$1 or $A1. 

The semantics of cell copy, movement and extension operations is a source of 
confusion. The behavior of those operations can vary concerning how cell references 
are maintained. Some systems may update cells that used to point to a previous 
location of another cell. However, copying would be handled differently. In some 
editors, movement keeps track of which cells refer to the cell being moved. It is 
confusing because it can modify something very far away from the area where the 
user is changing. [Lisper and Malmström 2002] point at the problem of concatenation 
of tables on the same page. If we concatenate two tables side-by-side, the insertion of 
a new row to the first table would spoil the alignment of the second table. In order to 
cope with row or column insertion concatenation of separate tables must be diagonal, 
what is logically correct but functionally and visually inappropriate. This is a good 
clue that data and programs must be organized beyond two-coordinate axes. A data 
structure holding multiple tables should be necessary. 

Another way to reference cells considers cell names instead of coordinates. The 
use of names is recommended because references become more readable and provide 
a form of access similar to tuple structures. Systems based only on names, like 
dataflow systems, unfortunately rarely make use of the tabular spatial structure and 
can easily become cluttered both in name space and canvas space. Notable exceptions 
include Forms/3 [Burnett et al. 2001] and Haxcel [Lisper and Malmström 2002]. 

While, for the textual programming languages, there is the read-eval-print loop of 
an interpreter or the compile-eval-print loop of compiler systems, spreadsheets would 
have a definition-eval-display loop. Traditional spreadsheet systems would evaluate 
an expression and all of its dependencies on any change. A call-by-need spreadsheet 
system would evaluate only formulae that are directly or indirectly needed for the 
current visualization. The formula language of a spreadsheet doesn’t have the 
attribution operation. The absence of side-effects due to attribution provides the 
property of referential transparency. This is the property that two identical 
expressions yield identical values. The preservation of this property along with call-
by-need will allow lazy-evaluation, mechanism of evaluation that goes beyond call-
by-need by reusing computations so that identical expressions should not be evaluated 
twice. (See for example [Harrison and Field 1988]). 

Recursive formulae through the means of cycles are not generally allowed. A 
spreadsheet system may permit the definition of cyclic dependent cell formulae. This 
will constitute an equation system or a constraint system, which may be solved by a 
constraint solver or through relaxation, where each cell is computed multiple times 
until some convergence criterion is satisfied or recognized as unreachable. 

Some spreadsheet systems allow data structures to be included inside cells or to 
include spreadsheets as members of data structures such as a folders (list with 
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hierarchy) or trees. Complex objects such as graphics or images are allowed as cell 
values in some spreadsheets such as image spreadsheets [Levoy 1994] or visualization 
spreadsheets [Chi et al. 1998] [Nuñez 2002]. 

3 Design Decisions 

We describe now our design decisions. In order to keep semantics as clear and simple 
as possible, we recommend using coordinate-awareness providing functions namely 
row() and col(). Such functions allow the formula of cell to know the coordinates of 
that cell. We propose that relative cell references be built upon these functions. 
Copying a formula from one cell to another is the correct cell copy operation. 
Extension of a cell to an area is implemented simply as copying the formula of the 
cell to each cell in the area. Alternatively, names are also allowed as absolute 
references. 

Our model of spreadsheet editing and computation assumes that cells only accept 
formulae as input. We assume also that spreadsheet formulae cannot modify cells, 
only the editor is able to modify the formula of a cell. We define an editor as the only 
type of entity able to modify cells so that interactive computation should be obtained 
through the mediation of an editor. Complex objects may be represented or abstracted 
as spreadsheet data and it is the role of an editor to provide the correct visualization 
for this data. 

We consider that evaluation of complex computations may not be deliverable in 
time, so our proposed editor has two modes: a formula-viewing mode and a value-
viewing mode. Formulae are evaluated only when their values must be displayed (or 
are referenced by some other cell or evaluation chain whose value will be displayed). 
In formula-viewing mode, values are not displayed and then evaluation does not 
happen. This behavior of performing only the presently needed computations 
corresponds to the desired call-by-need behavior. Sharing the evaluation of 
expressions is implemented through caching of computed values of cells while 
intermediate values passed as function arguments are not cached and their resources 
are freed by a garbage collector. This behavior approaches lazy evaluation that could 
be properly obtained if graph rewriting was implemented, which was used for 
example by [de Hoon et al. 1995]. 

Spreadsheets are first-class objects and can be contained in spreadsheet cells. The 
cell reference operation is extended to provide access to cells of inner spreadsheets 
and outer spreadsheets. The coordinate-awareness functions can provide not only the 
coordinates of the cell being evaluated, but the location where its spreadsheet is stored 
and so on until a top-level spreadsheet is reached. 

At the moment, cyclical references are not allowed and, when detected, are 
reported with an error symbol being delivered as the value of the cell. We provide 
other forms to describe recursive computations that we find more appropriate and are 
described in the next sections. 
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4 A Sufficient Model of Computation through Spreadsheets 

We describe a computational model for spreadsheets. This model was created based 
on an experience of implementing a Turing Machine in a spreadsheet language. 
Therefore, the constructed model is expressive enough to represent any computable 
function. However, this sufficiency does not help to make program development easy. 
Readability of code, clear intuitive semantics and other human factors should be 
considered in the design of a spreadsheet language. 

Coordinate cell references are important to exploit the spatial structure of 
information. Lets make all cell references through the use of a function ref(i,j) where i 
and j are respectively row and column numbers. So an absolute reference such as 
$B$1 is written as ref(1,2). An editor can adopt a syntax sugar of seeing or accepting 
ref(1,2) as $B$1. Now we consider coordinate-awareness constants i and j for which 
row and column numbers are automatically assigned. A cell self-reference would be 
ref(i,j), while a reference to the immediately above cell would be ref(i-1,j) and the cell 
immediately to the right is ref(i,j+1). If current cell is C5, ref(i,j+1) can be displayed 
by the editor as D5. If we enter D5, the editor converts it to ref(i,j+1). If we enter C$4, 
it is converted to ref(4,j). When considering copying a cell with this kind of 
representation, there is nothing to change in the formula. The same happens when 
extending and moving. The semantics is then very clear and closer to traditional 
textual programming languages. 

Our view of this kind of representation is to understand all cells as functions. 
While a spreadsheet S is a function mapping a (row,column) pair into a cell, a cell C 
is a function mapping (row,column) into a value. So, a cell with formula ref(i,j+1) 
holds indeed a function λij.ref(i,j+1) in lambda-calculus notation. The value of this 
cell is obtained applying this function to the cell coordinates such as λij.ref(i,j+1) row 
column. Approaching cell definition as a function of its location allows the 
preservation of referential transparency. Complaints that relative references would 
damage referential transparency are, therefore, not effective for this design. 

Indirection is also accomplishable and important for the implementation of 
conditionals. Conditionals need not to be a primitive if we have indirection such as 
ref(ref(1,1),ref(1,2)). Implementation of a conditional can be seen in [Tab. 1]. 

 

ANS=IF(COND; THEN; ELSE)  for example ANS=IF(A>B; A; B) 

 J=1 J=2 

I=1 COND: A>B ELSE: B 

I=2 ANS: ref(ref(1,1)+1, 2) THEN: A 

Table 1: Implementation of conditional. 

In the considered case, the comparison operator > returns 0 for FALSE or 1 for 
TRUE. This value can be added to a row or column index and used to select the 
proper cell. Implementation of conditional with indirection is similar to parameter 
selection in lambda-calculus. In lambda calculus, TRUE and FALSE are combinators 
that select the first or the second parameter. 
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We opt to use two types of recursive definitions. The first one is the “ellipsis” 
tabular recursion; the second one is function-call recursion which is defined in 
[section 5] under the name of tabular abstraction for which some examples are 
discussed in [section 7]. Tabular recursion allows construction of infinite tables and 
provides a means to specify induction. A three dots symbol (…) in a cell implies that 
this cell and all cells to the right of it have the same formula which is the formula of 
the cell immediately to the left of the current cell. The vertical counterpart is a three 
columns symbol (:::). A diagonal ellipsis would be represented by ***. See, for 
example, the implementation of factorial and Fibonacci functions in [Tab. 2]. 

 

 

Table 2: Implementation of factorial and Fibonacci functions. 

To illustrate that this model is sufficient to describe any computable function we 
implemented a Turing Machine, first in Excel, then in our prototype. In [Tab. 3] and 
[Tab. 4] there is an implementation of a TM that accepts the language }0|21{ ≥nnn . 
The symbol 5 is the blank symbol for the TM tape. Each row of spreadsheet (a) 
contains an instantaneous description of the TM, the first element is the machine state, 
the second is the head position (column number) and the remaining elements are tape 
symbols. 

A Turing Machine requires an infinite-length tape and may enter an endless loop, 
requiring that the spreadsheet that simulates it be infinite in both axes. Infinite-length 
spreadsheets can be defined by the use of the ellipsis operator. Due to the call-by-need 
evaluation scheme, this does not lead to infinite computations because only the values 
that are needed for calculation or presentation are evaluated. Our spreadsheets can be 
seen as lazy structures. 

Although, in the Turing Machine example, all computations are represented by 
the infinite-length spreadsheet, this doesn’t mean that the computations are carried 
out. We will only see a computed value if displayed by an editor, so we have to 
“scroll down” the spreadsheet until we see the TM stopped. If the TM enters an 
endless loop we would theoretically need to scroll down forever. From this 
observation, we conclude that a function to force the evaluation of cells is needed. We 
propose a “scan” function that will traverse the spreadsheet forcing evaluations until a 
criterion is met. In the case of the TM, this function will traverse the spreadsheet until 
the TM stops. If TM never stops, “scan” should also theoretically never stop. 
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Table 3: This is an implementation of a Turing Machine in Excel. We suppose lines 
and columns are infinite. Three basic formulae are given in (e), additional formulae is 
produced by the extension mechanism. 

 

Table 4: Implementation of a Turing Machine in our prototype. 
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5 A Model for Abstraction Definition 

We propose an abstraction model very similar to the one in Forms/3 [Burnett et al. 
2001]. The abstraction scheme resembles the delegation mechanism used as 
inheritance in prototype-based languages such as JavaScript. Every spreadsheet is a 
candidate for abstraction. It happens by overriding the formulae of some cells of a 
template spreadsheet and collecting the results of computed cells of the new formed 
spreadsheet. 

We call tabular abstraction the use of a spreadsheet or table as a function. Our 
liberal proposal permits that any cells of a template spreadsheet be overridden. The 
override of a spreadsheet consists of a spreadsheet with the substitution cells and a 
reference to the template spreadsheet whose cells are being overridden. The new 
spreadsheet formed this way will have cells whose formula will evaluate based on the 
other overridden cells. We use the following syntax: extend(template_spreadsheet, 
override_spreadsheet) which evaluates to a spreadsheet that can be kept inside a cell. 
A spreadsheet can extend itself using the ref() function without arguments. In terms of 
lambda-calculus, we create an abstraction defining which cells become parameters 
and already apply the abstraction to values and formulae that override the cells. 

The difference of our proposal to [Burnett et al. 2001] is that tabular organization 
is enforced and depended upon. Coordinate-awareness functions can provide access to 
the cells of the outer (or the “calling”) spreadsheet as absolute references or 
references relative to the location of the extend() function. As a result, spreadsheet 
cells can be also overridden with ellipsis, allowing a sort of infinite argument list. 
Return of multiple values is done by accessing computed values of the spreadsheet 
instances. Infinite list of values can then also be returned. 

6 Implementation 

We implemented the prototype of the interpreter and the editor in Java. Java was 
chosen as development platform for several reasons: we already have a garbage 
collector; it is easier to write a graphical editor; it is easy to write a FFI to extend the 
system using class files and the reflection mechanism; it is multiplatform; it is free. 

Spreadsheets were implemented as Java Hashtables. The objects used for keys are 
coordinate pairs and, for elements, a class containing a formula string, the expression 
tree of the parsed formula and a cache for the cell value. Each spreadsheet also has a 
hash table of named cells (mapping symbolic name to coordinates) and a linked list of 
ellipsis cells. When the value of a cell is requested, the spreadsheet checks if the cell 
value was cached. If it is not the case, then it checks if the cell is influenced by some 
ellipsis cell, returning the corresponding ellipsis reference or returning the cell 
expression tree otherwise. When any formula is changed, all cached values are 
discarded. 

Spreadsheet persistence is made by a linear description of spreadsheets in the 
formula language. This allows also the inclusion of a spreadsheet as a cell element 
inside another spreadsheet. The syntactical construction is 
grid(row,column,formula,…). This construction is not evaluated as a function; its 
parameters are considered “quoted”. 
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The editor has two modes: a formula-view mode and a value-view mode that can 
be switched through a button widget. Formulae for the cells can be entered in either 
mode. A cell is selected by a single click. A ctrl+click combination produces the 
expression of relative reference to the cell, while a ctrl+shift+click produces the 
absolute reference. Double-clicks on cells that contain a spreadsheet will open an 
editor window with that inner spreadsheet. The textual representation of a spreadsheet 
can be obtained by an option on the menu and can be pasted as the content of any 
spreadsheet cell. 

The lexical analyzer was written with the aid of Java regular expressions. The 
parser is a top-down depth-first backtracking parser based on recursive function calls. 
A symbol table (based in a hash table) is kept to make quick comparisons of symbolic 
strings. The evaluation of some integer expressions was implemented: addition, 
multiplication, arithmetic negation, subtraction, division, comparison (equal, greater 
than etc.). In the case of a spreadsheet inside of another, an expression ref (0, 2, 7, 0) 
refers to the cell at row 7 column 0 of the spreadsheet located in the cell at row 0 
column 2. This function can receive as arguments integer coordinates, names of cells 
and spreadsheets, so that the expression ref (ref (0, 2 ), 7, 0) has the same meaning of 
the one above. Functions col() and row() return the coordinates of the cell being 
evaluated and admit a numeric parameter n to refer to the n-th outer level coordinates. 
The function up() returns the spreadsheet that contains the spreadsheet with the cell 
being evaluated. 

7 Examples and Evaluation  

We implemented several experiments including Pascal triangle with tabular recursion 
[Fig. 1], functional-recursive Fibonacci and factorial functions [Fig. 2] and the 
already mentioned TM. The computation of Fibonacci is well-known as costly to 
compute when we not reuse previously computed values. We implemented efficient 
computation of Fibonacci series through value cache. The cache is limited to cell 
values and is accessed during the evaluation of the ref() function. These basic 
examples show the expressiveness of the language. The option to create windows to 
show inner spreadsheets for intermediary computations is illustrated in [Fig. 2] and 
was very important while constructing the spreadsheets. 

 

 

Figure 1: Pascal triangle spreadsheet. 
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Figure 2: Recursive factorial and Fibonacci spreadsheets. Arrows show how 
spreadsheet windows open to allow visualization of intermediate results. 

8 Conclusion 

We presented a programming model based on spreadsheets instead of traditional text 
file programs. Although spreadsheets are already computationally expressive for 
many tasks, we intended to improve them to allow the definition of recursive 
computations and better modularity and reusability of components. We justify our 
design through informal theoretical discussion and examples of its expressiveness. 

We expect the developed environment should meet several application needs, 
improving the expressive power of users when dealing with computations and 
allowing non-programmers to enter code in the intuitive form of spreadsheets as long 
as they are able to understand and use the simple formula language. 

The intent of this work, in the present stage, is the exploration of concepts. We 
are not yet concerned with providing an optimal implementation and the language and 
the editor are still not appealing for end-users. The designed language is targeted to a 
prototype system valuing completeness, simplicity and ease of implementation. A lot 
more of syntax sugar, basic functions and constructs should be added in order to 
deliver the systems to users. In the future, we plan to improve the interpreter by 
implementing graph rewriting, better data structure construction functions and a 
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design for the “scan” operation. We intend to apply the prototype in education and 
information visualization scenarios. 
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