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{covino,pani,scrimieri}@di.uniba.it)

Abstract: We investigate the computational power of C++ compilers. In particular, it
is known that any partial recursive function can be computed at compile time, using the
template mechanism to define primitive recursion, composition, and minimalization.
We show that polynomial time computable functions can be computed at compile-time
using the same mechanism, together with template specialization.
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1 Introduction

C++ templates were designed to provide generic programming, but they are
also capable of performing static computation. In [Veldhuizen, 1999] this ability
is described: C++ may be regarded as a 2-level language, in which types are
first-class values, and template instantiation mimic off-line partial evaluation (see
[Jones, 1996]). The first example of this behaviour was reported in [Unruh, 2001]
and [Unruh, 2002], where a program that produces (as error messages) a list of
prime numbers was written. Another example is the following:

template <int Y, int X> class pow

{public: enum {result=X∗pow<Y-1,X>::result };};

template <int X> class pow<0,X> {public: enum {result=1};};
The command line int z=pow<3,5>::result, produces at compile time the

value 125. This happens because the operator A::B refers to the symbol B in
the scope of A; when reading the command pow<3,5>::result, the compiler
has to instantiate the template for the values <2,5>, <1,5>, until it eventu-
ally hits <0,5>. This final case is handled by the partially specialized template
pow<0,X>, that returns 1.

In this example some issues should be pointed out: first, the partial special-
ization of templates, that allows the compiler to compute the base case of the re-
cursive definitions; then, the instruction enum{result=X∗pow<Y-1,X-1>::result;},
that represents the step of the recursive evaluation of pow, and produces the
intermediate values. This computation happens at compile time, since enumer-
ation values aren’t l-values (that is, they don’t have an address); thus, when
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one pass them to the recursive call of a template, no static memory is used (see
[Vandevoorde and Josuttis, 2003], chapter 17). In [Kristiansen and Voda, 2003],
some well-known complexity classes have been characterized by means of frag-
ments of C (among them, Polytime), although no distinctive features of the
language have been used.

In this paper we show that polynomial-time computable functions can be
computed at compile time by using the template mechanism introduced above;
to do this, we extend the approach presented in [Böhme and Manthey, 2003] (see
next section for a brief description of their result), and we apply it to Bellantoni
and Cook’s characterization of Polytime, sketched in section 3. Some examples
and the proof of our result are in sections 4 and 5.

2 The computational power of C++ compilers

In [Böhme and Manthey, 2003] a way to specify primitive recursion, composi-
tion, and μ-recursion by means of the use of C++ template mechanism and
type system is presented. The result is interesting: any partial recursive function
can be computed at compile-time, that is by running a C++ compiler, and re-
turning an error message that contains the result of the function in unary. This
result was in some sense anticipated by [Unruh, 2001] and [Unruh, 2002], and by
[Veldhuizen, 1995] and [Veldhuizen, 1999]. In this section, we summarize Böhme
and Manthey’s result.

Number types are constructed recursively and they are used to represent
numbers. The number type representing zero is class zero { }. Given a number
type T, the number type representing its unary successor is template<class T>

class suc { typedef T pre;}. The number 2 is represented by suc<suc<zero>>,
and T::pre represents the predecessor of any type number T which is not zero. A
function is represented by a C++ class template, in which templates arguments
are the arguments of the function.

To express the function type F of a function f defined by primitive recursion
from g and h the following template is written (G and H compute g and h):

template <class Y, class X1, . . . ,class Xn > struct F

{typedef typename H<

typename Y::pre,

X1,. . .,Xn,

typename F<typename Y::pre, X1, . . . ,Xn >::val

>::val val;};

template <class X1, . . . ,class Xn> struct F<zero, X1,. . .,Xn >

{typedef typename G<X1,. . .,Xn>::val val; };
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In a similar manner composition and μ-recursion are represented; thus, the
whole class of partial recursive functions can be expressed. Note that the tem-
plate pow in the Introduction can be written according to Böhme and Manthey
definition. Enumeration values and typedef typename mechanism are equivalent,
and they both don’t assign memory to the recursive calls. Thus, we can write

template <class Y, class X> class pow

{typedef typename times<

X,

typename pow<typename Y::pre, X>::result

>::result result;};

template <class X> class pow<zero,X>

{typedef zero result};
where times is an already defined template which computes the product be-

tween its two arguments.

3 A recursive-theoretic characterization of Polytime
computable functions

In [Bellantoni and Cook, 1992] the class of polynomial time computable func-
tions is characterized as the smallest class of functions containing some initial
functions, and closed under safe recursion on notation and safe composition.
This is obtained by imposing a syntactic restriction on variables used in the re-
cursion; they are distinguished in normal or safe, and the latter cannot be used
as the principal variable of a function defined by recursion. Normal inputs are
written to the left, and they are separated from the safe inputs by means af a
semicolon. A function in B can be written as f(x;y), where x is the usual nota-
tion for x1, . . . , xn; in this case, variables xi are normal, whereas variables yj are
safe. Following [Bellantoni and Cook, 1992], B is the smallest class of functions
containing the initial functions 1-5 and closed under 6 and 7.

1. Constant: 0 (it is 0-ary function).

2. Projection: πn,m
j (x1, . . . , xn;xn+1, . . . , xn+m) = xj , for 1 ≤ j ≤ m + n.

3. Successor: si(; a) = 2a + i = ai, for i ∈ {0, 1}.
4. Predecessor: p(; 0) = 0, p(; ai) = a.

5. Conditional:

C(; a, b, c) =
{

b if a mod 2 = 0
c otherwise.
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6. Safe recursion on notation: the function f is defined by safe recursion
on notation from functions g and hi if

{
f(0,x;a) = g(x;a)
f(yi,x;a) = hi(y,x;a, f(y,x;a)).

for i ∈ {0, 1}, g and hi in B.

7. Safe composition: the function f is defined by safe composition from func-
tions h, r and t if f(x;a) = h(r(x; ); t(x;a)) for h, r and t in B.

When defining a function f(yi,x;a) by recursion from g and hi, the value
f(y,x;a) is in a safe position of hi; and a function having safe variables cannot
be substituted into a normal position of any other function, according to the
definition of safe composition. Moreover, normal variables can be moved into a
safe position, but not viceversa. By constraining recursion and composition in
such a way, class B results to be equivalent (via mutual simulation) to the class
of polynomial-time computable functions.

4 Some polytime computable functions represented by C++
templates

In this section we introduce a mechanism which allows us to represent polytime
functions in B by means of template definitions, using the mechanism introduced
in [Böhme and Manthey, 2003], together with a restriction on the role of the
template arguments. We analyze the recursive definition of sum, product, and
exponent functions, showing how the latter cannot be computed when we force it
into our restriction. We recall that functions sum and product can be expressed
by safe recursion as follows:

{⊕(0;x) = x

⊕(y + 1;x) = succ(;⊕(y;x)).

{⊗(0, a; ) = 0
⊗(b + 1, a; ) = ⊕(a;⊗(b, a; )).

Note that, in the previous definition of ⊗(b+1, a; ), the recursive call ⊗(b, a; )
is assigned to the safe variable x of ⊕, and one cannot re-assign this value to
a normal variable of ⊕ (by definitions 6 and 7, previous section); this implies
that one cannot use it as the principal variable of a recursion. In other words,
principal variables cannot be substituted with being-computed values (recursive
calls), but only with totally computed values (numbers). Hence, the following
definition of ⊗ is not allowed.

{⊗(0, a; ) = 0
⊗(b + 1, a; ) = ⊕(⊗(b, a; ); a).
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For the same reason exponentiation (in both following definitions) cannot be
defined in B.

{↑ (0, x; ) = 1
↑ (y + 1, x; ) = ⊗(x, ↑ (y, x; ); ).

{↑ (0, x; ) = 1
↑ (y + 1, x; ) = ⊗(↑ (y, x; ), x; ).

When defining the C++ templates that represent the previous three func-
tions (or, in general, functions in B), we mimic the normal/safe behaviour by
associating a two-value flag to each variable; the values of flags are defined ac-
cording to the following rules:

1. each flag is equal to normal;

2. flags associated to variables assigned with recursive calls are switched to safe;

3. a compiler error must be generated whenever a variable labelled with a safe

flag is moved into the principal variable of a recursion; this is done by adding
a negative specialization (see below for its definition).

The template representation of ⊕ is the following (for sake of conciseness, we
use enumeration values instead of number types):
�define normal 0; �define safe 1;

template<int Y, int flagy, int X, int flagx> class sum

{public: enum {result= 1+sum<Y-1, flagy, X, flagx>::result };};

template<int flagy, int X, int flagx> class sum<0, flagy, X, flagx>

{public: enum {result= X };};

template<int Y, int X, int flagx> class sum<Y, safe, X flagx>

{public: enum {result= sum<Y, safe, X, flagx>::result };};
The instruction sum<2,normal,3,normal>::result returns the expected value,

by recursively instantiating the first template sum for the values <2,3> and
<1,3>, until <0,3> is reached (we omit here the flags); this value matches the
value of the second specialized template, which returns 3. The third template
is introduced to avoid the substitution of other recursive calls or functions into
variable Y, according to previous rule 3. This specialization is in the general form

template <arg’s> class bottom <spec-arg’s>

{public: enum {result= bottom <spec-arg’s>::result };};
and in this case the compiler stops, producing the error ’result’ is not a member

of type ’bottom<spec-arg’s>’. The template representation of ⊗ is
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template<int Y, int flagy, int X, int flagx> class prod

{public: enum {result= sum< X,

flagx,

prod<Y-1, flagy, X, flagx>::result,

safe >::result};};

template<int flagy, int X, int flagx> class prod<0, flagy, X, flagx>

{public: enum {result= 0};};

template<int Y, int X, int flagx> class prod<Y, safe, X, flagx>

{public: enum {result= prod<Y, safe, X, flagx>::result};};
By rule 2, the flag associated with the recursive call of prod which occurs

into sum is switched to safe, and by rule 3, the last template specialization
is introduced to prevent the compiler from assigning another recursive call or
function to Y. The instruction prod<2,normal,3,normal>::result instantiates the
first template sum for values 3, normal, prod<1,normal,3,normal>::result, and safe,
respectively; thus, the product is recursively evaluated. As shown above, one can
also define the template for prod by exchanging the arguments of sum, that is
by assigning the recursive call of prod to the safe variable of sum, as follows:

template<int Y, int flagy, int X, int flagx> class prod

{public: enum {result= sum< prod<Y-1, flagy, X, flagx>::result,

safe,

X,

flagx>::result};};
The instruction prod<2,normal,3,normal>::result instantiates the template

sum for values prod<1,normal,3,normal>::result, safe, 3, and normal, respectively;
this instantiation matches the values of the third template of sum’s definition,
and a compile-time error is produced (this is correct, since we tried to assign the
recursive call of prod to the principal variable of sum).

We define now the C++ template representation of the exponent function.

template<int Y, int flagy, int X, int flagx> class esp

{public: enum {result=prod<esp<Y-1, flagy, X, flagx>::result,

safe,

X,

flagx>::result};};

template<int flagy, int X, int flagx> class esp<0, flagy, X, flagx>

{public: enum {result=1 };};
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template<int Y, int X, int flagx> class esp<Y, safe, X, flagx>

{public: enum {result= esp<Y, safe, X, flagx>::result};};
In this case the instruction esp<2,normal,3,normal>::result instantiates the

template prod for the values esp<1,normal,3,normal>::result, safe,3, and normal,
respectively; this matches the third template of prod’s definition, and a compiler
error ’result’ is not a member of type ’prod<1,safe,3,normal>’ is produced. If one
exchanges the roles of prod’s variables, the same phenomenon occurs.

Rules 1-3 show us how to define C++ templates for any partial recursive
function. If an error message is generated when compiling a function type F,
this means that F represents a function f in a way that is not in Bellantoni and
Cook’s class B. The related theorem and proof are in the following section.

5 Template representation of Polytime

In this section we prove that every function in B can be expressed by C++ tem-
plates (with the restrictions on template arguments introduced above). Functions
in B have binary numbers as input; thus, we need to introduce a new definition
of binary number types that represent binary numbers, and that are constructed
recursively. The number type representing 0 is class zero { }.

Given a number type T, the number type representing its s0 successor is
template<class T> class suc0 {typedef T pre;}. Number type representing its s1

successor is template<class T> class suc1 {typedef T pre;}.
T::pre represents the predecessor of any type number T which is not zero; for
example, number 1101 is represented by suc1 <suc0 <suc1 <suc1 <zero>>>>;
and suc0 <suc1 <suc1 <zero>>>::pre stands for 110. We use the typedef type-

name mechanism (following [Böhme and Manthey, 2003]) instead of enumerated
values because this allows us to write natural definitions of binary successors
and predecessor, and of recursion on notation.

Theorem 1. For each function f in B, there exists a C++ template program
Pf such that Pf computes f (at compile time).

Proof. (by induction on the construction of f). We denote binary number types
with the capital letters X, Y, A, C, and the related two-value flags (normal or
safe) with FX , FY , FA, FC ; we write template<X1, F1, . . ., Xn, Fn > instead of
the sequence of template arguments (and flags) template<class X1, int F1, . . .,

class Xn, int Fn >, when needed.
Base. Templates and template specializations for constant, projection, suc-

cessor and predecessor are defined as follows (definitions 1-4, section 3):

template<> class zero { };
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template<X1, F1, . . ., Xn, Fn, Xn+1, Fn+1, . . ., Xn+m, Fn+m > class Πj

{ typedef Xj result };

template<X, FX > class suc0 {typedef X pre;};
template<X> class suc0 <X, normal>

{typedef typename suc0 <X, normal>::pre pre;};

template<X, FX > class suc1 {typedef X pre;};
template<X> class suc1 <X, normal>

{typedef typename suc1 <X, normal>::pre pre;};
Note that each specialization imitates the safe/normal behaviour of variables.

For example, it is mandatory that the s0 successor operates on a safe argument:
thus, we specialize (in a negative way) the related template suc0 by setting
to normal the flag associated with number type X, and by producing, in this
case, a compiler error. This implies a slight change in the definition of binary
number types given above: each number type has a flag attached, whose value
is always safe. Templates representing the conditional function are defined as
follows (definition 5, section 3):

template<C,X,Y> class myif<suc1 <typename C::pre>, safe, X, safe, Y, safe>

{typedef Y result;};
template<C,X,Y> class myif<suc0 <typename C::pre>, safe, X, safe, Y, safe>

{typedef X result;};
template<C,X,Y> class myif<zero, safe, X, safe, Y, safe> {typedef X result;};
template<C, FC , X, FX , Y, FY > class myif

{typedef typename myif<C, FC , X, FX , Y, FY >:: result result;};
The first three specializations in the definition of myif are introduced to

handle the cases in which the first argument ends with 1 or 0, and the three
arguments are safe, simultaneously. The fourth specialization returns an error,
meaning that at least one of the arguments is normal.

Step. Case 1. f is defined by safe recursion on notation from functions g(x; a),
h0(y, x; a, s) and h1(y, x; a, s), that are computed, by the inductive hypotheses,
by templates G, H0 and H1, respectively. f is represented by the following tem-
plates:

template <class Y, int FY , class X, int FX ,class A, int FA >

class F<suc0 <typename Y::pre>, int FY , class X, int FX ,class A, int FA >

{typedef typename H0 <typename Y::pre, FY ,

X, FX ,

A, FA,

typename F<typename Y::pre, FY ,
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X, FX ,

A, FA >::result,

safe>::result result };

template <class Y, int FY , class X, int FX ,class A, int FA >

class F<suc1 <typename Y::pre>, int FY , class X, int FX ,class A, int FA >

{typedef typename H1 <typename Y::pre, FY ,

X, FX ,

A, FA,

typename F<typename Y::pre, FY ,

X, FX ,

A, FA >::result,

safe>::result result };

template <int FY , class X, int FX , class A, int FA >

class F<zero, FY , X, FX , A, FA >

{typedef typename G<X, FX , A, FA >::result result};

template <class Y, class X, int FX , class A, int FA >

class F<Y, safe, X, FX , A, FA >

{typedef typename F<Y, safe, X, FX , A, FA >::result result};
This definition can be extended to the general case, when x and a are tuples

of variables. Following rules 1-3 in section 4, we set to safe the values of those
flags associated with the recursive call of F into H0 and H1; and we specialize
F to compute the base case of the recursion. The last template is introduced in
order to prevent the programmer from assigning a recursive call to the principal
variable Y. Note how F is specialized on values suc0 <typename Y::pre> and
suc1 <typename Y::pre> in order to recursively instantiates H0 or H1, according
to the value of the last digit of Y (recursion on notation).

Case 2. f is defined by safe composition from functions h(p; q), r(x; ) and
t(x; a), that are computed, by the inductive hypotheses, by templates H, R and
T, respectively. f is represented by the following templates:

template < template <class X, int FX > class R,

class X, int FX , class A, int FA > class F

{typedef typename H<typename R<X, FX >::result,

normal,

typename T<X, FX , A, FA >::result,

safe>::result result };

template < template <class X> class R, class X, int FX , class A, int FA >

class F<R<class X, safe>, X, FX , A, FA >
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{typedef typename F<R<class X, safe>, X, FX , A, FA >::result result };
Flags associated with R and T into H are switched to normal and safe, respec-

tively; in this case, the value of T cannot be used by H as a principal variable
of a recursion. The last specialization produces a compiler error if the variable
of R is safe, and R is used into H, simultaneously (R is defined elsewhere, and a
safe value can be assigned to some of its variables, harmlessly; but this cannot
happen when R is substituted into a normal variable of H). This proof can be
extended to the general case, when x and a are tuples of values, and r and t are
tuples of functions.

6 Conclusions

Templates written according to our restrictions to C++ are polynomially time-
bounded, when evaluated. Base templates (zero, Πj , suc0, suc1, myif) are bounded
by the length of their arguments. For composition templates, observe that the
composition of two polynomial time templates is still a polynomial time tem-
plate. For recursion templates, it is known that recursion on notation can be
executed in polynomial time if the result of the recursion is polynomially length
bounded and the step and base functions are polytime (as in our case). The
reader can refer to [Bellantoni and Cook, 1992], section 4, for a similar proof.

It is interesting to note that if an algorithm (described following Bellantoni
and Cook’s approach) computes a non-trivial binary function, then its time-
complexity is at least linear in one of the inputs (see [Colson and Fredholm, 1998]
for the proof of this result). For example, consider the algorithm for computing
the minimum of two natural numbers written in unary:

min(0, y) = 0; min(s(x), 0) = 0; min(s(x), s(y)) = s(min(x, y)).

The natural computation time of such an algorithm is O(min(x, y)), but no
primitive recursive function definable in [Bellantoni and Cook, 1992] can respect
this bound. Consider now the following templates, written according to our rules:

template <class X, int FX , class Y, int FY > class min

{typedef typename suc<typename min<typename X::pre, FX ,

typename Y::pre, FY >::result>::result

result};

template <int FX , class Y, int FY > class min<zero, FX , Y, FY >

{typedef zero result};
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template <class X, int FX , int FY >

class min<suc<typename X::pre>, FX , zero, FY > {typedef zero result};

template <class X, int FX , class Y, int FY > class min<X, safe, Y, FY >

{typedef typename min<X, safe, Y, FY >::result result};

template <class X, int FX , class Y, int FY > class min<X, FX , Y, safe>

{typedef typename min<X, FX , Y, safe>::result result};
Previous templates computes the function min within time O(min(x, y));

this result is achieved by the introduction of simultaneous recursion, plus our
safe/normal mechanism (last two templates). Thus, our system seems to be able
to express more intensions (that is, more algorithms) than the Bellantoni and
Cook’s approach.
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