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Abstract: Despite all the advances brought by LALR parsing method by DeRemer
in the late 60’s, conflicts reported by LALR parser generators are still removed in
an old fashion and primitive manner, based on analysis of a huge amount of textual
and low-level data stored on a single log file. For the purpose of minimizing the effort
and time consumed in LALR conflict removal, which is definitely a laborious task, a
methodology is proposed, along with the set of operations necessary to its realization.
We also present a tool and the ideas behind it to support the methodology, plus its
plugin facility, which permits the interpretation of virtually any syntax specification,
regardless of the specification language used.
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1 Introduction

The great advantage of working with LALR(k) grammars is the fact that they
can be used by parser generators to automatically produce fully operational and
efficient parsers, encoded in languages like C, C++, Java, Haskell, etc. Examples
of LALR parser generators are YACC [Johnson 1979], CUP [CUP 2007], Frown
[Frown 2007], among others. However, the specification of a grammar that is
indeed LALR(k) is not a trivial task, specially when k is limited to one, which is
often the case. This happens due to the recurrent existence of conflicts, i.e., non-
deterministic points in the parser. It is quite common in a typical programming
language grammar being designed to find hundreds, if not more than a thousand
conflicts. To illustrate that, when implementing the LALR(1) parser for the
Notus [Tirelo and Bigonha 2006] language, whose grammar has 236 productions,
575 conflicts were reported by the parser generator.

There exists many approaches to remove conflicts. Those based on ad hoc
solutions, such as precedence and associativity settings, are not considered by
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the methodology proposed herein. We favor the method based on rewriting some
rules of the grammar, without changing the defined language.

A usual way to remove conflicts is to analyse the output file created by the
parser generator. This output consists of a considerable amount of textual data,
from the numerical code associated to grammar symbols to the grammar and
the LALR automaton itself. Using the Notus language as an example, the Bison
parser generator (the GNU version of YACC) dumps a 54 Kb file, containing
6244 words and 2257 lines. The big amount of data and the fact that none of it
is interrelated – hyperlinks are not possible in text files, make it very difficult
to browse. The level of abstraction in these log files is also a problem, since
non experts in LALR parsing may not interpret them accordingly. When facing
these difficulties, these users often migrate to LL parser generators. Despite their
simplified theory, this approach is not a real advantage, since LL languages are
a proper subset of the LALR ones. Even for experts users, removing conflicts in
such harsh environment causes a decrease of productivity. To face this scenario,
in this paper we present a methodology for removing conflicts in non LALR(k)
grammars. This methodology consists of a set of steps whose intention is to
capture the natural way the compiler designer acts when handling conflicts: (i)
understand the cause of the conflict; (ii) classify it according to known conflict
categories; (iii) rewrite some rules of the grammar to remove the conflict; (iv)
resubmit the specification to make sure the conflict has been eliminated. Each of
these steps comprises a set of operations that must be supported. The realization
of these operations are discussed when presenting SAIDE 1, a supporting tool
for the proposed methodology.

This article is organized as follows: Section 2 gives the necessary background
to understand the formulations used in later sections; Section 3 discusses conflicts
in LR and LALR parsing; Section 4 presents the proposed methodology; Section
5 presents SAIDE, the mentioned tool to support the methodology, and Section
6 concludes this article.

2 Background

Before we present the methodology itself, it is necessary to establish some for-
mal concepts, conventions, definitions and theorems. Most of the subject defined
here is merely a reproduction or sometimes a slight variation of what is de-
scribed in [Charles 1991], [DeRemer and Pennello 1982], [Aho and Ullman 1972]
and [Kristensen and Madsen 1981]. It is assumed that the reader is familiar with
LR and LALR parsing.

A context free grammar (CFG) is given by G = (N, Σ, P, S). N is a finite
set of nonterminals, Σ the finite set of terminals, P the set of rules in G and
1 Correct pronunciation: /saId/
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finally S ∈ N is the start symbol. V = N ∪Σ is said to be the vocabulary of G.
When not mentioned the opposite, a given grammar is considered to be in its
augmented form, given by (N ′, Σ′, P ′, S′), where N ′ = {S′} ∪N , Σ′ = {$}∪Σ,
P ′ = {S′ → S$} ∪ P , considering that S′ /∈ N and $ /∈ Σ.

The following conventions are adopted: lower case greek letters (α, β, ...)
define strings in V ∗; lower case roman letters from the beginning of the alphabet
(a, b, ...) and t, bold strings and operator characters (+,−, =, ., etc) represent
symbols in Σ, whereas letters from the end of the alphabet (except for t) denote
elements in Σ∗; upper case letters from the beginning of the alphabet (A, B, ...)
and italic strings represent nonterminals in N , while those near the end (X , Y ,
...) denote symbols in V . The empty string is given by λ and the EOF marker
by $. The length of a string γ is denoted as |γ|. The symbol Ω stands for the
“undefined constant”.

An LR(k) automaton is defined as a tuple LRAk = (Mk, V, P, IS, GOTOk,

REDk), where Mk is the finite set of states, V and P are as in G, IS is the initial
state, GOTOk : Mk ×V ∗ →Mk is the transition function and REDk : Mk ×
Σ∗

k → P(P ) is the reduction function, where Σ∗
k = {w | w ∈ Σ∗ ∧ 0 ≤ |w| ≤ k}.

A state, either a LR or LALR one, is a group of items. An item is an element
in N × V ∗ × V ∗ and denoted as A→ α • β.

The usual way to build the LALR(k) automaton is to calculate the LRA0

automaton first. For such, let the components of LRA0 be defined.
The set of states is generated by the following equation:

M0 = {F−1(CLOSURE({S′ → •S$}))}∪
{F−1(CLOSURE(F (q))) | q ∈ SUCC(p) ∧ p ∈M0}

where F is a bijective function that maps a state to a set of items (excluded the
empty set) and

CLOSURE(is) = is ∪ {B → •β | A→ α •Bω ∈ is ∧ B → β ∈ P}
SUCC(p) = {F−1(ADVANCE(p, X)) | X ∈ V }
ADVANCE(p, X) = {A→ αX • β | A→ α •Xβ ∈ F (p)}

The initial state (IS) is obtained by F−1(CLOSURE({S′ → •S$})). RED0(q, λ)
is stated as

RED0(q, λ) = {A → γ | A→ γ• ∈ F (q)}
GOTOk, ∀k ≥ 0, can be defined as:

GOTOk(p, λ) = p

GOTOk(p, X) = F−1(CLOSURE(ADVANCE(p, X)))
GOTOk(p, Xα) = GOTOk(GOTOk(p, X), α), ∀α 	= λ

From this point, when mentioning a state p, it will be known from the context
whether it refers to the number or to the set of items of the state.
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The LALR(k) automaton, LALRAk, is a tuple (M0, V, P, IS,GOTOk,REDk),
where except for REDk, all components are as in LRA0. Before considering
REDk, it is necessary to model a function to capture all predecessor states for a
given state q, under a sentential form α. Let PRED be such function:

PRED(q, α) = {p | GOTOk(p, α) = q}
Then,

REDk(q, w) = {A→ γ | w ∈ LAk(q, A→ γ•)}
where LAk is the set of lookahead strings of length not greater than k that may
follow a processed right hand side of a rule. It is given by

LAk(q, A→ γ) = {w ∈ FIRSTk(z) | S ∗⇒
rm

αAz ∧ αγ access q}

where

FIRSTk(α) = {x | (α ∗⇒
lm

xβ ∧ |x| = k) ∨ (α ∗⇒ x ∧ |x| < k)}

and αγ access q iff PRED(q, αγ) 	= ∅.
For k = 1, DeRemer and Pennello proposed an algorithm to calculate the

lookaheads in LA1 [DeRemer and Pennello 1982] and it still remains as the most
efficient one [Charles 1991]. They define the computation of LA1 in terms of
FOLLOW1 : (M0 ×N ×M0) → P(Σ). The domain (M0 ×N ×M0) is said to
be the set of nonterminal transitions. The first component is the source state,
the second the transition symbol and the last one the destination state. For
presentation issues, transitions will be written as pairs if destination states are
irrelevant. FOLLOW1(p, A) models the lookahead tokens that follow A when ω

becomes the current handle, as long as A→ ω ∈ P . These tokens arise in three
possible situations [DeRemer and Pennello 1982]:

a) ∃ C → θ • Bη ∈ p, such that p ∈ PRED(q, β), B → βAγ ∈ P and γ
∗⇒λ.

In this case, FOLLOW1(p, B) ⊆ FOLLOW1(q, A). This situation is cap-
tured by a relation named includes : (q, A) includes (p, B) iff the previous
conditions are respected;

b) given a transition (p, A), every token that is directly read from a state q, as
long as GOTO0(p, A) = q, is in LA1(p, A). This is modeled by the direct
read function:

DR(p, A) = {t ∈ Σ | GOTO0(q, t) 	= Ω ∧ GOTO0(p, A) = q}

c) given (p, A), every token that is read after a sequence of nullable nonter-
minal transitions is in LA1(p, A). To model the sequence of nullable transi-
tions the reads relation is introduced: (p, A) reads (q, B) iff GOTO0(p, A) =
q e B

∗⇒ λ.
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The function READ1(p, A) comprises situations (b) and (c):

READ1(p, A) = DR(p, A) ∪
⋃
{READ1(q, B) | (p, A) reads (q, B)}

From this and (a), FOLLOW1 is written as:

FOLLOW1(p, A) = READ1(p, A)∪
⋃
{FOLLOW1(q, B) | (p, A) includes (q, B)}

Finally,

LA1(q, A→ ω) =
⋃
{FOLLOW1(p, A) | p ∈ PRED(q, ω)} (1)

3 Conflicts in non LALR(k) grammars

Conflicts arise in grammars when, for a state q in the LALR(k) automaton and
a lookahead string w ∈ Σ∗, such that |w| ≤ k, at least one condition is satisfied:

a) |REDk(q, w)| ≥ 2: reduce/reduce conflict;

b) |REDk(q, w)| ≥ 1 ∧ ∃ A → α • β ∈ q ∧ w ∈ FIRSTk(β): shift/reduce
conflict.

If one of these conditions is true, q is said to be an inconsistent state. A grammar
is LALR(k) if its correspondent LALR(k) automaton has no inconsistent states.

A conflict is caused either by ambiguity or lack of right context, resulting in
four possible situations. Ambiguity conflicts are the class of conflicts caused by
the use of grammar rules that result in at least two different parsing trees for
a certain string. These conflicts cannot be solved by increasing the value of k;
in fact there isn’t a k (or k = ∞) such that the grammar is LALR(k). Some
of these conflicts are solved by rewriting some grammar rules in order to make
it LALR(k), according to the k used by the parser generator (situation (i)). As
an example, consider the dangling-else conflict. It is well known that its syntax
can be expressed by a non ambiguous LALR(1) set of rules, although is more
probable that one will first write an ambiguous specification. Some ambiguity
conflicts, on the other hand, simply cannot be removed from the grammar with-
out altering the language in question (situation (ii)). These conflicts are due to
the existence of inherently ambiguous syntax constructions. An example would
be a set of rules to describe {ambnck | m = n ∨ n = k}.

The next class of conflicts are those that are caused by the lack of right con-
text when no ambiguity is involved. These conflicts occur due to an insufficient
quantity of lookaheads. A direct solution is to increase the value of k (situation
(iii)). To illustrate this, consider the grammar fragment presented in Figure 1.
An LALR(1) parser generator would flag a shift/reduce conflict between items
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declaration → visibility exportable-declaration
| non-exportable-declaration

non-exportable-declaration → function-definition
visibility → public | private | λ
exportable-declaration → syntatic-domain
syntatic-domain → domain-id = domain-exp
function-definition → temp4
temp4 → temp5 id
temp5 → domain-id .

Figure 1: Notus grammar fragment.

temp5 → •domain-id .
visibility→ λ•

in a state q, for domain-id ∈ LA1(q, visibility → λ). However, the grammar is
LALR(2), because the tokens after domain-id are either the equals sign (=),
from syntatic-domain → domain-id = domain-exp, or dot (.), from temp5 →
domain-id ..

However, even when no ambiguities are involved, there might be cases in
which an infinite amount of lookahead is required (situation (iv)). In these cases,
the solution to be tried is to rewrite some rules of the grammar without changing
the language. Consider, for instance, the regular language L = (b+a) ∪ (b+b). A
possible grammar for L is

S → A | B
A → B1 a
B → B2 b
B1 → B1 b | b
B2 → B2 b | b

From the given productions, it is not possible to find a k for which the given
grammar is conflict free. The reason is that B2 → b• can be followed by an indef-
inite number of b’s when a conflict involving the item B2 → b• is reported. The
only possible solution for this example is to rewrite the grammar. For this simple
case, such rewrite definitely exists, because L is a regular language. Nevertheless,
it should be pointed out that this kind of solution is not always possible.

The mentioned four situations exhaust all possibilities of causes of conflicts in
LALR(k) parser construction. These situations of conflicts are also applicable to
LR(k) parser generation. One type of reduce/reduce conflict is, however, LALR
specific. It arises when calculating LAk for reduction items in states in M0. Such
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calculation can be seen as generating the LRA1 automaton and merging states
with the same item set; lookaheads of reduction items in the new state are given
by the union of the lookaheads in each reduction item in each merged state.
When performing the merge, reduce/reduce conflicts, not present in the LR(1)
automaton, can emerge. Specific LALR reduce/reduce conflicts occur if the items
involved in the conflict do not share the same left context, i.e., a sentential form
obtained by concatenating each entry symbol of the states in the path from IS

to q, the inconsistent state. As a consequence, these conflicts do not represent
ambiguity, but do not imply in the existence of a k.

4 The proposed methodology

The proposed methodology consists of four phases performed in an iteration
while conflicts continue to be reported by the parser generator. These phases
are: (i) understanding; (ii) classification; (iii) conflict removal and (iv) testing.

4.1 Understanding

To overcome the difficulty in analysing the data recorded in the log file dumped
by the parser generator, this phase presents the same data available in the log
file, but divided in proper parts, interrelated as hyperlinks. For example, when
observing a state in the LALR(k) automaton, the user is able to directly visit
the destination states given by the transitions in the currently state under visu-
alization. The opposite operation should be possible as well, i.e., from a current
state, grab all predecessor states. A modularized linked visualization of this data
provides a better and faster browsing.

One drawback in visualizing this content is due to the low abstraction level
it provides. While desired by expert users, this situation is not acceptable nor
suitable for analysis by non proficient users in LALR(k) parser construction.
Therefore, one important characteristic of this phase is to provide high level
data in order to understand the cause of the conflict. Derivation trees do meet
this requisite, putting the user in a more comfortable position, as they approx-
imate him/her to the real object of study - the syntax of the language, while
reducing the amount of LALR parsing knowledge one must have in order to
remove conflicts.

4.2 Classification

This phase aims to find one of the four situations described in Section 3 that gave
rise to a conflict. Before removing it, a strategy must be planned. To understand
the cause of the conflict is the first step for this, but the knowledge of the
conflict’s category adds much more confidence, as we strongly believe that a
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strategy used in removing a past conflict can be applied many times to other
conflicts in the same category.

4.3 Conflict removal

Conflicts due to situation (iii) can be automatically removed. In the case of
situation (i) the user is assisted with examples of solutions for known cases that
match the current conflict. The removal, however, is performed manually. The
methodology does not define operations for conflicts in situations (ii) and (iv).

4.4 Testing

The last step in conflict removal is testing. This should only be made in the case
of a manual removal performed in the previous phase. To test, the user resubmits
the grammar to the parser generator. As a result, it lists all conflicts found, plus
the total amount of conflicts. The user checks this list, browsing it to make sure
the conflict has indeed been eliminated.

5 SAIDE

SAIDE (Syntax Analyser Integrated Development Environment) is a tool, cur-
rently under construction, that aims to support the proposed methodology when
it is applied to non LALR(1) grammars. Its main window is shown in Figure 2.
The upper left corner frame contains the text editor with the opened syntax
specification. This editor supports syntax highlighting and other common op-
erations, such as searching, line and column positioning, undo, redo, cut, copy,
paste, etc. The left bottom frame is the compilation window, the place where
messages from the compilation of the the syntax specification are printed. A pos-
sible message is the report of a conflict. In this case, there is a link to allow its
debug. A debug trace for the dangling else conflict is shown in the window at the
right bottom. Finally, the last window in this figure is the LALR(1) automaton.
Note that whenever possible, data is always linked, as indicated by underlined
strings.

5.1 Realizing the methodology

This section outlines the algorithms used to support each phase of the proposed
methodology.
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Figure 2: SAIDE’s main window.

5.1.1 Understanding

To present the user with the LALR(1) automaton, first LRA0 is obtained by the
application of the CLOSURE operation, as previously explained. The next step
is to create the graphs corresponding to the reads and the includes relations.
When there are two functions F and F ′ defined over a set of elements in X , and
F is defined as F (x) = F ′(x) ∪⋃{F (y) | xRy}, ∀x, y ∈ X , it follows that the
nodes in a strongly connected component (SCC) found in the graph representing
R have equal values for F [DeRemer and Pennello 1982]. Since FOLLOW1 and
READ1 do match F ’s pattern, performing a search and identifying SCC’s in the
reads and includes graph permit the calculation of their value. The algorithm
to efficiently perform this is presented in [DeRemer and Pennello 1982]. From
the values in READ1 and FOLLOW1, the lookaheads of each reduction item are
calculated using Equation 1, presented in Section 2.

To elucidate the cause of a conflict, SAIDE explains it in terms of derivation
trees, as proposed by the methodology. Derivation trees are constructed for each
reduction item. Their format is illustrated in Figure 3. The means to calculate
parts (c), (b) and (a) are as follows [DeRemer and Pennello 1982]:
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S′ $
δ1 B1 v1

δ2 B2 v2 (a)
...
δn Bn vn

α B β1

β2

... (b)
βm−1

t βm

α1 A1 γ1

α2 A2 γ2 (c)
...
αs−1 As−1 γs−1

αs

Figure 3: The format of a derivation tree.

Part (c): given the item As−1 → αs• in an inconsistent state q, the traversal
begins from the transitions in (q′, As−1), where q′ is in PRED(q, αs), and then
following some edges in the includes graph until a nonterminal transition (p, B)
is found whose READ1 set contains the conflict symbol t. Every item Bn →
α • Bβ1 ∈ p, such that t ∈ FIRST1(β1), is considered a contributing one. For
each of these, a debug should be printed separately.

To obtain the described path, a breadth-first search should be employed
while traversing the includes graph. The production that induced an includes
edge from (p, A) to (q, B) is rediscovered by following the automaton transitions
from state q under the right parts of B productions.

Part (b): the next step is to get a derivation from β1 until t appears as first
token. To do this, the set

E = {Bn → αB • β1}
∪ {A→ δX • η | A→ δ •Xη ∈ E ∧ X

∗⇒λ}
∪ {C → •α | A→ δ • Cη ∈ E ∧ C → α ∈ P}

(2)

is calculated until t appears as first token. Each addition to E must be linked
back to the items that generated it. Items of the form C → •tβm, being t a
conflict symbol, will be in E and are traced back to Bn → αB • β1 by following
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these links.

Part (a): calculate the derivation from S′ that gave rise to Bn → α•Bβ1. First,
it is necessary to find the shortest path from the start state to the contributing
state, i.e., the state in which Bn → α • Bβ1 appeared. ξ is the sequence of
transition symbols in this path. Then,

E′ = {(S′ → •S$, 1)}
∪ {(C → •α, j) | (A→ δ • Cη, j) ∈ E′ ∧ C → α ∈ P )}
∪ {(A→ δX • η, j + 1) | (A→ δ •Xη, j) ∈ E′ ∧X = ξj ∧ j ≤ |ξ|}

(3)

is calculated in a breadth first search, linking additions to E′ back to pairs that
generated them. When (Bn → α•Bβ1, |ξ|) appears, the computation stops. The
derivation is given by the links created when elements were added.

To debug a reduce/reduce conflict, the sequence (c)→ (b)→ (a) is applied to
each reduction item and printed to the user. Sometimes, the left context formed
by δ1δ2...δnαα1...αs happens to be different from one reduction debug tree to
the other. This indicates that the conflict in question is LALR specific, and is
accordingly indicated by the tool.

When a conflict presents a shift, its corresponding tree is obtained by using
an algorithm that implements Equation 3. The only difference is that ξ now
corresponds to the symbols in δ1δ2...δnαα1...αs.

5.1.2 Classification

The classification aims to find the category to which the conflicts belongs. Each
category represents one of the four situations explained in Section 3.

At this point, SAIDE first attempts to find a value of k, limited by a param-
eter value, say kmax, capable of giving enough right context to allow the removal
of the conflict situation (iii). The value of kmax is read from a configuration file
at SAIDE’s start up and its default value is 3. Before presenting how the correct
value of k is achieved, it follows a discussion of how a given lookahead w, such
that |w| ≤ k, is found.

Charles [Charles 1991] proposes Equation 4 to calculate FOLLOWk:

FOLLOWk(p, A) = READk(p, A)
∪⋃{FOLLOWk(p′, B) | (p, A) includes (p′, B)}
∪⋃{CONCAT({w},FOLLOWk−|w|(p′, B)) |

(w, B → α •Aβ) ∈ SHORTk(p, A),
p′ ∈ PRED(p, α),
p′ 	= S,

w 	= x$ (with x ∈ Σ∗)}

(4)
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READ(stack, X, k)
1 if k = 0 ∨X = $
2 then return {(nil, λ)}
3 rd← ∅
4 for (stk, a, item) ∈ READ-STEP(stack, X)
5 do if item 	= nil

6 then rd← rd ∪ {(item, λ)}
7 else rd← rd ∪ {(item′, ax) | (item′, x) ∈ READ(stk, a, k − 1)}
8 return rd

READ-STEP(stack, X)
1 configs← ∅
2 ts← TOP(stack)
3 q ← GOTO0(ts, X)
4 for Y ∈ V | GOTO0(q, Y ) 	= Ω

5 do if Y
∗⇒λ

6 then configs← configs ∪READ-STEP(stack + [q], Y )
7 else if Y ∈ Σ

8 then configs← configs ∪ {(stack + [q], Y, nil)}
9 for C → γ •X ∈ ts| C 	= S

10 do if |γ|+ 1 < |stack|
11 then configs← configs ∪
12 READ-STEP(stack(1..(|stack| − |γ|)), C)
13 else ASSERT(γ = αAβ), where |Aβ| = |stack| − 1
14 configs← configs ∪ (nil, nil, C → α •AβX)
15 return configs

Figure 4: READ algorithm.

where

SHORTk(p, A) = {(w, B → α •Aβ) | w ∈ FIRSTk(β),
0 < |w| < k, B → α •Aβ ∈ p }

READk(p, A) = {w | w ∈ FIRSTk(β), |w| = k, B → α •Aβ ∈ p}

and CONCAT(M, N) is defined as {mn | m ∈M ∧ n ∈ N}.
Charles outlines an algorithm, whose pseudocode is presented in Figure 4, to

calculate READk and SHORTk based on the simulation of the steps performed
by the LRA0 automaton.
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From the READ algorithm, SHORTk and READk are then redefined as:

SHORTk(p, A) = {(w, item) | (w, item) ∈ READ([p], A), item 	= nil, |w| > 0}
READk(p, A) = {w | (w, item) ∈ READ([p], A), item = nil}

Charles states that in the presence of cycles in the grammar, i.e., nonter-
minals that rightmost produce themselves and SCC’s in the reads graph, the
presented algorithm may not terminate. To guarantee termination, a verifica-
tion of the non occurrence of these two conditions must always be performed.
Later, the author discards Equation 4 as the bases of an algorithm to cal-
culate FOLLOWk. His main argument is that it does not match the format
F (x) = F ′(x) ∪⋃{F (y) | xRy}.

Cycle control in the READ algorithm, as noted by Charles, can be solved if
one keeps track of every reached stack and the string read so far while simulating
the LRA0 steps. Kristensen and Madsen [Kristensen and Madsen 1981] argue
that a tree can be used to store such data. A node in this tree is a pair of the
form (M0 ×Σ∗) and maps to a unique configuration, i.e., a stack of states and
the corresponding string read at the moment. The correspondence between a
node n and a configuration is guaranteed in the following way: the states in the
path from the root node of the tree to n forms the stack. The string obtained by
such stack is the string stored in n. During the simulated parsing, the tree will
be expanded with a node each time a transition is carried out. If an attempt to
add a node that is already in the tree is performed, then circularity is detected,
and thus cycles are controlled.

From the mentioned discussion, a straightforward algorithm to calculate LAk

can be directly obtained. Such algorithm is guaranteed to terminate, as the looka-
head calculation would solely depend on the values returned by READ(p, A) and
FOLLOWk(q, B), where (p, A) includes (q, B). This fact is attested by:

i) if (p, A) and (q, B) belong to an SCC in the includes graph, then their
lookaheads are equal. This is assured because Equation 4 does match the
format F (x) = F ′(x) ∪⋃{F (y) | xRy}, where X is the set of nonterminal
transitions and F ′(p, A) is given by

F ′(p, A) = READk(p, A)
∪⋃{CONCAT({w},FOLLOWk−|w|(p′, B)) |

(w, B → α •Aβ) ∈ SHORTk(p, A),
p′ ∈ PRED(p, α),
p′ 	= S,

w 	= x$ (with x ∈ Σ∗)}
This matching permits an easy control of cycles.

ii) Adapting the READ algorithm to store each reached configuration in a tree
structure prevents the calculation of SHORTk and READk to loop forever.
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Furthermore, no restrictions are considered in the LRA0 or any relation graph.
We are currently implementing an algorithm based on the discussed algo-

rithm and cycle control scheme to generate the values in LAk to determine the
k necessary to solve a conflict. Its iteration starts with k = 2. If REDk continues
to report the conflict, a new iteration is performed, which increments the value
of k. This continues until the conflict is “removed” or k becomes greater than
kmax. The algorithm caches all calculated sets, since they might be used later
for other conflicts.

If the classification fails to find a k ≤ kmax capable of removing the conflict
and it is a non reduce/reduce conflict specific to LALR, the next attempt is am-
biguity detection (situation (i)). It is known from the literature that this problem
is undecidable. Therefore, a study to capture recurrent cases was performed and
some patterns were noticed. A pattern consists of two sentential forms derivable
from a nonterminal P . Expanding each sentential form will eventually lead to
the ambiguity in study. These patterns were inferred from ambiguities found in
the grammars of the programming languages Notus, Algol60 and Oberon2.

For each pattern, it must be asserted that S′ ∗⇒ ξ′Pξ′′, δi
∗⇒λ and Pi

∗⇒ P .
The symbols δi and Pi are used in the definition of the filters listed bellow:
Filter 1)
Pattern: P

∗⇒ δ1P1δ2αδ3P2δ4 and P
∗⇒ δ6βδ7δ8. This filter captures ambiguous

constructions such as E → E + E | t.
Filter 2) Pattern: P

∗⇒ δ1αδ2P1δ3 and P
∗⇒ δ5αP2δ6βδ7P3δ8. This filter iden-

tifies dangling-else’s instances.
Filter 3) P

∗⇒ δ1αδ2P1δ3 and P
∗⇒ δ5P2δ6βδ7. This filter captures ambiguous

constructions such as the rules exp → let dcl in exp where exp and exp → exp
where exp.
Filter 4) P

∗⇒ δ1αδ2P1δ3βδ4 and P
∗⇒ δ6αδ7P2δ8βδ9. This filter captures alias

between nonterminals.
We are managing to apply these filters on the derivation trees obtained by

the first step of the methodology.
If a conflict is due to situation (ii) and (iv), SAIDE is unable to classify and

assist the user.

5.1.3 Conflict removal

Automatic conflict removal can only be accomplished if the parser is LALR(k)
and k ≤ kmax. There are two approaches for this problem.

The first one is to rewrite the grammar, starting from the productions in-
volved in the conflict so that no reduction moves are performed until k tokens
are read. [Mickunas et al. 1976] proposes a technique to transform LR(k) gram-
mars into LR(1) correspondent ones, but it can deeply change the structure and
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Figure 5: SAIDE’s architecture illustrated as a component diagram in UML.

the number of the rules in the grammar and is not generalized to LALR(k)
grammars.

The other approach consists in the generation of an LALR(k) parser whose
k varies. A conflict is removed if the parser generator, in this case SAIDE, can
attest that nondeterminism is removed after examining k tokens ahead. The
value of k in this case is local and is intended to solve only the given conflict.

5.1.4 Testing

To check if the conflict was been wiped out, SAIDE list all conflicts along with
the total sum of conflicts found. The user browses this list and compares the
current results with the ones previously presented.

5.2 Plugin facility

SAIDE’s architecture, shown in Figure 5, permits its extensibility via plugins. A
plugin instance must implement an interface with two methods responsible for
returning PluginParserFactory and HighlightLexerFactory objects.
PluginParserFactory is used by SAIDE to instantiate a parser capable of process-
ing the specification file. The parsing result is an Specification instance used by
the tool to generate data structures such as the LALR(1) automaton, includes
and reads graphs, etc. and it appears throughout SAIDE’s code. SAIDE’s archi-
tecture permits the use of virtually any syntax specification language as long as
there is a plugin implemented. In a similar way, the tool can be extended with
filters in addition to the ones made available.
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6 Conclusion

In this article, we presented the problem of conflict removal in non LALR(k)
grammars. It was argued that this remains an arduous and time consuming
task, considering that users continue to remove conflicts analysing extensive log
files.

To try to overcome this, a methodology was proposed and the algorithms
necessary to realize it were presented, showing the tool SAIDE. When compared
with the log analysis approach, the methodology is an important contribution
to LALR parsing.

As for lookahead calculation, we showed that Equation 4 can be used to
determine LAk with two important properties: execution is guaranteed to ter-
minate and the grammars used as input do not have to rely on any specific
characteristic.

At the present time, we are implementing the ambiguity detector, which will
attempt to detect some previous cataloged ambiguity instances.

As future work, we intend to formulate an algorithm to automatically remove
a subset of conflicts, either by redefinition of some rules of the grammar or
generating an LALR parser whose k varies.
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