
C APIs in Extension and Extensible Languages

Hisham Muhammad
(Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-RIO), Brazil

hisham@inf.puc-rio.br)

Roberto Ierusalimschy
(Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-RIO), Brazil

roberto@inf.puc-rio.br)

Abstract Scripting languages are used in conjuction with C code in two ways: as
extension languages, where the interpreter is embedded as a library into an applica-
tion; or as extensible languages, where the interpreter loads C code as add-on modules.
These two scenarios share many similarities, as in both of them two-way communi-
cation of code and data needs to take place. However, the differences between them
impose design tradeoffs that affect the C API that bridges the two languages, often
making a scripting language more suitable for extending than embedding, or vice-versa.
This paper discusses how these tradeoffs are handled in the APIs of popular scripting
languages, and the impact on their use as embedded or extensible languages.

Key Words: programming languages, application programming interfaces

Category: D.3.2, D.3.4

1 Introduction

There are many situations in which it is necessary or interesting to have interac-
tion between programs written in different languages. A typical case is the use
of external libraries, such as graphic toolkits, APIs for database access, or even
operating system calls. Another scenario involves applications developed using
more than one programming language, in order to optimize parts where perfor-
mance is critical or to allow extensibility through scripts written by end-users.

Regardless of purpose, communication between programs written in different
languages brings up a number of design issues, not only in the development of the
applications, but of the languages themselves. There are many ways to obtain
this kind of interoperability, but ideally, a language should provide a foreign
language interface that allows programmers to send and receive both calls and
data to another language [Finne et al., 1998].

A model for interaction between languages that has shown to be especially
relevant nowadays is that between statically typed compiled languages, such as
C and C++, and dynamically typed interpreted languages, such as Perl and
Python. In [Ousterhout, 1998], Ousterhout categorizes these two groups as sys-
tems programming languages and scripting languages.

Journal of Universal Computer Science, vol. 13, no. 6 (2007), 839-853
submitted: 19/1/07, accepted: 22/3/07, appeared: 28/6/07 © J.UCS



These two categories of languages have fundamentally different goals. Sys-
tems programming languages emerged as an alternative to assembly in the de-
velopment of applications, having as main features static typing, which eases
the understanding of data structures in large systems, and being implemented
as compilers, due to concerns with performance. In contrast, scripting languages
are dynamically typed and are implemented as interpreters or virtual machines.
Dynamic typing and the extensive use of higher-level constructs as basic types,
such as lists and hashes, bring greater flexibility in the interaction between com-
ponents; in static languages, the type system imposes restrictions to those in-
teractions, often requiring the programmer to write adaptation interfaces, which
makes the reuse of components harder.

Scripting languages have the distinction that, by design, they are developed
having interaction with code written in other languages in mind. Because of the
popularity of the C language and the support it enjoys in most popular operating
systems, a considerable number of implementations of foreign language interfaces
are, in practice, C APIs.

Scripting languages are used in conjuction with C code in two ways: extending
a C application, where the interpreter is embedded as a library; or by having C
code extend the language, through add-on modules written as C libraries. These
two scenarios share many similarities, as in both of them two-way communication
of code and data needs to take place. However, the differences between them
impose tradeoffs that affect the design of the resulting C API.

This paper discusses how the design of a language’s C API affects its suitabil-
ity for different application scenarios. In Section 2, we discuss the different roles
of scripting languages. In Section 3, the main issues involving interaction of C
code with scripting language runtime environments are presented, followed by a
discussion in Section 4 on how popular scripting languages address those issues
and the effect of their designs in their applicability as extension and extensible
languages. Finally, Section 5 concludes the paper.

2 Extension and extensible languages

Scripting languages are designed to be used in two-language scenarios. Origi-
nally, they had an auxiliary role, in which user scripts allow for customization
of applications. With the increased popularity of scripting languages, a differ-
ent usage model has also risen to prominence, in which the scripting language
performs a more central role. Typical examples are graphical applications where
the interface is described by scripts controlling components implemented in C
and games where the logic is described in scripts and the runtime engine is
implemented in lower-level languages.

In these scenarios, there is a clear distinction between a lower-level layer
where performance is a critical factor and another, higher-level layer that co-

840 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



ordinates operations on elements of the lower layer. Scripting languages cease
to be just an extension mechanism: the application itself is written using the
scripting language and libraries written in lower-level languages are loaded as
extension modules.

It makes sense, then, when discussing language interaction, to make a distinc-
tion between extensible languages and extension languages. Extensible languages
are those that can be extended through external modules implemented in other
languages. Extension languages are those which runtime environment can be
embedded in an application, allowing to use them to extend the application.
Typically, scripting languages can be used, with variable degrees of convenience,
as either extensible or extension languages.

Another interesting observation is that, while in one model the scripting
language serves as an extension language for the lower-level language in which
the application is written, in the other model the opposite happens: we can
look at add-on modules written using the language’s C API as a way to extend
the scripting language using C; in this perspective, C becomes the extension
language.

This way, the set of features provided by an API between C and a scripting
language tends to be symmetric in case it is desired to provide language exten-
sibility as well as promote its use as an extension language. In both situations,
code and data manipulation features need to be provided in both directions. A
few common issues arise when implementing interaction between C and scripting
languages; they are discussed in the following section.

3 Interaction between C and scripting languages

Interfaces provided by scripting languages are usually understood as “extension
APIs”: they extend the virtual machine with features not originally offered by it,
or alternatively, they extend an external application with the features offered by
the runtime environment of the language, embedding it to the application. The
first scenario is the one used in the programming model where the high-level
coordination is made by an interpreted language and modules written in lan-
guages such as C and C++ are used to access external libraries or to implement
performance-critical parts. The second scenario, in general, will also encompass
the first one, when exposing to the embedded virtual machine extensions that
will allow it to talk to the host application.

Both scenarios involve the same general problems: data transfer between
the two languages, including how to allow the scripting language to manipulate
structures declared in C and vice versa; handling the difference between the
memory management models, more specifically the interaction between garbage
collection in the virtual machine and explicit deallocation in C; calling functions

841Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



declared by the scripting language from C; and the registration of C functions
so that they can be invoked by scripts.

3.1 Data transfer

The main complexity in the interaction between programming languages is not
the difference in syntax or semantics from their control flow structures, but in
their data representations. In the communication between code written in two
different languages, data flow in various forms: as parameters, object attributes,
elements in data structures, etc.

Since the format how these data are represented often differs, the alterna-
tives to perform data transfer between languages involve either converting the
data or manipulating it opaquely through some kind of handle. The duplication
that takes place when converting data limits the applicability of this method,
restricting its use typically to numeric types and, in minor scale, strings. When
exposing handles, the source language may explicitly offer facilities in the target
language to manipulate these data, that is, the data remains opaque, but the
language can access its contents through an API.

Because of its focus on the manipulation of pointers and structures, C pro-
vides a small set of basic types. Besides, C is very liberal with regard to the
internal representation of its structured types, with each different platform hav-
ing to define its own application binary interface (ABI). There may also be the
need to handle conversion of endianness and format of floating point numbers.
So, even in cases where it is possible to link C code directly, bindings libraries are
still usually needed to make the manipulation of complex types more convenient.

For types such as strings, the size of values also brings performance concerns.
In many cases the internal representation used for strings is the same as used in
C, so an option is to simply pass to the C code a pointer to the address where
the string is stored, which avoids copying of data, under risk of allowing the
C code to modify the contents of the string. Exposing to C code pointers to
memory areas within the runtime environment of the other language may also
bring concurrency problems, in case the environment uses multiple threads.

When exposing data of structured types to C, the conversion to a native C
type, in many cases, is not an option. Structured types in C are defined statically,
therefore not serving to represent conveniently data of dynamic structures, such
as objects that may gain or lose attributes or even change class during runtime.
Even in languages with static typing, like Java, copying objects is not usually
an interesting option due to the volume of data. Copying of structured objects
tends to be restricted to specific operations such as manipulation of arrays of
primitive types.

The alternative to allowing C code to operate over structured data, thus,
is to provide an API that exposes the operations defined over those types as

842 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



C functions. This also avoids the need to control the consistency between two
copies of a given structure. Consistency problems, however, may occur if the API
allows the C code to store pointers to objects from the language – this makes
it necessary for the programmer to manage explicitly the synchronicity between
pointers and the life cycles of objects that may be subject to garbage collection.

3.2 Garbage collection

From the moment when C code gains access to handles to data from the storage
space of another language, the programmer must take into consideration the
differences between the memory management models involved. For example, the
C program may deallocate an object referenced by data in the scripting language,
or the scripting language may remove an element from a structure causing it to
be collected.

It is necessary, then, to indicate in C that the data remain accessible from
it and must not be collected. In a complementary way, when transferring the
control of C objects to the domain of the other language – for example, when
storing them in a data structure of the other language – it is necessary to indicate
to the language how to deallocate the memory of the structure when the garbage
collector detects that it is no longer in use. The way how the API will provide
this functionality depends not only on the design of the C API, but also on the
garbage collection mode employed by the implementation of the language.

3.3 Function calls and registration

When bridging C and a scripting language, it is necessary to provide a form
of invoking, from C, functions to be executed by the scripting language, and
vice-versa. This combines the issues of data transfer, for passing arguments and
receiving results between these two “spaces”, and the implications that this
brings about the objects’ lifetime, affecting garbage collection. The tasks involved
are always the same – perform conversion of input data, pass parameters to the
other language, specify which function to call, obtain return values, convert them
back to the other language – but approaches employed in scripting language APIs
vary widely. In the next section we will discuss how some APIs implement these
tasks and the impact of their design on their usability as extension and extensible
languages.

Because of the static typing of C, it is not possible to use a transparent syntax
for calling functions registered at runtime. It is therefore necessary to define an
API of functions for performing calls to the scripting language. Conversely, to
allow the invocation of C functions from code written in a scripting language, its
API must provide a way to register these functions in the execution environment.
In statically typed languages, such as Java, to make it possible to call external

843Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



functions using the same syntax as native calls, the set of external functions
must be declared a priori in some way. On the other hand, in dynamically
typed languages, functions can be used directly; defining them at some point in
time before their call is sufficient. This way, one can declare external functions
at runtime through C code using the scripting language API.

4 Scripting language API designs

A pioneering example of an embedded, extension language is Tcl
[Ousterhout, 1994]. Four main goals were set in its original design
[Ousterhout, 1990]: focus as a command language (designed to write short pro-
grams); extensibility; simplicity in its implementation; simple interface with C
applications. We observe in those goals principles that are now understood as
fundamental features of extensible and extension languages: extensibility was
listed as a goal explicitly; the last two goals point out its focus as an extension
language.

Aiming to simplify the interaction with C code, Tcl uses strings as its single
data type. This minimalism, which has shown to be an advantage for Tcl as an
extension language, makes it seem limited compared to languages like Python,
which provide a more complete feature set as an extensible language. Scripting
languages have grown beyond Tcl’s focus as a command language, and thus, Tcl
gradually lost space in the scripting world. Its historical importance, however,
is undeniable: it was the concept introduced by Tcl of implementing scripting
languages as C libraries that pushed strongly the development of extensible
applications.

In this section, we discuss the design of the C APIs of four popular
scripting languages, Python [van Rossum, 2006b], Perl [Wall et al., 2000], Ruby
[Thomas and Hunt, 2004] and Lua [Ierusalimschy, 2006], in terms of the interac-
tion issues outlined in the previous section, while also contrasting them with the
C API of Java [Gosling et al., 2000]. Unlike the others, Java uses static typing
– which allows us to observe how typing affects the design of an API – but like
them it is based on a virtual machine model, features automatic memory man-
agement and allows dynamic loading of code, and most importantly, it can both
be embedded as an extension language and be extended with native C code.

4.1 Data transfer

The basic set of functions for manipulating data in scripting language APIs is
usually the same: they provide functions for converting values from the lan-
guage to basic C types and vice-versa. A central design issue lies in how to
represent a value between languages. All values in the Python virtual ma-
chine are represented as objects, mapped to the C API as the PyObject

844 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



structure [van Rossum, 2006a]. More specific types such as PyStringObject,
PyBooleanObject and PyListObject are PyObjects by structural equivalence,
that is, they can be converted through a C cast. Similarly, in Ruby, the API
defines a C data type called VALUE, which represents a Ruby object. VALUE may
represent both a reference to an object (that is, a pointer to the Ruby heap)
as well as an immediate value. In particular, the constants Qtrue, Qfalse and
Qnil are defined as immediate values, allowing them to be compared in C using
the == operator. Perl also provides handles to its data in C, but these C values
are better understood as containers to Perl values: types of Perl variables are
mapped to C structs SV for scalars, AV for arrays, HV for hashes. A scalar variable
in Perl has an SV associated to itself; however, one can create in C an SV that is
not associated to any Perl variable name.

Lua, in contrast, employs a different approach for manipulating data in C:
no pointers or handles to Lua objects are ever exposed to C code, and instead,
operations are defined in terms of indices of a virtual stack. So, data transfer from
C to Lua takes place through functions that receive C types, convert them to Lua
values and stack them. While this results in the simplest and most orthogonal
data manipulation API among the ones mentioned, code in which values are
associated to stack indices tends to be less natural-looking than code using C
variables – the manipulation of, say, a Ruby VALUE is syntactically similar to that
of other C types: an assignment to a VALUE is done in C with an assignment.

All of these languages also offer API functions for manipulating their funda-
mental structured types (tables in Lua, arrays and hashes in Ruby and Perl, lists
and dictionaries in Python). Python, in particular, defines an extensive function
API for operations on its built-in classes; most of these functions could be per-
formed using the generic API for method invocation, but they are offered directly
in C as a convenience. In Java, static typing reduces greatly the need for explicit
data conversion in C code. The Java Native Interface (JNI) [Sun, 2003] defines
C types equivalent to each of Java’s primitive types (jint for int, jfloat for
float, and so on). While to return an integer to Python from C one would have
to use a command such as return PyInteger New(42), when interfacing Java
they could simply write return 42. Reference types, such as classes and objects,
are exposed to C as opaque references, instances of jobject. On the other hand,
treatment of multi-threading complicates the access of types such as strings and
arrays.

An important task when bridging C code to a scripting language is the cre-
ation of data in the scripting language environment containing C structures.
Perl, Ruby and Lua provide simple mechanisms for this task. Ruby offers the
Data Wrap Struct macro which receives a C structure and returns a Ruby
VALUE. Lua defines a basic type in the language especially for this end, called
userdata, which contains a memory block managed by the Lua VM that is acces-

845Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



sible to C code but is an opaque object when accessed from Lua. In Perl, one can
create SVs containing arbitrary memory blocks for use in C. In Python, the pro-
cess is not as straightforward. Creating a Python class from C involves declaring
parts of it statically and other parts dynamically, being usually necessary to
define three different C structures, which are closely tied to the implementation
of the Python VM. The complexity of code that interacts with C data types
using the Python API tends to be less problematic in an isolated piece of code
such an extension module (which is typically centered around the declaration of
these types and their methods) than when inserted in a larger body of code, as
it happens with an embedded interpreter. Using the JNI, it is not possible to
create new Java types from C; one can only load precompiled classes.

Another common need when interacting with C is to store pointers in the
data space of the scripting language. Python, Lua and Perl offer features to do
this directly. In Python, a PyCObject is a predefined type that holds a void
pointer accessible from C. Lua offers a built-in type for this end, light userdata,
which differs from userdata in that the memory block it points to is not managed
by the virtual machine. In Perl, the same can be achieved storing a pointer in the
data area of an SV. In Ruby and Java, there is no direct way to store pointers.
The alternative is to convert pointers and store them as numbers. In fact, this
happens internally in the implementation of Ruby, and the portability limitations
of this approach are made evident by the fact that the compilation of Ruby fails
if sizeof(void*) != sizeof(long).

4.2 Garbage collection

Garbage collection aims to isolate, as much as possible, the programmer from
memory management. This way, ideally an API should also be as independent as
possible from the garbage collection algorithm used in the implementation of the
virtual machine. Perl and Python perform garbage collection based on reference
counting, and this shows through in the reference increment and decrement
operations frequently needed during the use of their APIs.

Ruby uses a mark-and-sweep garbage collector. Its API manages to abstract
this fact well for manipulation of native Ruby objects, but the implementation
of the collector is evident in the creation of Ruby types in C, where we need to
declare a mark function when there are C structures that store reference to Ruby
objects. The Lua API goes further when isolating itself from the implementation
of the garbage collector: the only point of the API where the use of an incremental
garbage collection is apparent is in the routine for direct interaction with the
collector, lua gc, where its parameters can be configured.

Of the five languages discussed in this work, the only one whose API abstracts
en- tirely the implementation of the garbage collector is Java. The only inter-
facing operation provided by the language, System.gc(), does not receive any

846 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



arguments and does not specify how or when the collection should be done1. In-
deed, the various available implementations of the JVM use different algorithms
for garbage collection. We observe, then, that while most languages abstract the
specifics of the garbage collector, details of the garbage collection algorithm tend
to show up in the APIs. Since in pragmatic terms the API compatibility of an
implementation is as important as language compatibility, this means that, due
to the API, language implementations end up tied to specific garbage collection
algorithms because of their API even if they are transparent to the language
itself.

Another issue that arises in the communication between C and scripting
languages is the management of references. For manipulating data through the
API, Lua and Ruby demand the least concerns from the programmer about
managing references. Lua avoids the problem altogether, by keeping its objects
in the virtual stack and not returning references to C code; accessing data from
Lua, thus, always involves function calls for getting the data into the stack.

In Ruby, only objects stored in C globals and not referenced from Ruby need
to be notified, using the rb global variable function; objects in the local scope
of a C function do not need to be notified. The way how Ruby ensures the va-
lidity of local VALUEs is remarkably peculiar: when performing the mark phase,
the garbage collector scans the C stack looking for values that look like VALUE

addresses, that is, numeric sequences that correspond to valid VALUE addresses.
These addresses can be identified because objects are always allocated within
heaps maintained by the Ruby interpreter. Each VALUE found in the stack is then
marked. This ensures that any VALUE locally accessible by C code becomes inval-
idated, but may generate “false positives” stopping data that could be collected
from being so.

In spite of programmer convenience, such approach is extremely non-
portable. The implementation of the garbage collector in Ruby 1.8.2 has #ifdefs
for IA-64, DJGPP, FreeBSD, Win32, Cygwin, GCC, Atari ST, AIX, MS-DOS,
Human68k, Windows CE, SPARC and Motorola 68000. Besides, the collector
forces the discharge of registers to the stack using setjmp, to prevent variables
of the VALUE type that may have been optimized into registers by the compiler
from being missed.

Both Perl and Java handle the issue of references stored in local variables in a
similar way, by distinguishing references as either global or local (local references
are called “mortal variables” in Perl). Local references allow for mostly implicit
management. API functions in Java return local references by default, which
can be converted to global ones with the API call NewGlobalRef. In Perl, the
opposite happens, and global references can be converted to local ones with
1 The documentation is purposely vague, stating only that this method “suggests that

the Java Virtual Machine expend effort toward recycling unused objects”.

847Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



the sv 2mortal function. Java’s approach is more interesting, as normally more
locally-scoped than globally-scoped variables are used.

4.3 Function calls

In Python, Lua and Perl, functions can be accessed as language objects and
invoked. Python allows any PyObject to be called as a function, as long as
they implement the call method, which can be written in either Python
or C (as a function registered in the object’s PyTypeObject struct). Like in
data manipulation, Python offers an extensive API, with several convenience
functions allowing parameters to be passed as Python tuples, as Python objects
given as varargs, as C values to be converted by the invocation function, etc.
In Lua, there is a built-in primitive type, function, which represents both Lua
functions and C functions registered in the Lua VM. Perl also allows functions
to be manipulated as first-class objects using its C API, returning SV structs
representing them.

In Ruby as well as Java, methods are not first-class objects, and therefore
their APIs define specific C types used to reference them – jmethodID in Java
and ID in Ruby2. Java also offers a large number of method invocation functions
and, due to static typing, input parameters can be passed as varargs in a direct
way, without having to specify how their conversion should be made. Ruby also
offers some variants of invocation functions.

Lua separates the function call routine from argument passing, which is done
in a previous step by setting up the contents of the stack. This is a very simple
solution, but the resulting code is less clear than the equivalent calls in languages
such as Ruby and Python, in which arguments to the function call are written in
C as arguments to the C API call. Perl also features function calls using a stack
model, but its use is exceedingly complex, demanding a macro protocol to be
followed which exposes the internal workings of the interpreter [Marquess, 2006].
Another complicating factor is the handling of return values, for these vary
according to the Perl context in which the function is called.

In Lua and Python, the occurrence of errors can be checked through the
function’s return value. In a similar way, Perl allows detecting errors in the most
recent call checking a special variable, $@; in Java, this is done calling an API
function. In Ruby, error handling is more convoluted: the API offers a function
for invoking C functions in protected mode, but lacks an equivalent for calling
Ruby functions. It is necessary to write a wrapper function in those cases.
2 An ID is merely a reference to the symbol table entry corresponding to the method’s

name, and not a unique identifier for the method itself.

848 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



4.4 Registration of C functions

Python and Ruby offer to the programmer various options for C function sig-
natures that are recognized by the API, which is practical, given that this way
one can choose different C representations for the input parameters (collected in
an array, obtained one by one, etc.) according to their use in the function. Lua
offers only one possible signature for C functions to be registered in its virtual
machine, as arguments are passed through the stack and not as arguments to
the C function.

In Java, function signatures are created through the javah tool [Liang, 1999]
– due to its static type system, types of input parameters passed by Java are
converted automatically by the JNI, which is very convenient as it avoids ex-
plicit operations for conversion and type checking in the function. Because of
their dynamic type systems, the other languages offer specific API functions for
performing these checks.

The interface between Perl and C was designed having in mind that the con-
nection between C functions and the Perl interpreter is made through generated
code from a description given in a higher-level language, XS [Roehrich, 2006].
Instead of isolating the access to Perl’s internals through a public API, the pro-
posed approach is to encapsulate the process of generating wrapper code using in-
terfaces written in .xs files. These files contain C code along with annotation that
simplifies the handling of input and output parameters. In fact, Perl does not ex-
pose a documented API for registering functions [Okamoto and Roehrich, 2006].
Because of that, it is not practical for an application to embed a Perl interpreter
and expose it to a set of C functions using C code only. The alternative is to write
a Perl extension using XS and import the resulting package in the embedded Perl
interpreter.

Registration of functions in Ruby and Lua is simple. In Lua, in particular, it is
an assignment (made through API calls), not different from any other object. In
Python, there are features for batch registering, using arrays of the PyMethodDef
struct (Lua offers a similar feature with luaL register function), but there is no
simple way to register a single function – again, this shows a focus on extending
rather than embedding: extension modules tend to register many functions at
once, while embedded interpreters often register global functions. Both in Java
and Perl, function registration is done implicitly by the generation tools, and
there are no public API functions for registering new C functions at runtime in
either of them.

5 Conclusion

Choosing a scripting language depends on a series of factors, many of them
relative to the language itself, others relative to its implementation. When we

849Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



deal with multi-language development scenarios, an aspect that should not be
neglected is the design of interfaces between languages. Be it extending the
scripting language through C code, or making a C application extensible through
a scripting language, the API offered by the language has a fundamental role,
often influencing the design of the application.

Although the same general problems, such as data transfer, function registra-
tion and calling, are common to different usage scenarios of a scripting language
API, applications embedding a virtual machine tend to demand more from the
API than libraries implementing extension modules. This point is illustrated by
the difficulties imposed by the Python API both in the access to global variables
and registration of global functions; and, more evidently, by the complexity of
Perl’s API for function calls.

The fact that the Python API makes the use of global variables and functions
difficult, favoring the use of modules, can be justified as a way to promote a more
structured programming discipline. This is interesting when using the API for
developing extension modules, given that using global variables and functions is
extremely harmful in those cases, as it would pollute the namespace of Python
applications. For the case where the language is embedded to provide scripting
support for a C application, the absence of a convenient way to define global
functions in the scripts’ namespace is questionable.

The approach adopted by Perl, using a pre-processor which generates auto-
matically code for converting data when passing parameters and return values,
has shown to be inadequate for scenarios involving embedded interpreters. Al-
though the use of a pre-processor simplifies the simpler cases of declaration of C
functions, the lack of a well-defined API for handling data transfer between the
Perl interpreter and C code becomes apparent in more elaborate cases.

Interesting observations resulted from the comparison of the Java API with
that from the other four scripting languages, given that, although it shares sev-
eral traits with those languages, Java is not considered a scripting language.
While static typing does reduce considerably the need for explicit data conver-
sion in C code for primitive types of the language, in practice type checking for
objects and the linking of fields and methods happens in a dynamic way, as these
have to be performed at runtime by the JNI. Thus, regarding interaction of the
virtual machine with C, advantages brought by static typing are reduced. Be-
sides, dynamic resolution of fields and methods through C has subtle differences
in behavior when compared to what occurs in native Java code, which can be a
source of programmer errors.

Throughout the development of this work, we implemented as a case study a
C library called LibScript3, which provides an extensibility architecture for ap-
plications in a language-independent manner: scripting language VMs are loaded
3 http://libscript.sourceforge.net

850 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



dynamically as LibScript plugins. In the implementation of these plugins, we had
a chance to exercise the APIs of the different scripting languages performing sim-
ilar tasks.

The disparity between languages with regard to the availability of documen-
tation deserves mention. Java, Python and Lua feature extensive documentation,
both for the languages themselves and to their C APIs. For those languages, we
were able to largely base our study and the implementation of the case study on
the provided documentation. The documentation of Ruby relative to its C API
is sparser; in [Thomas and Hunt, 2004] only part of its public API is covered.
One has to make use of undocumented functions for tasks as fundamental as
freeing global references registered through C.

The balance between simplicity and convenience is another recurring theme
when comparing APIs. Python’s extensive API, containing 656 public functions,
contrasts with the 113 functions exposed by the Lua API (79 from the core
API, 34 in its auxiliary API). In many situations, Python API functions abbre-
viate two, three ore even more calls, as in the case of powerful functions such
as Py BuildValue and PyObject CallFunction, resulting in short and readable
C code. The approach defended by Lua is that of a minimalistic API, offer-
ing mechanisms with which more elaborate functionality can be built. In fact,
in [Ierusalimschy, 2006] a C function equivalent to PyObject CallFunction is
presented, using the Lua API.

Ruby exports 530 functions in its header and Perl 1209, but as only a small
fraction of those is documented, it is hard to evaluate the size of their “public
API” and how many of these are just functions for internal use exposed in their
headers4. This also shows that the documentation is not only relevant as support
material for development, but it also indicates how well-defined an API is.

The Java API is well-documented, like that from Python and Lua, but the
number of exported functions is not a good parameter for comparison with the
other APIs as, because of its statically defined types, many functions have a
variant for each primitive type. Java exports its API as a structure containing
function pointers; 228 functions in total are exported in this structure.

An aspect that is equally important when extending or embedding is the
concern on not polluting the C namespace. Python, Java and Lua define all
its functions and C types with prefixes that aim to avoid conflicts with other
names, which in the case of embedding are defined by the application, and in
the case of extending are defined by the library being exposed to the language.
Perl and Ruby define names in a disorganized fashion, which occasionally causes
problems. Perl has options to disable a series of macros and force a common
prefix in its functions, but this feature is incomplete and using it hampers the
4 Some functions are marked as being for internal use only, but most of them have no

indication whatsoever.

851Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



functionality of its headers.
Another point that could be observed in this work is that the consistency of

an API depends greatly on the consistency of the language it exposes. Construc-
tions where a language lacks orthogonality, such as code blocks in Ruby or the
differences when manipulating scalar and array values in Perl, end up increasing
the complexity of the API and demand from the programmer specific handling
in C code.

The focus in extending or embedding adopted by a language’s C API
has as much impact in its suitability for one or other scenario as the design
of the language itself. The interaction between the design of the language,
its implementation and its API all affect each other in often subtle ways –
APIs like those from Lua and Java, which allow multiple interpreters to run
concurrently, show a design concern on embedding, while those from Perl,
Python and Ruby focus on providing facilities to make it easier to write ex-
tension modules. Given that an API designed towards embedding also encom-
passes the needs of APIs for extension modules, and that module generation
tools such as SWIG [Beazley, 1996] (as well as language-specific tools such as
[Ewing, 2006, Niemeyer, 2006, Manzur and Celes, 2006]) are becoming increas-
ingly powerful and popular, we observe that a C API aiming to support both
extension and embedding should focus on the latter, as that tends to demand
more from both the API and the language implementation.

References

[Beazley, 1996] Beazley, D. M. (1996). SWIG: an easy to use tool for integrating
scripting languages with C and C++. In Association, U., editor, 4th Annual Tcl/Tk
Workshop ’96, pages 129–139, Berkeley, CA, USA. USENIX.

[Ewing, 2006] Ewing, G. (2006). Pyrex - a language for writing Python extension
modules. http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/.

[Finne et al., 1998] Finne, S., Leijen, D., Meijer, E., and Jones, S. P. (1998). H/Direct:
a binary foreign language interface for Haskell. In ICFP ’98: Proceedings of the third
ACM SIGPLAN international conference on Functional programming, pages 153–
162, New York, NY, USA. ACM Press.

[Gosling et al., 2000] Gosling, J., Joy, B., Steele, G., and Bracha, G. (2000). The Java
Language Specification. Addison-Wesley, Boston, MA, USA, 2nd edition.

[Ierusalimschy, 2006] Ierusalimschy, R. (2006). Programming in Lua. Lua.org, 2nd
edition.

[Liang, 1999] Liang, S. (1999). Java Native Interface: Programmer’s Guide and Ref-
erence. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[Manzur and Celes, 2006] Manzur, A. and Celes, W. (2006). toLua++ reference man-
ual. http://www.codenix.com/∼tolua/tolua++.html.

[Marquess, 2006] Marquess, P. (2006). perlcall(1). Perl 5 Porters, 5.8.8 edition. http:
//perldoc.perl.org/perlcall.html.

[Niemeyer, 2006] Niemeyer, G. (2006). Lunatic Python. http://labix.org/
lunatic-python.

[Okamoto and Roehrich, 2006] Okamoto, J. and Roehrich, D. (2006). perlapi(1). Perl
5 Porters, 5.8.8 edition. http://perldoc.perl.org/perlapi.html.

852 Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages



[Ousterhout, 1990] Ousterhout, J. K. (1990). Tcl: An embeddable command language.
In Proceedings of the USENIX Winter 1990 Technical Conference, pages 133–146,
Berkeley, CA. USENIX Association.

[Ousterhout, 1994] Ousterhout, J. K. (1994). Tcl and the Tk Toolkit. Addison Wesley.
[Ousterhout, 1998] Ousterhout, J. K. (1998). Scripting: Higher-level programming for

the 21st century. IEEE Computer, 31(3):23–30.
[Roehrich, 2006] Roehrich, D. (2006). perlxs(1). Perl 5 Porters, 5.8.8 edition. http:
//perldoc.perl.org/perlxs.html.

[Sun, 2003] Sun (2003). Java Native Interface 5.0 Specification. Sun Microsystems,
5.0 edition. http://java.sun.com/j2se/1.5.0/docs/guide/jni/.

[Thomas and Hunt, 2004] Thomas, D. and Hunt, A. (2004). Programming Ruby: The
Pragmatic Programmer’s Guide. Addison Wesley Longman, Inc., Boston, MA, USA,
2nd edition.

[van Rossum, 2006a] van Rossum, G. (2006a). Extending and Embedding the Python
Interpreter, 2.4.3 edition. http://docs.python.org/ext/ext.html.

[van Rossum, 2006b] van Rossum, G. (2006b). Python Reference Manual. Python
Software Foundation, 2.4.3 edition. http://docs.python.org/ref/.

[Wall et al., 2000] Wall, L., Christiansen, T., and Orwant, J. (2000). Programming
Perl. O’Reilly, 3rd edition.

853Muhammad H., Ierusalimschy R.: C APIs in Extension and Extensible Languages


