
Formal Methods: Theory Becoming Practice

Jean-Raymond Abrial
(ETHZ, Zurich, Switzerland

jabrial@inf.ethz.ch)

Abstract: This paper gives a tutorial introduction to the ideas behind system development using
the B-Method. Properly handled, the crucial relationship between requirements and formal model
leads to systems that are correct by construction. Some industrial successes are outlined.
Key Words: Formal Methods, B-Method
Category: D.2.4, F.3.1

1 Introduction

In this paper I will introduce the ideas behind the B formal method, especially as crys-
talised in its latest version, Event-B. I shall give some insights on modeling and formal
reasoning, activities intended to be performed before undertaking the actual coding of
a computer system, so that the software in question will be correct by construction. At
the end, I shall present a number of real projects where the B formal method [Abrial
(1996)] has been used with great success.

2 Formal Methods

Formal methods are inescapably tied to mathematics of one sort or another. Conse-
quently many claim that using formal methods is too challenging because of various
intrinsic difficulties. Here are a few of these claimed difficulties: you have to be a math-
ematician; the proposed formalism is hard to master; it is not visual enough (boxes and
arrows may well be missing); people will not be able to perform proofs.

I mostly disagree with the above point of view, but I recognize that there are some
real difficulties, which, in my mind, are the following:

• When using formal methods, you have to think a lot before coding, which is not, as
we know, the current practice.

• The usage of formal methods has to be incorporated within a development process,
and this incorporation is not easy. In industry, people develop their products under pre-
cise guidelines, and usually, the introduction of such guidelines in an industry takes a
significant time. In this context, managers are very reluctant to change the guidelines to
incorporate the use of formal methods.

• Model building is not a simple activity, and one has to be careful not to confuse
modeling and programming. More precisely, the initial model of a program describes

Journal of Universal Computer Science, vol. 13, no. 5 (2007), 619-628
submitted: 7/5/07, accepted: 25/5/07, appeared: 28/5/07 © J.UCS



the properties that the program must fulfil in order that we can judge that the final
program is correct.

• Modeling has to be accompanied by reasoning. The model of a program is not just a
piece of text, whatever the formalism being used; it should also contain proofs that are
related to this text. Often, formal methods have just been used as a means of obtaining
abstract descriptions of the program, but descriptions are not enough. We must justify
what we write by proving some consistency properties. The problem is that software
practitioners are not used to constructing proofs, unlike people in other engineering
disciplines. A genuine obstacle here is the lack of good tool support, usable on a large
scale.

• A final difficulty encountered in modeling is the frequent lack of good requirement
documents associated with the project. Most of the time, industrial requirement docu-
ments are either almost nonexistent or far too verbose. Usually they have to be rewritten
before serious modeling starts.

3 A Little Detour: Blueprints

It is my belief that people managing the development of large and complex computer
systems should adopt a view shared by all mature engineering disciplines, namely us-
ing an artifact to reason about the future system during its construction. In these dis-
ciplines, people use blueprints in the wider sense of the term, which allows them to
reason formally during the construction process. A blueprint is a representation of the
future system, giving insight into some but not all of its aspects. You cannot drive the
blueprint of a car!

The blueprints used in mature engineering disciplines have some very desirable
properties that we seek to emulate in ours. They are typically organised into hierarchies
in which: more detailed blueprints are related to less detailed views of the same thing;
blueprints are decomposed to enhance readability; earlier blueprints do not completely
specify all aspects, leaving later blueprints to refine options left open.

Most of the time in software construction, people do not use such artifacts. This
results in a very heavy and inevitably incomplete testing phase on the final product,
with its well known problems. The alternative, of using appropriate blueprint models
of the future system, ultimately allows us to prove that the system will satisfy desirable
properties, which can be stipulated early on.

4 The Requirements Document

Before the blueprints we have just discussed can be created, comes the very important
phase of creating the Requirements Document. As already noted, most of the time this
document is either missing or very badly written. Usually this results in lots of diffi-
culties in subsequent phases. In particular, the syndrome of unavoidable specification

620 Abrial J.-R.: Formal Methods: Theory Becoming Practice



changes occurring during the design phases originates in the weakness of the Require-
ments Document. When this document is well written, these kinds of difficulties tend
to disappear. For this reason we are going to dwell on requirements for a while to see
how this phase can be improved.

4.1 Difficulties with the Requirements Document

Writing a good Requirements Document (RD) is a difficult task. We must remember
that the readers of this document perform the phases that follow, namely Technical
Specification and Design. Usually, it is difficult for them to exploit the RD because they
cannot clearly identify what they have to take into account and in what order.

Often too, important points are missing from the RD. I have seen a huge RD for
an aircraft alarm system where the simple fact that the system should not deliver false
alarms was simply missing. When the authors of this document were interrogated on
this point, the answer they gave was rather surprising: it was not necessary to put such
detail in the RD “of course everybody knows that the system should not deliver false
alarms.” On other occasions, the RD is full of irrelevant detail.

What is difficult for the reader of the RD is to make a clear distinction between the
part of the text that is devoted to explanations and the part that is devoted to genuine
requirements. Explanations are initially needed for the reader to understand the future
system. But when the reader is better acquainted with the system, explanations become
less important. What counts then, is to recall what the real requirements are, in order to
know exactly what has to be taken into account during system construction.

4.2 Structuring the Requirements Document

The idea is to have our RD organized around two texts embedded in each other: the ex-
planatory text and the reference text. These two texts should be immediately separable,
so that it is possible to summarize the reference text independently.

Usually, the reference text takes the form of self contained labeled and numbered
short statements written using natural language, which must be very easy to read inde-
pendently from the explanatory text. The explanatory text is there to comment on the
formal requirements in a way that could help a reader on first becoming acquainted with
the document. However, after the initial acclimatisation period, the reference text is the
only one that counts. It is only the the reference text whose labels and numbers act as
cross references in later development phases, providing traceability, so that it can be
checked whether all the requirements have in fact been taken into account properly.

5 The Context of the B Method

Every methodology has its own appropriate sphere of applicability, and the B method-
ology we are going to describe is no exception. In this section we focus on the context

621Abrial J.-R.: Formal Methods: Theory Becoming Practice



of the B method. The kind of systems we are interested in developing are complex and
discrete. Let us develop these two ideas for a while.

5.1 Complex Systems

What is common among, say, an electronic circuit, a file transfer protocol, an airline
seat booking system, a sorting program, a PC operating system, a network routing pro-
gram, a nuclear plant control system, a SmartCard electronic purse, a launch vehicle
flight controller, etc.? What is common to the requirements, specification, design and
implementation of systems that are so different in size and purpose?

Well, almost all such systems are complex in that they are made of many parts
interacting with a highly evolving and sometimes hostile environment. They can also
involve concurrent executing agents. They require a high degree of correctness. Finally,
most of them result from a long construction process requiring a large and talented
team.

5.2 Discrete Systems

Although at the physical level their behavior is ultimately continuous, the systems listed
above mostly operate in a discrete fashion. They fall under the generic name of tran-
sition systems. Having said this does not give us a method, but it gives us at least a
common point of departure.

Some of the examples listed are pure programs. In other words, their transitions are
essentially concentrated in one medium only, e.g. the electronic circuit and the sorting
program. Most of the other examples however are more complex than that because they
involve many different executing agents, and also heavy interaction with the environ-
ment. This means that the transitions are executed by different entities acting concur-
rently. Fortunately this does not change the discrete nature of the problem.

5.3 Test Reasoning versus Model Reasoning

Thus the technology we consider in this short paper is concerned with the construction
of complex discrete systems. A very important factor here is that they should operate
in a correct fashion. And as long as the main validation method used is testing, we
consider that the technology remains in an underdeveloped state. Testing, or ‘laboratory
execution,’ does not involve any kind of sophisticated reasoning. It rather consists of
always postponing any serious thinking during the specification and design phase; the
system is always re-adapted and re-shaped according to the test results. But this, as is
well known, is often far too late.

In other technologies, say avionics, it is certainly true that people do eventually
test what they are constructing, but the testing is just the routine confirmation of a
sophisticated design process rather than a guiding principle within it. In fact, most of the

622 Abrial J.-R.: Formal Methods: Theory Becoming Practice



reasoning is done before the final object is built. It is performed on various blueprints, by
analysing them using appropriate theories. We aim to emulate this for the construction
of complex discrete systems.

6 Overview of the B Method

It is time to outline the essential features of our blueprint based methodology, as it is un-
derstood in Event-B [Abrial (2007)]. As with conventional blueprints, we shall use well
defined notational conventions to write our models. We use the language of classical
logic and set theory, familiar to most people having some mathematical background.
There is a price for this choice: just as one cannot drive a blueprint of a car, one cannot
in general execute a system model.

6.1 States and Transitions

Roughly speaking, a discrete model consists of a state, represented by some constants
and variables at a particular level of abstraction with respect to the real system under
study, and some transitions. The variables are like those used in conventional sciences
(physics, biology, operational research) for studying natural systems.

The transitions, here called ‘events,’ have two pieces, the guard and the action.
The guard, which is a predicate built on the state constants and variables, represents
the conditions necessary for the event to occur. The action describes the way certain
state variables are modified when the event occurs. This framework has been strongly
influenced by the development of Action Systems [Back and Kurki-Suonio (1989)].

A state together with some events on it thus constitutes a state transition machine,
and we can give such a machine a simple operational interpretation. This interpretation
should not be considered as providing the semantics of our models (which is given
by means of suitable proof obligations), it is just given here to support their informal
understanding.

First of all, the execution of an event, which describes a certain observable transi-
tion of the state variables, is considered to take no time, and no two events can occur
simultaneously. The execution of an event is then the following:

• When no event guards are true, then the model execution stops: it is said to have
deadlocked.

• When some event guards are true, exactly one of the corresponding events occurs and
the state is modified accordingly. Subsequently the guards are checked again, and so
on.

Evidently the above exhibits potential non-determinism (external non-determinism) as
several guards may be true simultaneously. We make no assumption concerning the
event which is executed among those whose guards are true. When only one guard is
ever true, the model is said to be deterministic.

623Abrial J.-R.: Formal Methods: Theory Becoming Practice



Notice that the termination of a model is not at all mandatory. As a matter of fact, most
of the systems we study never deadlock: they run for ever.

6.2 Formal Reasoning

The simple transition machine we have described, although primitive, is nevertheless
sufficiently powerful to allow us to do interesting formal reasoning. We focus on two
kinds of model property.

The first kind of property is an invariant property. An invariant is a condition on the
state variables that must hold permanently. In order to have an invariant, it is enough
to prove that for each event, assuming the invariant and the event’s guard, the invariant
still holds after the event’s action has been performed.

A second kind of property, a modality, need not hold permanently. We only consider
a very special form of modality called reachability. What we would like to prove is
that an event whose guard is not necessarily true now will nevertheless certainly occur
within a certain finite time.

6.3 Managing the Complexity of Closed Models

Note that our models cannot just describe the control part of the intended system. They
must also contain a representation of the environment with which our system will in-
teract. Thus we must construct closed models which capture the actions and reactions
between system models and environment models.

The number of transitions of such complex structures will be huge. How are we go-
ing to manage this complexity? The answer to this question lies in three linked concepts:
refinement, decomposition, and generic instantiation.

6.4 Refinement, Decomposition, Generic Instantiation

Refinement allows us to build up a model gradually by making it more and more pre-
cise, that is, closer to reality. We typically construct an ordered sequence of embedded
models, where each is a refinement of its predecessor. Usually, a refined, more concrete,
model will have more variables than its abstraction. The new variables correspond to
fresh detail made visible by seeing the system from closer up, or by viewing the system
under a microscope and turning up the magnification.

Along with the spatial extension, there is a temporal extension, because there will
be new transitions modifying the new variables. These are expressed using new events
which involve the new variables alone. These new events refine implicit events doing
nothing in the abstraction. This clean separation of new and old is vital in keeping under
control the complexity of the reasoning needed to ensure correctness, as the complex-
ity of the system builds up, layer by layer. Once the refinement process has captured

624 Abrial J.-R.: Formal Methods: Theory Becoming Practice



all important properties, further data-refinements map the model onto executable data
types.

By itself, refinement does not overcome the complexity problem, since the model
can become too cumbersome to manage monolithically. At this point, it is necessary to
cut up the single model into several (almost) independent pieces, via decomposition.
The decomposition mechanism is designed so that it is always possible to reassemble
the component models (which may themselves undergo further stages of independent
refinement), to form a single model that is guaranteed to be a refinement of the original
one.

Any development in the above style is parameterized by some carrier sets and con-
stants enjoying a number of properties. Such a static model may be instantiated within a
different development, by ensuring all the axioms of the static model are mere theorems
in the instantiation. This in turn can save us redoing proofs already done in the more
abstract context.

7 Formal Methods in Industry: Two Cases

In this final section, we present two real projects where the B formal method has been
used in a systematic fashion [Abrial (2006)]. The two projects are separated by a nine
year period: the first one resulted in a system (Line 14 of the Paris Métro) that has been
working since October 1998, whereas the second one (the driverless shuttle at Paris
Roissy Airport) will be operational in 2007. In both cases, not all the software for these
systems was developed using B, only the safety critical parts were, representing one
third of the overall program. Next is a table showing the main characteristics of these
systems:

Paris Métro Line 14 Roissy Shuttle
Line length 8.5 km 3.3 km
No. of stops 8 5
Inter-train time 115 s 105 s
Speed 40 km/h 26 km/h
No. of trains 17 14
Passengers / day 350,000 40,000

Table 1: Basic facts about Paris Métro Line 14 and the Roissy Shuttle line.

The information in this table has been taken from [Siemens Transportation]. The for-
mally developed part of the first system has been described in [Behm et. al (1999)],
while that of the second system is described in [Badeau and Amelot (2005)].

Since the Line 14 subway system is completely automatic, the safety critical part
concerns the running and stopping of the trains, and the opening and closing of the train

625Abrial J.-R.: Formal Methods: Theory Becoming Practice



doors and the platform doors. The program is distributed into three different kinds of
sub-system: the wayside equipment (several of these along the tracks), the on-board
equipment (one instance in each train), and the line equipment (one instance), which
are all heavily interconnected. In each sub-system, the safety parts which are developed
using B, are sequential and cyclic (350 ms), and constitute a single non-interruptible
task.

The Roissy Airport shuttle system is derived from the light shuttle system of Chica-
go’s O’Hare Airport. The difference between the former and the latter, is that the former
has a significant computerized part located along the tracks, called the Wayside Control
Unit. There are several such units located along the tracks. They are linked by means of
an Ethernet network. The Wayside Control Units drive the trains by sending them pre-
defined speed programs which they have to follow. The programs are sent in response
to the current state of the train which is detected by means of sensors situated on the
track and connected to the Wayside Control Units.

The following table records a number of facts comparing the two projects. The
most important data in are the first and the last rows. The first contains the number of
lines in the two programs, whereas the last contains the time needed to perform the
corresponding interactive proofs.

Line 14 Shuttle
No. of ADA lines 86,000 158,000
No. of B lines 115,000 183,000
No. of proofs 27,800 43,610
Interactive proof percentage 8.1 3.3
Interactive proof effort (M-Mths) 7.1 4.6

Table 2: Basic statistics about the developments.

The number of ADA lines represents the size of that part of the software system which
was developed using the B formal method. These lines were not modified by the engi-
neers.

The time used for doing the interactive proofs is calculated by taking an average of
15 interactive proofs per Man-Day, and 21 days in a month. As can be seen, the gain
from the first to the second case study is quite significant. Roughly speaking, twice
as many lines of code were automatically generated for half of the proving time. The
manufacturer also stated that in the second case study, a significant amount time was
saved in the building of the Concrete Model. Such differences came from the use of
a semi-automatic refining tool [Burdy (1999), Dollé (2006)]. Note that in both cases
no unit tests were performed. They were replaced by some global tests which were all
successful.

626 Abrial J.-R.: Formal Methods: Theory Becoming Practice



One important difference between the two case studies is that the RD of the first was
created specially for it, whereas for the second, it was derived from an existing RD (that
of the Chicago O’Hare Airport shuttle). In that second case, the RD had to be modified
and extended in order to deal with the new requirements and functionality of the Roissy
Airport shuttle. This caused a number of problems which were only discovered during
the development of the model. Similar train control systems are presently being devel-
oped with these techniques for the New York City subway, the Barcelona subway, the
Prague subway, and Line 1 of the Paris Métro.

8 Conclusions

In this paper, we have presented a brief panorama of formal methods in the B style,
which relies on refinement and proofs to rigorously transform an abstract high level
model into a correct implementation. It must be emphasised that the practicality of
this approach is entirely dependent on the quality and power of tool support. As the
case studies suggest, it would be impossible to complete such a large project in the time
given, were it necessary to do everything manually. Worse, even if that were not so, there
would be no confidence that the final result was correct — human beings are simply
not capable of handling such quantities of low level (and ultimately rather featureless)
mathematical detail without making mistakes. Work on tools for this methodology is
still active. The European Project Rodin [Rodin Project], which runs till September
2007, will create a new platform, implemented on Eclipse, for embedding the Event-B
techniques described above.

Acknowledgments

This research was carried out as part of the EU research project IST 511599 RODIN
(Rigorous Open Development for Complex Systems) [Rodin Project]. I would like to
thank Richard Banach for his help in preparing this paper.

References

[Abrial (2007)] J.-R. Abrial. Event-B. to be published.
[Abrial (1996)] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni-

versity Press, 1996.
[Abrial (2006)] J.-R. Abrial. Formal methods in industry: Achievements, problems future. In

Proc. ACM/IEEE ICSE 2006 International Conference on Software Engineering, pages 761–
768, 2006.

[Back and Kurki-Suonio (1989)] R.J.R. Back and R. Kurki-Suonio. Decentralization of process
nets with centralized control. In Proc. 2nd. ACM SIGACT-SIGOPS Symp. on Distributed
Computing, pages 131–142, 1989.

[Badeau and Amelot (2005)] F. Badeau and A. Amelot. Using B as a high level programming
language in an industrial project: Roissy val. In Proc. ZB 2005, LNCS 3455, pages 334–354,
2005.

627Abrial J.-R.: Formal Methods: Theory Becoming Practice



[Behm et. al (1999)] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A successful
application of B in a large project. In Proc. FM 1999, LNCS 1708, pages 369–387, 1999.

[Burdy (1999)] L. Burdy. Automatic refinement. In Proc. BUGM at FM 1999, 1999.
[Dollé (2006)] D. Dollé. Vital software: Formal method and coded processor. In Proc. ERTS

2006 http://www.erts2006.org/, 2006.
[Rodin Project] Rodin. European Project Rodin (Rigorous Open Development for Complex Sys-

tems) http://rodin.cs.ncl.ac.uk/.
[Siemens Transportation] Siemens. Siemens Transportation Systems

http://www.siemens.fr/transportation/.

628 Abrial J.-R.: Formal Methods: Theory Becoming Practice


