
Model Checking: Software and Beyond

Edmund M. Clarke, Flavio Lerda
(Computer Science Department, Carnegie Mellon University

Pittsburgh, PA 15213, USA
{emc+,flerda+}@cs.cmu.edu)

Abstract: This paper introduces model checking, originally conceived for checking finite state
systems. It surveys its evolution to encompass finitely checkable properties of systems with un-
bounded state spaces, and its application to software and other systems.
Key Words: Formal Methods, Model Checking
Category: D.2.4, F.3.1, B.2

1 Introduction

Temporal logic model checking, first developed by Clarke and Emerson [Clarke and
Emerson (1981)] and independently discovered by Queille and Sifakis [Queille and
Sifakis (1982)], is an automated technique for the verification of finite-state systems.
The specification is expressed as a logical formula. Model checking aims at establishing
whether a system is a model for a given formula, i.e., if it is satisfies its specification.
Model checking has had a big impact on formal verification over the past twenty five
years [Clarke and Wing (1996), Clarke (2007)].

Section 2 describes the basic algorithm for temporal logic model checking, as well
as some of the breakthroughs in this area. Section 3 introduces some recent develop-
ments and ideas for future research in this area.

2 Model Checking

The aim of formal methods is to prove that a given system satisfies its specification by
formal means, e.g., mathematical proofs. In order to do so, the system and the specifi-
cation need to be formally described. In model checking, the semantics of a system is
usually given by means of a Kripke structure, a labeled graph that represents the pos-
sible states of a system and the transitions between them. The specification, instead, is
expressed using temporal logic [Pnueli (1977)], an extension of propositional logic that
allows reasoning about the relative timing of events. In the following, we will describe
Kripke structures and temporal logics.

2.1 Kripke Structures

A Kripke structure is a directed graph where vertices are labeled by sets of atomic
propositions. Vertices are called states and edges are called transitions. A subset of the

Journal of Universal Computer Science, vol. 13, no. 5 (2007), 639-649
submitted: 7/5/07, accepted: 25/5/07, appeared: 28/5/07 © J.UCS

Figure 1: The Kripke structure of an alarm clock

states is designated as initial. An example of a Kripke structure, modeling the behavior
of an alarm clock, is shown in Figure 1.

Given a set of atomic proposition AP , a Kripke structure is a tuple M = (S, R, I,

L) where S is a finite set of states, R ⊆ S × S is a set of transitions between states,
I ⊆ S is a set of initial states, and L : S → 2AP is a labeling function. A path of a
Kripke structure M is an infinite sequence of states π = s0, s1, . . . such that s0 ∈ I

and, for every i ≥ 0, (si, si+1) ∈ R. Given a path π, πi indicates the infinite path
si, si+1, . . . and π(i) indicates si. We assume that the transition relation R is total, i.e.,
every state has a valid successor and each finite path is a prefix of some infinite path.

The states of a Kripke structure represent the different states of a system. For exam-
ple, the Kripke structure in Figure 1 has four states S0, S1, S2, and S3, corresponding to
the alarm clock being off, on, ringing, and snoozed respectively. Transitions of a Kripke
structure represent the possible evolutions of a system. For example, the Kripke struc-
ture in Figure 1 has a transition from state S2 to state S3, meaning that it is possible
for the alarm clock to go from the state where it is ringing to the state where the alarm
has been snoozed. However, there is no transition from state S 1 to state S3, because the
alarm cannot be snoozed if it is not ringing.

2.2 Temporal Logic

Temporal logic is a formalism for reasoning about time without introducing time explic-
itly. It is an extension of propositional logic where temporal operators are introduced
to reason about the timing of events. In model checking, two alternative temporal log-
ics are commonly used: Computation Tree Logic (CTL) [Ben-Ari et al. (1983)] and
Linear-Time Temporal Logic (LTL) [Pnueli (1981)]. The former uses a branching no-
tion of time and can reason about multiple paths at once. The latter uses a linear notion
of time and considers a single path at a time. Both CTL and LTL can be expressed
in terms of the temporal logic CTL∗ [Emerson and Halpern (1986)]. CTL and LTL
formulas represent two overlapping, but different subsets of CTL ∗ formulas.

The temporal logic CTL∗ defines two path quantifiers (the universal path quantifier
A and the existential path quantifier E) and four temporal operators (next X, eventually
F, globally G, and until U). There are two types of formulas: state formulas and path

640 Clarke E.M., Lerda F.: Model Checking: Software and Beyond

formulas. State formulas are defined as f ::= p | f ∨ f | f ∧ f | ¬f | A g | E g and
path formulas are defined as g ::= f | g ∨ g | g ∧ g | ¬g | X g | F g | G g | g U g where
p ∈ AP is an atomic proposition. CTL∗ formulas are state formulas according to the
above definition.

A state s of M satisfies the formula p if s is labeled by p; it satisfies A g if every
path π of M starting at s satisfies g; and it satisfies E g if there exists a path π of M

starting at s that satisfies g. A path π of M satisfies the state formula f if π(0) satisfies
f ; it satisfies X g if π1 satisfies g; it satisfies F g if there exists an i ≥ 0 such that πi

satisfies g; it satisfies G g if for every i ≥ 0 path πi satisfies g; and it satisfies g1 U g2

if there exists an i ≥ 0 such that πi satisfies g2 and for every 0 ≤ j < i path πj satisfies
g1. Given a Kripke structure M , a state s, and a path π, we write M, s |= f if state s of
M satisfies state formula f , and M, π |= g if path π of M satisfies path formulas g.

Consider again the Kripke structure of Figure 1. The initial state satisfies the for-
mula AG¬(ring ∧ snooze), since no state is both ringing and snoozing. On the other
hand, it does not satisfy the formula E[¬ring U snooze], since every path that reaches
a state labeled by snooze has to go through a state labeled by ring.

CTL and LTL are sub-logics of CTL∗. CTL is obtained by requiring every tem-
poral operator to be immediately preceded by a path quantifier and vice-versa. An LTL
formula is a CTL∗ formula of the form A g where no path quantifiers appear in g.

2.3 Model Checking Algorithm

The model checking problem can be stated as follows: given a Kripke structure M and
a temporal logic formula f , determine if M, s |= f holds for every initial state s ∈ I .
Different model checking algorithms use specific techniques to answer this question in
an efficient way. In this section, we present two model checking algorithms, one for
specifications expressed using CTL and one for specifications expressed using LTL.

CTL Model Checking. The algorithm [Clarke and Emerson (1981), Clarke et al.
(1986)] assumes that the specification f is a CTL formula. Every CTL formula can be
rewritten in terms of only EX, EG, EU, ¬, and ∧. The algorithm labels each state with
the sub-formulas of f that hold at that state. It is applied recursively on the structure
of the formula. The base case corresponds to atomic propositions: states that satisfy an
atomic proposition are labeled by it. If the formula is of the form ¬f , all states that are
not labeled by f are labeled by ¬f . If the formula is of the form f 1 ∧ f2, all states that
are labeled by f1 and f2 are labeled by f1∧f2. If the formula is of the form EX f , each
predecessor of a state labeled by f is labeled by EX f . If the formula is of the form
E[f1 U f2], then all states that are labeled by f2 and all predecessor of states labeled
by f2 or by E[f1 U f2] that are themselves labeled by f1 are labeled by E[f1 U f2]. In
order to determine the states that satisfy EG f , the algorithm considers the sub-graph
Gf made of the states of M labeled by f . Each state in a non-trivial strongly connected
component of Gf is labeled by EG f . Moreover, every predecessor of a state labeled
by EG f that is itself labeled by f is also labeled by EG f .

641Clarke E.M., Lerda F.: Model Checking: Software and Beyond

LTL Model Checking. The algorithm [Vardi and Wolper et al. (1986)] assumes that
the specification is an LTL formula, i.e., of the form A g. Checking that the system
satisfies the formula A g is equivalent to checking that it satisfies ¬E¬g. The algorithm
constructs an automaton B¬g that accepts the traces that satisfy ¬g. The automaton is
composed with an automaton that accepts the traces of M . If the composition is empty,
then M satisfies the specification Ag. Otherwise, any of the traces of the composition
is a counterexample.

The LTL model checking algorithm constructs a Büchi automaton [Thomas (1990)]
B¬g that accepts the traces that satisfy ¬g. Different algorithms for doing this have been
proposed [Vardi and Wolper et al. (1986), Gerth et al. (1995)]. Given the Kripke struc-
ture M corresponding to the system, an equivalent Büchi automaton BM is constructed.
The model checking algorithm constructs, on-the-fly, the synchronous composition of
the two automata and checks for the presence of accepting runs. In order to detect
accepting runs, the algorithm performs a depth first search (DFS) on the graph corre-
sponding to the composition. Every time an accepting state q is reached, a second DFS
is started from that state to determine if state q can be reached from itself. If this is the
case, the run, made of the states needed to reach state q from the initial state followed
by an infinite number of repetitions of the states needed to reach state q from itself,
is accepting. Therefore, it corresponds to a counterexample to the specification. If no
accepting runs exist, we can conclude that every initial state satisfies the specification.

2.4 Symbolic Model Checking

One of the main limitations of model checking is the size of systems that can be verified.
If the system is too large or the specification too complex, model checking might not
terminate due to insufficient resources, e.g., running time or memory. This is known
as the state explosion problem. One of the major breakthroughs in model checking
has been the development of symbolic model checking, a technique that uses binary
decision diagrams (BDDs) to represent sets of states and transitions. Model checking is
performed directly on the BDD representations.

Reduced Ordered Binary Decision Diagrams, or ROBDDs, are an efficient data
structure to represent Boolean functions [Bryant (1986)]. Given a set of variables
V = {x1, . . . , xn}, a binary decision diagram is a directed acyclic graph where each
non-terminal vertex v has two successors true(v) and false(v) and is labeled by a vari-
able var(v), each terminal vertex is label by either true or false , and a vertex r is de-
signed as the root of the binary decision diagram. Given a variable order ≺, a total order
over the variables in V , a binary decision diagram is ordered if, given any two nonter-
minal vertices u and v such that v is a successor of u, we have that var(u) ≺ var(v).
An ordered binary decision diagram is reduced if: (i) there is only a single terminal
vertex for each label; (ii) there exists no two nonterminal vertices u and v such that
var(u) = var(v), false(u) = false(v), and true(u) = true(v); and (iii) for every

642 Clarke E.M., Lerda F.: Model Checking: Software and Beyond

nonterminal vertex v, false(v)
= true(v). In the following, we will use the term BDDs
to refer to ROBDDs unless otherwise noted. BDDs provide a canonical representation
of Boolean functions: given a set of variables V = {x1, . . . , xn}, a BDD represents
a Boolean function f(x1, . . . , xn). To determine the value of f for a given value of
the inputs, start from the root node r. When at a nonterminal vertex v, if var(v) is as-
signed the value true, move to the vertex corresponding to true(v) otherwise move to
false(v). Proceed until a terminal vertex u is reached: the value of the function is the
label of u. Boolean operations, e.g., ∧, ¬, and ∃, can be applied directly to BDDs.

Boolean functions can be used to represent Kripke structures. Given a Kripke struc-
ture M , we can define a boolean encoding of its states using a finite set of variables
V = {x1, . . . , xn}. A set of states S can then be defined by its characteristic function
S(s) that evaluates to true if state s ∈ S and false otherwise. We define a set of vari-
ables V ′ = {x′

1, . . . , x
′
n}, called next-state variables. The transition relation of M can

then be represented by the Boolean function R(s, s ′) over V ∪V ′ that evaluates to true
if a transition from s to s′ is possible.

A CTL model checking algorithm that operates on sets of states represented as
BDDs was proposed in [Burch et al. (1990), McMillan (1992)]. As before, we need
to consider only EX, EG, EU, ∧, and ¬, as formulas can be rewritten to contain
only these operators and atomic propositions. The set of states labeled by an atomic
proposition can be represented as a BDD. Boolean operators can be represented by
the corresponding Boolean operations on BDDs. Given a BDD representing the set of
states satisfying the formula f , the BDD corresponding to EX f can be obtained by
computing ex(s) = ∃ s′ : f(s′) ∧ R(s, s′), where each operation can be performed
directly on BDDs. The EG and EU operators cannot be computed directly. However,
EG f can be defined as the greatest fixed point of eg(Z) = f ∧ EXZ and E[f1 U f2]
as the least fixed point of eu(Z) = f2∨(f1∧EXZ). Since the set of states is finite, and
eg(Z) and eu(Z) are monotonic functions, the least and greatest fixed point of these
functions can be computed iteratively. For instance, for computing E[f 1 U f2], we start
with Q being equal to the empty set of states. At each iteration, the states that satisfy
f2 and the states that have a successor belonging to Q and also satisfy f1 are added to
Q. This process continues until no new states can be added to Q. The set Q at the last
iteration is equal to the set of states that satisfy E[f1 U f2]. If the BDDs representing
the set of states satisfying f1 and f2 are given, all operations can be performed directly
using BDDs.

The main advantage of symbolic model checking is that the BDD representing a set
of states can be much smaller than the set it represents. BDD-based symbolic model
checkers have been used to check systems with a number of states that is beyond the
reach of ordinary model checkers [Burch et al. (1990)]. However, BDD-based sym-
bolic model checking is not the definitive solution to the state explosion problem: while
on average BDDs provide a compact representation of Boolean functions, there are
Boolean functions whose representations as BDDs are exponential in the number of

643Clarke E.M., Lerda F.: Model Checking: Software and Beyond

variables, which may make symbolic model checking impractical.

2.5 Bounded Model Checking

Boolean satisfiability (SAT), the typical example of an NP-complete problem, has been
the focus of a lot of attention in recent years. SAT solvers have been developed that are
able to handle problems with a large number of Boolean variables [Moskewicz et al.
(2001)]. Most of modern SAT solvers take as input a Boolean formula in conjunctive
normal form (CNF) and are based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm [Davis and Putnam (1960), Davis et al. (1962)]. If the formula is satisfiable,
they produce a satisfying assignment, if it is not, they produce a proof of unsatisfiability.

In the context of model checking, SAT solvers have become popular since the in-
troduction of bounded model checking (BMC) [Biere et al. (2003)]. The main idea of
BMC is to encode the possible counterexamples to a given specification as a SAT for-
mula. Since the formula must be finite, the counterexample needs to be finite as well.
Specifically, BMC generates a formula that encodes the existence of a counterexample
of a given length k.

For simplicity, we will consider only safety specifications of the form AG p, where
p is an atomic proposition. Extensions that are able to handle more complex specifica-
tions are present in the literature [Biere et al. (2003)]. Given an encoding of the states,
we define three boolean predicates: I(s), R(s, s ′), and F (s). Predicate I(s) is true if
s is an initial state. Predicate R(s, s′) is true if s′ is a successor of s. Predicate F (s)
is true if state s is labeled by atomic proposition p. The formula corresponding to a
counterexample of length k is:

I(s0) ∧ R(s0, s1) ∧ . . . ∧ R(sk−1, sk) ∧ F (sk) (1)

which is satisfiable if and only if there is a counterexample of length k. By using a SAT
solver it is possible to check if a counterexample exists. Moreover a counterexample
can be obtained by analyzing the satisfying assignment produced by the SAT solver. If
the formula is unsatisfiable, then there are no counterexamples of length k.

If no counterexamples of length k are present, it is necessary to repeat the check for
a greater length. The procedure continues until either a counterexample is found or the
completeness threshold is reached. The completeness threshold [Biere et al. (1999)]
is the minimum length such that, if the specification is violated, there exists a coun-
terexample shorter than that length. Bounds on the completeness threshold of various
classes of specifications have been given in the literature [Biere et al. (2003),Kroening
and Strichman (2003),Clarke et al. (2004)]. However, in practice, the computed bounds
are often quite large. In this case, the verification terminates when the problem becomes
intractable, without being able to prove that the system satisfies the specification.

The approach as presented is, therefore, inherently incomplete, unless tight bounds
on the completeness threshold can be determined. However, complete methods based

644 Clarke E.M., Lerda F.: Model Checking: Software and Beyond

on bounded model checking that rely on alternative methods to determine termination
have been proposed [Sheeran et al. (2000), McMillan (2003), Prasad et al. (2005)].

3 Software and Beyond

The previous section described some of the seminal work in model checking. One of
the application domains in which model checking has seen most successes is hardware:
model checkers are currently used by many semiconductor manufacturers [Clarke and
Wing (1996)]. One of the reasons is that hardware designs are well suited for model
checking: they are defined by using Boolean gates and their semantics is straightfor-
ward. At the same time, historic events have provided the circumstances for technology
transfer. For instance, soon after Intel had to recall a large number of Pentium proces-
sors because of a design bug, researchers were able to show that the bug could have
been detected by using formal verification [Clarke et al. (1996)]. Since then, many
chip design companies have been using model checking and other formal verification
techniques.

Software Model Checking. More recently, software has been the focus of much ef-
fort in the model checking community. Tools like SLAM [Ball and Rajamani (2000)],
BLAST [Henzinger et al. (2002)], MAGIC [Chaki et al. (2003)], and CBMC [Clarke
et al. (2003)], just to cite a few, have been developed that are aimed at the verification of
software. Some of the techniques for software model checking that have been very suc-
cessful are predicate abstraction [Graf and Saı̈di (1997)] and counterexample-guided
abstraction refinement [Kurshan (1994), Clarke et al. (2000)]. These techniques have
made model checking of software feasible.

Infinite-State Systems. While the state space of a software may be very large, under
certain conditions, it is still finite. This is not true of all types of systems. In recent
years, efforts have been made to address formal verification of infinite state systems. In
general, model checking cannot be applied to an infinite state system directly, because
model checking, in its most basic form, would enumerate the states of the system and
therefore never terminate. Techniques have been developed that allow model checking
infinite state systems. In the following, we will briefly describe two important examples:
(i) timed systems; and (ii) hybrid systems.

Timed Systems. In some cases, correctness of a system depends on the exact timing
of events. As a consequence, models must include the time at which events occur. A
commonly used formalism to model and reason about timed systems is timed automata
[Alur et al. (1990), Alur and Dill (1994)]. Timed automata are an extension of finite
state automata that define a set of real-valued clock variables. The state space of a
timed automaton can be infinite as the clocks assume values from the reals. Specialized
algorithms and data structures have been developed that enable model checking of timed
automata [Yovine (1997), Wang (2001), Larsen et al. (1995)].

645Clarke E.M., Lerda F.: Model Checking: Software and Beyond

Hybrid Systems. Another example of infinite state systems, hybrid systems are charac-
terized by the presence of discrete and continuous components. The continuous compo-
nents are usually defined using differential equations. Most techniques for model check-
ing hybrid systems represent sets of continuous states using specialized data structures.
Polyhedra, defined as the intersection of a set of half-spaces, are a typical example of
such data structures. Operations on these data structures are usually quite expensive and
they introduce over-approximations in order to guarantee that the sets that are obtained
can be represented by the chosen data structure.

Timed and Hybrid Software. Most of the existing approaches for model checking
of timed and hybrid systems focus on the infinite-state components. However, when
looking at a complex piece of software that includes this type of component, software
model checking techniques are needed to make verification feasible. We believe that
techniques that apply existing software model checking to models that include time
and continuous dynamics are crucial in making model checking scale to large, complex
systems.

In the following, we will present two approaches, one for timed systems and one for
hybrid systems, that allow applying software verification techniques to systems that
include time or continuous dynamics.

3.1 Timed Automata Verification

While real-time systems are, in general, infinite-state systems because time is a con-
tinuous variable, under certain assumptions, it is possible to reduce the problem to
finite-state model checking. In recent work [Clarke et al. (2007)], we have investigated
techniques that, by using a well known mapping from infinite-state timed automata to
finite-state region automata, can leverage the recent advances in model checking. In
particular, we have developed abstraction and optimization techniques to reduce the
size of the state space that needs to be visited by the model checker. We introduced a
new abstraction technique, called GOABSTRACTION, which aims at reducing the size
of the state space while preserving the validity of interesting specifications.

As for future work, we are developing technique to handle some of the other sources
of the state explosion problem for this class of systems. We are currently looking at
techniques that deal with large constants in the constraints and at ways of applying
counterexample-guided abstraction refinement [Clarke et al. (2000)] to find the best
abstraction that is able to prove the specification at hand.

3.2 Hybrid Systems Verification

Another area of active research is the verification of hybrid systems, i.e., systems in
which discrete and continuous components coexist. One of the challenges is that the
continuous components give rise to an infinite set of possible states.

646 Clarke E.M., Lerda F.: Model Checking: Software and Beyond

The approach we proposed in [Scherer et al. (2005)] focuses on control software, a
particular kind of software that interacts with a continuous environment. Very often
such software is made of a set of periodic tasks, that are executed on a fixed schedule.
In our approach, instead of looking at sets of continuous states, we look at continuous
states individually. Given the amount of time during which the continuous system is
evolving, the period of the tasks, the continuous state will evolve following the differen-
tial equations. If the differential equations are deterministic and time invariant, we can
use numerical simulation algorithms to compute the continuous state that is reached
after time elapses. One of the advantages is that numerical simulation algorithms are
quite efficient and can be applied to a large class of differential equations. It is then
possible to alternate continuous transitions —implemented by numerical simulation—
and discrete transitions —corresponding to statements in the software— to perform
model checking. Experimental results on this technique are promising. This approach,
however, introduces approximations in two places: the numerical simulation introduces
some numerical error; and, in order to guarantee termination, it is necessary to introduce
a maximum precision that is used to compare the continuous parts of states.

As for future work, we would like to determine in which cases we are able to guar-
antee correctness, i.e., avoid the approximation needed to guarantee termination. We
would like to be able to evaluate the amount of imprecision introduced, as well as de-
fine a refinement step that increases the precision where it is most useful.

Acknowledgments

This research was sponsored by the National Science Foundation under grant nos. CNS-
0411152, CCF-0429120, CCR-0121547, and CCR-0098072, the US Army Research
Office under grant no. DAAD19-01-1-0485, the Office of Naval Research under grant
no. N00014-01-1-0796, the Defense Advanced Research Projects Agency under sub-
contract no. SA423679952, the General Motors Corporation, and the Semiconductor
Research Corporation. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government, or any other
entity.

References

[Alur et al. (1990)] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-Checking for
Real-Time Systems. In Proc. of the 5th Annual IEEE Symposium on Logic in Computer
Science, 1990.

[Alur and Dill (1994)] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoreti-
cal Computer Science, 126(2):183–235, April 1994.

[Ball and Rajamani (2000)] Thomas Ball and Sriram K. Rajamani. Bebop: A Symbolic Model
Checker for Boolean Programs. In Proc. of the 7th International SPIN Workshop, 2000.

[Ben-Ari et al. (1983)] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. The Temporal
Logic of Branching Time. Acta Informatica, 20:207–226, 1983.

647Clarke E.M., Lerda F.: Model Checking: Software and Beyond

[Biere et al. (2003)] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded Model Checking. Advances in Computers, 58:118–149, 2003.

[Biere et al. (1999)] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu.
Symbolic Model Checking without BDDs. In Proc. of the 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems, 1999.

[Bryant (1986)] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Transactions on Computers, 35(8):667–691, 1986.

[Burch et al. (1990)] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic Model Checking: 1020 States and Beyond. In Proc. of the 5th
Annual Symposium on Logic in Computer Science, 1990.

[Chaki et al. (2003)] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut
Veith. Modular Verification of Software Components in C. In Proc. of the 25th International
Conference on Software Engineering, 2003.

[Clarke et al. (1986)] Edmund Clarke, E Allen Emerson, and A. Prasad Sistla. Automatic Ver-
ification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[Clarke (2007)] Edmund M. Clarke. The Birth of Model Checking. Technical Report CMU-
CS-TR-110, Carnegie Mellon University, 2007.

[Clarke and Emerson (1981)] Edmund M. Clarke and E. Allen Emerson. Synthesis of Synchro-
nization Skeletons for Branching Time Temporal Logic. In Proc. of Workshop on Logic of
Programs, 1981.

[Clarke et al. (1996)] Edmund M. Clarke, Steven M. German, and Xudong Zhao. Verifying the
SRT Division Algorithm using Theorem Proving Techniques. In Proc. of the the 8th Inter-
national Conference on Computer Aided Verification, 1996.

[Clarke et al. (2000)] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-Guided Abstraction Refinement. In Proc. of the 12th International
Conference Computer Aided Verification, 2000.

[Clarke et al. (2004)] Edmund M. Clarke, Daniel Kroening, Joël Ouaknine, and Ofer Strichman.
Completeness and Complexity of Bounded Model Checking. In Proc. of the 5th Interna-
tional Conference on Verification, Model Checking, and Abstract Interpretation, 2004.

[Clarke et al. (2003)] Edmund M. Clarke, Daniel Kroening, and Karen Yorav. Behavioral Con-
sistency of C and Verilog Programs using Bounded Model Checking. In Proc. of the 40th
Design Automation Conference, 2003.

[Clarke et al. (2007)] Edmund M. Clarke, Flavio Lerda, and Muralidhar Talupur. An Abstrac-
tion Technique for Real-Time Verification. In Proc. of the GM R&D Workshop on Next
Generation Design and Verification Methodologies for Distributed Embedded Control Sys-
tem, 2007.

[Clarke and Wing (1996)] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State
of the Art and Future Directions. ACM Computing Surveys, 28(4):626–643, 1996.

[Davis et al. (1962)] Martin Davis, George Logemann, and Donald Loveland. A Machine Pro-
gram for Theorem-Proving. Communications of the ACM, 5(7):394–397, 1962.

[Davis and Putnam (1960)] Martin Davis and Hilary Putnam. A Computing Procedure for
Quantification Theory. Journal of the ACM, 7(3):201–215, 1960.

[Emerson and Halpern (1986)] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and
“Not Never” Revisited: On Branching versus Linear Time Temporal Logic. Journal of the
ACM, 33(1):151–178, 1986.

[Gerth et al. (1995)] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple On-
The-Fly Automatic Verification of Linear Temporal Logic. In Proc. of the 15th International
Symposium on Protocol Specification, Testing and Verification, 1995.

[Graf and Saı̈di (1997)] Susanne Graf and Hassen Saı̈di. Construction of Abstract State Graphs
with PVS. In Proc. of the 9th International Conference on Computer Aided Verification,
1997.

[Henzinger et al. (2002)] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Lazy Abstraction. In Proc. of the 29th Symposium on Principles of Programming
Languages, 2002.

648 Clarke E.M., Lerda F.: Model Checking: Software and Beyond

[Kroening and Strichman (2003)] Daniel Kroening and Ofer Strichman. Efficient Computation
of Recurrence Diameters. In Proc. of the 4th International Conference on Verification, Model
Checking, and Abstract Interpretation, 2003.

[Kurshan (1994)] Robert P. Kurshan. Computer-Aided Verification of coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, 1994.

[Larsen et al. (1995)] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Sym-
bolic Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems
Symposium, 1995.

[McMillan (1992)] Kenneth L. McMillan. Symbolic Model Checking: An Approach to the State
Explosion Problem. PhD thesis, Carnegie Mellon University, 1992.

[McMillan (2003)] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In
Proc. of the 15th International Conference Computer Aided Verification, 2003.

[Moskewicz et al. (2001)] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proc. of the
38th Design Automation Conference, 2001.

[Pnueli (1977)] Amir Pnueli. The Temporal Logic of Programs. In Proc. of the 18th Annual
Symposium on Foundations of Computer Science, 1977.

[Pnueli (1981)] Amir Pnueli. The Temporal Semantics of Concurrent Programs. Theoretical
Computer Science, 13:45–60, 1981.

[Prasad et al. (2005)] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A Survey of Recent
Advances in SAT-based Formal Verification. International Journal on Software Tools for
Technology Transfer, 7(2):156–173, 2005.

[Queille and Sifakis (1982)] J. P. Queille and J. Sifakis. Specification and Verification of Con-
current Systems in CESAR. In Proc. of the 5th International Symposium on Programming,
1982.

[Scherer et al. (2005)] Sebastian Scherer, Flavio Lerda, and Edmund Clarke. Model Checking
of Robotic Control Systems. In Proc. of the 8th International symposium on Artificial Intel-
ligence, Robotics and Automation in Space, 2005.

[Sheeran et al. (2000)] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking Safety
Properties Using Induction and a SAT-Solver. In Proc. of 3rd International Conference on
Formal Methods in Computer-Aided Design, 2000.

[Thomas (1990)] Wolfgang Thomas. Automata on Infinite Objects. Handbook of Theoretical
Computer Science, B:133–191, 1990.

[Vardi and Wolper et al. (1986)] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic
Approach to Automatic Program Verification. In Proc. of the 1st Symposium on Logic in
Computer Science, 1986.

[Wang (2001)] Farn Wang. RED: Model-Checker for Timed Automata with Clock-Restriction
Diagram. In Proc. of Workshop on Real-Time Tools, 2001.

[Yovine (1997)] Sergio Yovine. KRONOS: a verification tool for real-time systems. Interna-
tional Journal on Software Tools for Technology Transfer, 1(1-2):123–133, December 1997.

649Clarke E.M., Lerda F.: Model Checking: Software and Beyond

