
On Pipelining Sequences of Data-Dependent Loops

Rui M. M. Rodrigues
(INESC-ID/IST, Portugal
ruirodrigues@gmail.com)

João M. P. Cardoso

(INESC-ID/IST, Portugal
jmpc@acm.org)

Abstract: Sequences of data-dependent tasks, each one traversing large data sets, exist in many
applications (such as video, image and signal processing applications). Those tasks usually
perform computations (with loop intensive behavior) and produce new data to be consumed by
subsequent tasks. This paper shows a scheme to pipeline sequences of data-dependent loops, in
such a way that subsequent loops can start execution before the completion of the previous
ones, which achieves performance improvements. It uses a hardware scheme with decoupled
and concurrent data-path and control units that start execution at the same time. The
communication of array elements between two loops in sequence is performed by special
buffers with a data-driven, fine-grained scheme. Buffer elements are responsible to flag the
availability of each array element requested by a subsequent loop (i.e., a ready protocol is used
to trigger the execution of operations in the succeeding loop). Thus, the control execution of
following loops is also orchestrated by data availability (in this case at the array element grain)
and out-of-order produced-consumed pairs are permitted. The concept has been applied using
Nau, a compiler infrastructure to map algorithms described in Java onto FPGAs. This paper
presents very encouraging results showing important performance improvements and buffer
size reductions for a number of benchmarks.

Keywords: Loop Pipelining, Compilation, Hardware Schemes, FPGAs
Categories: D.3.4, C.1.2, C.1.4, C.5.4, B.1.2, B.5.2, B.7.2

1 Introduction

Dedicated architectures, implemented in FPGAs, are being used to satisfy certain
algorithm and application requirements (e.g., performance demands) [Gokhale, 05].
Those architectures are usually implemented by hardware design experts, due to the
lack of efficient push-button compilation flows using software programming
languages as the starting point. Although FPGAs are rich hardware resource
platforms, their broad acceptance suffers from the lack of compilation flows and
techniques able to efficiently map software languages onto FPGA flexible and
programmable hardware resources. This is also a required support in order to deal
with time-to-market pressures. The increasing number of available FPGA resources
stimulates the research of new ideas and hardware schemes. Design decisions are now
not fully driven by resource limitations, as has been in the past, but more focused on
“how to take advantage of the very large number of available resources?”.

Journal of Universal Computer Science, vol. 13, no. 3 (2007), 419-439
submitted: 30/11/06, accepted: 15/2/07, appeared: 28/3/07 © J.UCS

Particularly, optimizing the implementations for speed may result in larger hardware
but with unmatched performance.

Since the computationally intensive parts of most algorithms are related to loop
behavior, it is comprehensible that most optimization techniques have been focused
on the generation of dedicated architectures to efficiently implement inner loops and
loop nested structures. Loop pipelining is one of such optimization techniques. It
permits to generate architectures able to start subsequent iterations of a loop before
the end of the previous iterations.

Sequences of loops occur in most applications. Some sequences have nested
loops with large iteration spaces and take long runtimes. Mapping such loop
sequences to hardware structures that maintain the imperative model (i.e., only after a
loop or a set of nested loops finishes execution, subsequent loops start their execution)
leads in most cases to a sub-optimal hardware implementation, as far as performance
is concerned. When those sequences of loops are data-dependent, they cannot be
implemented as fully parallel tasks. On those sequences, a stage (herein identifying a
loop or a set of nested loops) usually produces data consumed by a subsequent stage.
Since a producer stage is usually able to produce data required by the consumer stage
before the producer finishes execution, they would gain if concurrent execution is
accomplished in a pipelining mode. Approaches to pipeline sequences of data-
dependent loops have been recently addressed in [Ziegler, 03] and [Rodrigues, 05a].

The idea presented in this paper decouples the control units of each stage and uses
inter-stage buffers to signal the availability of array elements to the subsequent stage.
Doing that, the scheme achieves pipelining of sequences of loops, even when array
elements produced by a set of loops are not consumed in the same order by
subsequent loops. The inter-stage buffers used in this paper, for fine-grain
synchronization of the pipelining stages, is similar to the empty/full tagged memory
scheme used in the context of shared memory multiprocessor architectures [Smith,
81]. Although with similarities, the technique presented in this paper distinguishes
from the work in [Ziegler, 03] by using a fine-grained synchronization scheme
between stages and a hash-function concept tailored to reduce the inter-stage buffers.
The main contributions of this paper are:

• A technique to pipeline sequences of data-dependent loops using a fine-grain
synchronization scheme is presented and a discussion of its applicability is
also included;

• A scheme to reduce the size of the memory buffers for inter-stage pipelining
is also proposed and evaluated. The scheme permits to substantially reduce
the storage requirements of the original architectures for the examples being
used;

• An experimental setup, suitable to evaluate the technique by cycle-based,
behavioral, RTL (Register Transfer Level) simulation, is introduced. The
setup is used to determine the size of the buffers needed to communicate data
between pipelining stages. This is performed by monitoring the data
communication conflicts that can occur if an inappropriate buffer size is
used;

• Experimental results on applying the technique to a number of benchmarks
are shown and comparisons are drawn;

420 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

This paper is structured as follows. Next section presents the technique to pipeline
data-dependent sequences of loops (referred herein as stages). Section 3 explains the
experimental setup used to test the technique with a number of benchmarks. Section 4
shows the obtained results and Section 5 presents the related work. Finally, last
section concludes the paper and introduces future work.

2 Pipelining Sequences of Data-Dependent Loops

The main idea behind the pipelining of sequences of data-dependent loops (PSL) is to
overlap the execution of iterations of distinct loops, located in sequence, (i.e.,
iterations of a subsequent loop start before a previous loop finishes execution).

As an example of typical sequences of loops presented in real code, consider the
Fast DCT (Discrete Cosine Transform) algorithm, available from Texas Instruments
Inc., shown in Figure 1. The algorithm calculates the DCT of an input image using
blocks of 8×8 pixels of the image. The algorithm includes two stages of data-
dependent loops. The first stage consists of two nested loops (see Loops 1, 2 in Figure
1(a) and (b)) and the second stage consists of a single loop (Loop 3 in Figure 1(a) and
(b)). A typical architecture for this algorithm, obtained by compilation, uses a global
FSM (Finite State Machine) to control the data-path (including memory accesses),
and to reflect the behavior of the loops, executing them in sequence (see Figure 1(c)
and (d)).

As can be seen, the inter-stage data communication is performed using the array
tmp. The data items of the array tmp are produced in the first stage and used by the
second stage. Those data items are produced in Loop2 by the indexing order: 0, 8, 16,
24, 32, 40, 48, 56, 1, 9, 17, (…) and are then consumed in Loop3 by the indexing
order: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (…). Since data items of array tmp produced in the
initial iterations of Loops 1, 2 are requested in the initial iterations of Loop 3, the
execution of Loop 3 can be ideally started before Loops 1, 2 finish execution. This
type of implementation produces an overlapped execution of the stages and may
achieve important performance improvements (see Figure 2). Instead of coupled and
global, control and data-path units, an implementation of this concept uses a data-path
and a control unit for each of the stages (see Figure 2(b)). Those data-path and control
units can then be executed concurrently. Inter-stage buffers are used to communicate
array elements between the stages and to flag subsequent stages of the availability of
data items (fine-grain synchronization). This is the main idea of the PSL loop
pipelining technique.

An inter-stage communication scheme must allow that array elements being
produced in a stage became available to the subsequent stage. Note that in this
example, the order of array elements being produced is not the same as the order of
array elements being consumed and a scheme based on FIFOs (First-In-First-Out)
cannot be used to communicate data between the two stages without additional
overhead. Next sub-section explains the use of the inter-stage buffers.

421Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

#define M 64
#define num_fdcts 7500 //image of 800x600
#define SIZE num_fdcts*M

short img[SIZE];
short tmp[SIZE];
short dct_o[SIZE];
…
i_1 = 0;
for (i=0; i<num_fdcts; i++) { // Loop 1
 for (j=0; j<N; j++) { // Loop 2
 f0=img[0+i_1]; f1=img[8+i_1];
 f2=img[16+i_1]; f3=img[24+i_1];
 f4=img[32+i_1]; f5=img[40+i_1];
 f6=img[48+i_1]; f7=img[56+i_1];
 // computations
 …
 tmp[0+i_1]=F0; tmp[8+i_1]=F1>>13;
 tmp[16+i_1]=F2>>13; tmp[24+i_1]=F3>>13;
 tmp[32+i_1]=F4; tmp[40+i_1]=F5>>13;
 tmp[48+i_1]=F6>>13; tmp[56+i_1]=F7>>13;
 i_1++;
 }
 i_1 += 56;
}

i_1 = 0;
for (i=0; i<N*num_fdcts; i++) { // Loop 3
 f0=tmp[0+i_1]; f1=tmp[1+i_1];
 f2=tmp[2+i_1]; f3=tmp[3+i_1];
 f4=tmp[4+i_1]; f5=tmp[5+i_1];
 f6=tmp[6+i_1]; f7=tmp[7+i_1];
 // computations
 …
 dct_o[0+i_1]=F0r; dct_o[1+i_1]=F1r;
 dct_o[2+i_1]=F2r; dct_o[3+i_1]=F3r;
 dct_o[4+i_1]=F4r; dct_o[5+i_1]=F5r;
 dct_o[6+i_1]=F6r; dct_o[7+i_1]=F7r;
 i_1 += 8;
}
(a)

 img

Loop 1
 Loop 2

tmp

Loop 3

dct_o

(b)

 img

Loop 1
 Loop 2

Loop 3

tmp

dct_o

Global FSM

(c)

Execution of Loop 1, 2 Execution of Loop 3

time
(d)

Figure 1: Fdct example: (a) Part of the fdct code; (b) Task graph where bubbles
represent sets of loops in the code and rectangles represent the array variables; (c)
Block diagram of a typical architecture, with global control and data-path units and
the use of one distinct memory for each array variable, generated by a compiler; (d)
Execution of the loops according to the previous block diagram.

2.1 Schemes for buffering and communication between stages

When data is consumed in the same order of the data being produced, FIFOs having
on each stage an array element can be used to communicate data between stages. This
is the scheme used in [Ziegler, 03] in the context of data communication between
designs on different FPGAs. However, that approach requires an analysis to
determine the number of FIFO stages needed to maintain high throughput or a

422 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

handshake protocol in both sides of the FIFOs to temporally stall each stage in the
sequence [Ziegler, 06]. With that approach (seen as a coarse-grained synchronization
scheme) and when considering out-of-the-order producer/consumer rates, the width
(number of array elements in each FIFO stage) of the stages of the FIFOs needs to be
determined and must have a sufficient size in order to ensure a correct functionality.
Note that in this case, all the array elements on each FIFO stage must be consumed
before a new FIFO stage is considered. Thus, the approach by [Ziegler, 06] may need
FIFOs with a very long width. To circumvent this limitation, the idea in this paper
addresses other inter-stage mechanisms as is explained next.

…
boolean tab[SIZE]={0, 0,…, 0};
…
for(i=0; i<num_fdcts; i++){//Loop 1
 for(j=0; j<N; j++){ //Loop 2
 // loads
 // computations

 …
 // stores
 tmp[48+i_1] = F6 >> 13;
 tab[48+i_1] = true;
 tmp[56+i_1] = F7 >> 13;
 tab[56+i_1] = true;
 i_1++;
 }
 i_1 += 56;
}

i_1 = 0;
for (i=0; i<N*num_fdcts; i++){//Loop 3
 L1: f0 = tmp[0+i_1];
 if(!tab[0+i_1]) goto L1;
 L2: f1 = tmp[1+i_1];
 if(!tab[1+i_1]) goto L2;
 // remainig loads
 // computations
 …
 // stores
 i_1 += 8;

}
(a)

img

Loop 1
 Loop 2

Dual-port
memory:

tmp

Loop 3

dct_o

FSM 1 FSM 2

Dual-
port 1-

bit table:
tab

data connections
address connections

(b)

 Execution of Loop 1, 2

Execution of Loop 3

time
(c)

Figure 2: The fdct example using PSL and tables for inter-stage buffers: (a) Insertion
of the behavior needed in the original code to explain how PSL works in this case; (b)
Block diagram of the architecture using two decoupled and concurrent control and
data-path units; (c) Overlap of the execution of the two loop sets using the PSL
pipelining technique.

One possible implementation of PSL is illustrated in Figure 2 for the fdct
example. It uses a dual-port memory to store the tmp array and a dual-port 1-bit table
(tab) to store flag values representing the absent or availability of array elements
(similar to ready signals). Herein, the tab table is referred as the “empty/full table”.
Each flag indicates if an array element has been already produced (by stage with

423Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

Loops 1,2) and thus can be consumed by the data-path of the second stage (Loop 3).
The two concurrent FSMs are used to control each stage. When loading an element of
the tmp array, the second FSM only has a transition to a new state if and only if the
correspondent flag in table tab has value one, which indicates that the associated array
element is ready/available. Otherwise, the FSM will stay in the current state waiting
for data availability.

This scheme uses, for each array being produced-consumed, inter-stage buffers
containing a buffer and an empty/full table, both with the same size of the
correspondent array. This may require off-chip inter-stage buffers in order to have the
memory space needed to store temporary data related to image processing stages, for
instance. One better solution would be to enable on-chip inter-stage buffers by using a
hash-based scheme instead of the “empty/full table” previously explained.

The size of the inter-stage buffer needs to be sufficient to accommodate the data
elements needed at each execution cycle to preserve the functionality of different
producer/consumer rates and ordering. An ideal inter-stage buffer (called herein as
perfect hash) would need a fully associative memory. Such type of memory would
lead to inter-stage buffers with the minimal number of memory positions. In this case,
the producer stage would write the value and associate it with the related address. The
consumer stage would check for the availability of the address being read, and in the
case of a hit would read the array element associated with that address and remove
both the array element and the address from the buffer. However, that solution is
typically impractical in terms of hardware resources and/or in terms of the read/write
execution cycles overhead.

A more feasible solution uses buffer units indexed by values, obtained by a
function of the addresses generated by both stages (represented by H in Figure 3).
Using a hash-based scheme for the fdct example, the tmp/tab pair is replaced by a
buffer (hash_t) addressed via the hash function (H). Figure 4 illustrates a block
diagram of the inter-stage buffers using hash-functions employed in the context of this
work. The hit-miss flag in Figure 4 is used by the subsequent stage in order to wait
for data availability in the case of a miss or to proceed in the case of a hit. According
to Figure 4: (a) a write operation stores the input data in the buffer position
determined by the hash function H and flags in the same position the empty/full table
with R (it corresponds to a simple store of ‘1’ when an empty/full table with size L=1
is used); (b) a read operation loads the output data from the buffer position determined
by the hash function H and checks if the item stored on that position of the empty/full
table flags data availability (‘1’ in the cases of empty/full tables with sizes L=1 are
used); (c) the read operation also updates the correspondent item of the empty/full
table using a function T (stores a ‘0’ when an empty/full table with size L=1 is used).

The function H is similar to the hash functions since it performs a transformation
of a key k (here, it is an integer with the address) into a value, H(k), indexing a
buffer element. The function H, present on both stages to pipeline, need to be
scheduled in the memory cycles of the read and write operations in order to maintain
the initial execution cycles (i.e., without needing to add an additional overhead to the
memory write/read operations). Thus, those functions need to be simple to implement
and, if possible, should not lead to degradations of the maximum clock frequency
previously achieved by the original architecture (without inter-stage pipelining). This

424 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

scheme also needs a table of flags with the same size of the correspondent inter-stage
buffer.

From the hash functions proposed in the literature (see [Knuth 73]), the hash
function H(k)= k MOD m, where m represents the size of the hash-table, is the
simplest one. When m is a power of two integer, this hash function is simplified to the
use of the ⎡log2(m)⎤ least significant bits of the integer k. Such hash functions do not
need additional hardware resources and do not impose an additional delay because
their implementation only requires simple connections. Although the use of buffers
with a power of two size leads to a number of memory positions never used, their
implementation with memories (even if they are on-chip RAMs, e.g., block RAMs)
always requires such power of two sizes.

…
hash_t[SIZE];
…
for(i=0; i<num_fdcts; i++){// Loop 1
 for(j=0; j<N; j++){ // Loop 2
 // loads
 // computations
 …
 // stores
 hash_t.put(H(48+i_1), F6 >> 13);
 hash_t.put(H(56+i_1), F7 >> 13);
 i_1++;
 }
 i_1 += 56;
}

i_1 = 0;
for (i=0; i<N*num_fdcts; i++){// Loop 3
 L1: f0 = hash_t.remove(H(0+1_1));
 if(f0==null) goto L1;
 L2: f1 = hash_t.remove(H(1+i_1));
 if(f1==null) goto L2;
 // remaining loads
 // computations
 …
 // stores
 i_1 += 8;
}
(a)

 img

Loop 1
 Loop 2

Dual-port
memory:
hash_t

Loop 3

dct_o

FSM 1 FSM 2

H

H

data connections
address connections

(b)

Figure 3: The fdct example using PSL and hash-based inter-stage buffers: (a)
Addition of the behavior needed in the original code to explain how PSL works in this
case; (b) Block diagram of the architecture using two decoupled and concurrent
FSMs.

This type of implementation requires no collision among writes (i.e., a write from
the producer must write to a vacant buffer position1). The calculation of the sizes of
the inter-stage buffers that guarantee no collisions is not trivial. It depends on the

1 Assuming a single write of the producer to each array element being read by the consumer
stage.

425Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

producer/consumer ordering and on the write/read rates achieved by the producer and
the consumer for a particular algorithm implementation. In the approach presented in
this paper, those sizes are automatically determined by cycle-based RTL simulation of
the generated architecture including inter-stage buffers able to monitoring the
read/write operations and to perform the required calculations. In the end of the
simulation, the output sizes are then used as parameter values to synthesize the final
architecture. The potential conflicts by using simple hash-functions are avoided by
selecting the right buffer size taking into account the producer/consumer rates and
ordering.

Figure 5 shows the two algorithms used in the inter-stage buffer component to
calculate the size needed for the buffer. The algorithm in Figure 5(a) calculates a
lower bound that would be needed if a perfect hash function was used. The minimum
size of the buffers to avoid conflicts using the hash function simplified to the use of a
number of the least significant bits of the addresses is calculated using the algorithm
in Figure 5(b). To reduce the search space, those calculations are started with the
lower bound determined by the first algorithm (Figure 5(a)).

L N

M

data_inaddress_in

H

address_out data_out

H

hit/miss

T

(a)

(b)

(c)

(a)

(b)

R (a)

Figure 4: Inter-stage buffer structure with a hash-function.

2.2 The case when consumer stages read more than once the same array
element

When a consumer stage reads more than once the same array element, previously
produced only once or less than the number of times read by the consumer, data reuse
can be applied to the consumer stage in order to remove multiple reads to the same
array element. The other solution is to use inter-stage buffers with empty/full tables of
width L greater than 1. In this case, L must be sufficient to flag with “full” until all the
reads to the same array element have been done (equation (1) presents the empty/full
conditions). Note that in the case of a single read to the same array element an L with
value 1 is used, and for each read to the inter-stage buffer leading to an hit the
correspondent flag is changed to ‘0’. In the case of multiple reads mentioned here, the
empty/full table could store integer values assigned in the first time to the maximum
value of reads to the same array element that are performed. In this case, each
successful read could decrement the value in the table.

426 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

Although the later is a possible solution, it requires subtract operations that would
undoubtedly impose delays on the read operations of the architecture. To alleviate this
problem, the solution presented in this paper requires L having the value of the
number of maximum multiple reads. Each time the producer stores an array element,
the correspondent table element is assigned to an L bit word with all the L bits equal
to ‘1’. For each successful read the table element is shifted by one bit to the right. To
test the availability of data the consumer only has to check the LSB (least significant
bit) of the word read from the empty/full table.

1. int size = 0;
2. while executing do
3. writing: store.value(address_in, hash_t);
4. size = maximum(size, hash_t.current_size);
5. reading: remove.value(address_out, hash_t);
6. // read_accesses[address_out]++;
7. end while;

8. return size;

(a)
1. int size = size obtained by perfect hashing;
2. int bits_needed = ⎡log2(size)⎤;

3. while executing do

4. int ad_in = H(address_in, size);

5. int ad_out = H(address_out, size);

6. writing:
7. while(hash_t.contains(ad_in)) do
8. bits_needed++;
9. size = 2^bits_needed;

10. ad_in = H(address_in,size);
11. end while;
12. hash_t.put(ad_in, data_in);
13. // hash_t.put(ad_in, data_in, read_accesses[address_in]);
14. reading:
15. hash_t.remove(ad_out)
16. // if(read_accesses[address_out] >= 1)
17. // data_out = hash_t.get(ad_out);
18. // read_accesses[address_out]--;
19. // else hash_t.remove(ad_out);
20. end while;

21. return size;

22. int H(int k, int M) {
23. return (k MOD M);
24. }

(b)

Figure 5: Algorithms to determine the size of the inter-stage buffers for the hash-
based PSL scheme: (a) calculating the minimum size needed if a perfect-hash was
used; (b) calculating the size needed to avoid collisions using a simple hash function.

427Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

⎩
⎨
⎧

>
==

0 (index)EF if Full,
0 (index)EF if Empty,

table

table (1)

The minimum required size of the inter-stage buffers are determined by RTL

simulation with similar algorithms to the ones illustrated in Figure 5. In this case the
commented line with number 6 in Figure 5(a) is included in order to determine the
number of reads of the consumer to each array element. Those numbers are stored in a
table that is then used by the algorithm in Figure 5(b), where line 12 is substituted by
line 13 and line 15 is substituted by lines 16 to 19.

2.3 Comments on the PSL Technique

The use of the PSL technique leads theoretically to an upper bound speed-up
determined by:

)x(Latencystages)/ma all with chitectureLatency(arup-speed i≤ (2)

where Latencyi represents the execution time in cycles of stage i (1≤i≤N) and N
represents the number of stages of the algorithm. Note that this theoretical upper
bound must be calculated using individual latencies of the stages when an
independent architecture is used, because in this case there is no need to multiplex
data and address sources among the producer and the consumer stages, which is close
to the architecture using PSL. Using PSL, each stage is able to access concurrently the
memories for inter-stage data communication. In the case of stages with equal
execution time, the theoretically upper bound speed-up is about N (it may slightly
surpass this value due to the fact that stand-alone stages may execute faster than when
integrated in a global architecture).

Although the PSL technique can be important to extend even more the repository
of optimization techniques, it cannot be directly applied in the following cases: when
a producer stage writes more than once to the same array element not consumed yet;
and when one or more of the array elements being read will not be written by the
producer. Note, however, that those cases can be solved by changing the program
accordingly.

Although a simple hash function is always envisaged, since it is difficult to justify
a more complex one due to the influence on performance degradation it may have,
other hash functions can be evaluated. Depending on the particular algorithm being
compiled, there can also be simple hash functions that may lead to inter-stage buffer
size minimizations by using bits of the address in different positions than a set of least
significant bits as is the case with the hash function used in this work. The use of
simple one stage bitwise operations (e.g., XOR, AND) can also be used in hash
functions with low delay overheads.

The type of ready protocol used in this paper can be exploited at block level
instead of array element level, i.e., the producer could flag the consumer of the
availability of a block of data instead of an array element. With that, the consumer
stage would not require to test of the availability of each array element. The full
advantages of this technique are, however, not trivial as the fine-grain synchronization
would be lost.

428 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

Stages with non-deterministic producer/consumer rates also impose problems to
determine the size of the inter-stage buffers since this would need to perform RTL
simulations with worst case scenarios which might be very difficult to achieve.
However, this would require an analysis of the algorithms having this kind of
behavior.

3 Experimental Setup

The test infrastructure used to evaluate the PSL technique consists of the Nau
compiler, which is based on the Galadriel/Nenya framework [Cardoso, 03], and an
RTL simulation environment [Rodrigues, 05b]. As can be seen in Figure 6, the
compiler receives as input an algorithm described in a subset of Java bytecodes and
generates a description of a specific architecture for the algorithm being compiled.
Nau outputs an RTL structural description of the data-path of the generated
architecture and an RTL behavioral description for each data-path’s control unit, both
using XML (eXtended-Markup Language) dialects. Those XML representations are
then translated to the target language by XSLT engines. This is useful because it
permits to define a set of XSL translation rules to the chosen language representation
(e.g., Verilog, VHDL, etc.).

 Java Code with
directives

Front-End (includes
compilation to JVM)

Library
(FUs)

FU
Models
(HDL)

Java bytecodes

Nau

Logic Synthesis and Place and
Route (vendor-specific)

FU
Models
(Java)

Specific
Reconfigurable

Hardware
(FPGA)

Estimators

Control
Units
(XML)

Datapath
Units (XML)

RTG (XML)

XSL Transformers

Figure 6: Compilation framework used to evaluate the PSL technique.

The functional test of the architectures generated by Nau is performed using the
Hades [Hendrich, 00] simulation engine. Hades is an event-based simulator that uses
behavioral descriptions using the Java language. A library of operators written in
Java, reproducing the behavior of each operator existent in the compiler library, used
to describe the data-path (e.g., adders, registers, RAMs), is used for the referred RTL
simulation [Rodrigues, 05b]. Memory contents and I/O data are stored in files.

One of the advantages of this kind of simulation environment is the possibility to
add monitors and behavior to the components of the architecture by including pure
Java code. This has been helpful for determining the size of the inter-stage buffers and

429Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

to monitor possible communication conflicts as has been explained by the algorithms
previously presented. Having access to Java APIs and to object-oriented features,
contribute to the use of algorithms and data-structures, hard or impossible to code in
hardware description languages, for instance.

Architectures without using the PSL technique are obtained by using directly the
compilation flow illustrated in Figure 6. When applying the PSL technique the
algorithm is split in its stages (representing the sequences of data-dependent loops)
and each stage is then compiled by Nau to generate a specific architecture for each
stage. The PSL technique is then applied to the set of architectures generated by Nau.
At the moment, a script is used to change the memories used to communicate data
between two stages to the type of inter-stage buffers used by PSL. The script also
changes the FSMs of subsequent stages in order they include behavior to test the
availability of data in the inter-stage buffers. Although PSL can be included in the
compiler itself, evaluations of the technique have been easier to do without changing
the compiler.

After the changes in the XML files of the individual data-path and control units,
functional simulations are performed using Hades. This is the step where the inter-
stage buffers are monitored and their sizes determined by RTL simulation.

Having the size of the inter-stage buffers, the HDL (hardware description
language) code is generated (VHDL in this case). This HDL code is then input to
commercial logic synthesis and place and route tools. After this final step the
architecture using the PSL technique is ready to be tested in the target FPGA board.

4 Experimental Results

To evaluate the impact of the PSL loop pipelining technique on performance and on
the size of the inter-stage buffers needed, a number of experiments has been
performed. Table 1 shows the benchmarks used, and their characteristics. The
benchmarks are all from the image processing domain and have different
complexities. They also represent typical image processing stages. The benchmarks
are: a fast, 2-D, DCT version (fdct); a forward, 2-D, Haar wavelet transform (fwt2D);
a transformation of an RBG image to pixels in gray with 256 levels plus the histogram
calculation on that gray pixels (RGB2gray + histogram); and a smooth image filter
(using a 3×3 window) plus a sobel edge detector (smooth + sobel). To test the
examples a simple board containing a Xilinx Spartan-3 (xc3s400-4) FPGA has been
used. Due to the small capabilities of those devices, the examples shown have been
prototyped using small data sets in order to have enough on-chip memories and RTL
simulation is used to show latencies with realistic image sizes.

Table 2 shows the performance results achieved when comparing the benchmarks
with sequential and PSL loop pipelined executions. The #cc column refers to the
number of clock cycles needed to execute the sequential implementation of the
algorithms, and #cc PSL the number of clock cycles used in the pipelined versions.
The speed-ups achieved, which range from 1.29 to 2.02, are shown in the last column.
One interesting observation is the fact that the experimental speed-ups almost achieve
the theoretical speed-up limit given by equation (2). Also note that in all the
examples, memories with 1 clock cycle to store and 2 clock cycles to load array

430 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

elements have been used. When using off-chip memories with a larger number of
clock cycles to load/store data, the speed-ups achieved will increase since inter-stage
buffers are promoted to on-chip and faster memories.

Although out-of-order producer/consumer rates are needed, the fdct is the
example achieving the largest speed-up due to the almost balanced stages (the
example consists of 2 stages).

The fwt2D example has 4 stages and the optimal PSL is obtained when applied
between the 3rd and the 4th stages. This is because the execution times of stages 2 and
4 are much lower than the ones for stages 1 and 3. When applying PSL between all
the stages of the example (i.e., s1, s2, s3 and s4) a speed-up of 1.29 is obtained (image
sizes of 512×512 pixels) which is almost equal to the obtained speed-up when PSL is
only applied to s2 and s3. Note that the overall achieved speed-up is also limited by
the fact that the two stages that effectively take advantage of PSL are stages s2 and s3.
The other two are always executing sequentially. The local speed-up obtained with
stages s2 and s3 when applying the PSL is 1.8 (image sizes of 512×512 pixels).

Algorithm # Stages

(sequences of
loops or
nested loops)

#loops
in the
code

Description

fdct 2 {s1,s2} 3 Fast DCT (Discrete Cosine Transform)

fwt2D 4
{s1,s2,s3,s4}

8 Forward Haar Wavelet

RGB2gray
+
histogram

2 {s1,s2} 2 Transforms an RGB image to a gray image with
256 levels and determines the histogram of the
gray image

Smooth +
sobel,
3 versions:
(a)
(b)
(c)

2 {s1,s2} 6 Smooth image operation based on 3×3 windows
being the resultant image input to the sobel edge
detector. Versions: (a): original code; (b): two
innermost loops of the smooth algorithm fully
unrolled (scalar replacement of the array with
coefficients); (c): the same as (b) plus
elimination of redundant array references in the
original code of sobel.

Table 1: Benchmarks used in the experiments.

The RGB2gray followed by the histogram stage achieved practically the
theoretical maximum speed-up (1.75).

The smooth followed by the sobel edge detector example represents a case where
multiple reads to the same array element are performed by the second stage (sobel).
Most image pixels output by the first stage are read 12 times by the second stage (in
the example (a)). Pixels in the borders of the image are read fewer times. An
empty/full table of width L equal to 12 is used. When using optimized versions of
sobel and smooth, (b) and (c), a better balance between the two stages is accomplished
and speed-ups of 1.80 and 1.92 are achieved, respectively. In those optimized
versions, the maximum number of reads to the same array element is 8 instead of 12
and an empty/full table with 8-bit width is used.

431Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

Algorithm Input
data size Stages #cc w/o PSL

Speed-up
Upper –
Bound:

equation
(2)

#cc w/ PSL Speed-
up

fdct 320×240
(s1, s2)
(s1)
(s2)

628,805
312,003
307,203

2.02 293,015 2.01

640×480

(s1,s2)
(s1)
(s2)

2,515,205
1,248,003
1,228,803

2.02 1,171,415 2.02

800×600

(s1,s2)
(s1)
(s2)

3,930,005
1,950,003
1,920,003

2.02 1,830,215 2.02

Fwt2D 128×128
(s1,s2,s3,s4)
(s1, s2)
(s3, s4)

296,457
148,230
148,230

2.00 228,117 1.30

256×256

(s1,s2,s3,s4)
(s1,s2)
(s3,s4)

1,182,729
591,366
591,366

2.00 914,965 1.29

512×512

(s1,s2,s3,s4)
(s1,s2)
(s3,s4)

4,724,745
2,362,373
2,362,373

2.00 3,664,917 1.29

RGB2gray +
histogram 640×480

(s1,s2)
(s1)
(s2)

4,300,816
1,843,209
2,457,609

1.75 2,457,622 1.75

800×600

(s1,s2)
(s1)
(s2)

6,720,025
2,880,015
3,840,015

1.75 3,840,007 1.75

Smooth +
sobel (a) 640×480

(s1,s2)
(s1)
(s2)

31,720,089
21,044,433
10,597,671

1.51 21,044,449 1.51

 800×600
(s1,s2)
(s1)
(s2)

49,634,009
32,929,473
16,606,951

1.51 32,929,489 1.51

Smooth +
sobel (b) 800×600

(s1,s2)
(s1)
(s2)

30,068,645
13,364,109
16,606,951

1.81 16,640,509 1.81

Smooth +
sobel (c) 800×600

(s1,s2)
(s1)
(s2)

25,773,809
13,364,109
11,862,791

1.92 13,364,117 1.92

Table 2: Execution cycles and speed-ups obtained with PSL.

432 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

(a)

56

1

958

1198

95110

1198

2

1024

2048

131072

2048

480000

480000

480000

307200

480000

480000

480000

1

6001

120000

2

8192

128

131072
480000

262144

1 10 100 1000 10000 100000 1E+06 1E+07

fdct
(800x600)

fwt2D
(512x512)

RGB2gray + histogram (a)
(800x600)

RGB2gray + histogram (b)
(800x600)

RGB2gray + histogram (c)
(800x600)

smooth + sobel (a)
(640x480)

smooth + sobel (a)
(800x600)

smooth + sobel (b)
(800x600)

smooth + sobel (c)
(800x600)

table size (no hash function)
buffer size used (simple hash function)

buffer minimum size (perfect hash)

(b)

16

104

648

552

1

10

100

1000

16 64 25
6

10
24

40
96

16
38

4

buffer size

#B
R

A
M

s
(1

8
kb

)

1

10

100

1000

data_width 8

data_width 16

data_width 32

xc3s400 (Spartan-3)

xc3s5000 (Spartan-3)

xc5vlx330T (Virtex-5)

xc4vfx140 (Virtex-4)

Figure 7: (a) Sizes of the inter-stage buffers for the implemented architectures using
the PSL technique. (b) FPGA BRAM resources for different sizes of the inter-stage
buffer (including an empty/flag table with 1-bit width).

Figure 7(a) shows the size of the inter-stage buffers for the architectures using the
PSL techniques. The sizes for the examples with no hash functions are the same to the
needed memory for the examples without using PSL. Note, however, that using PSL
dual-port memories and an extra L-bit memory for the table with the flags identifying
ready array elements (empty/full table) are needed. Those results show large
reductions even when the simple hash-function needs over twice the size of the
minimum buffer size if a perfect-hash (correspondent to a full-associative memory)
was used (fdct case). Also note that the sizes of the buffers for the fdct and fwt2D

433Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

algorithms do not depend on the image input sizes. The hash-based inter-stage buffers
used consider memories with sizes proportional to power of two values.

With respect to RGB2gray plus histogram example (a), the size of the inter-stage
is always 25% of the size of the images. This is due to the fact that the values are
produced at a higher rate than they are consumed. When a slowdown of the producer
stage (RGB2gray) is performed by adding one (example (b)) and two (example (c))
states in the FSM responsible to the first stage, large reductions are achieved. A size
of two is required for the inter-stage buffer when adding two clock cycles of
slowdown for each loop iteration of the RGB2gray stage. Also important is the fact
that the slowdown of the first stage has not restrained the PSL to achieve a latency
similar to the latency presented in Table 2 (this one achieved without using the
slowdown of the first stage).

The inter-stage buffer sizes for the smooth plus sobel example (a) have been
achieved using the correct number of multiple reads to each array element. Note that
the use of the maximum number of reads to the same array element, which is 12,
would need a 5,568 minimum size perfect-hash buffer, corresponding to a buffer with
the same size of the images used (800×600 pixels). This is due to the fact that a
number of image borders are maintained in the inter-stage buffer, because their status
never reaches the empty state. They are initialized with a word identifying 12 reads
but there will never be 12 reads. When taking into account the correct number of
reads per array element, an inter-stage buffer which size is presented in Figure 7
(smooth+sobel) leading to a 256× reduction is accomplished. The example smooth
plus sobel optimized (c) requires a maximum of 8 reads to each array element (instead
of the 12 reads for the versions (a) and (b)). This optimized version needs the same
previously referred size for the inter-stage buffer.

Figure 7(b) shows the number of BRAMs (Block RAMs), each one with 18 Kb,
needed for different sizes of the inter-stage buffer (implementing the empty/full
tagged memory buffer with hash) in a number of Xilinx FPGAs, considering buffer
data widths of 8, 16 and 32 bits. It is also shown the maximum number of BRAMs
available in the considered Xilinx FPGAs. This gives an idea about the size of the
inter-stage buffers possible to use with the actual FPGA devices. It can be seen that
those devices have sufficient on-chip memory resources available to enable the inter-
stage buffer scheme used in this paper.

Examples where the same ordering of producer/consumer is needed are the ones
with potentially higher performance improvements, especially when the values are
produced and consumed from the very beginning of the execution of the stages and
producer/consumer operations are performed on continuous loop iterations. Although
this may occur in some algorithms (some image kernels include this kind of
behavior), most examples have different behavior. The technique presented in this
paper is not constrained by the former kind of behavior and can also be applied to
reduce both execution time and storage requirements.

Figure 8 shows the impact on resource usage when applying PSL. It can be seen
that the number of 4-LUT, FF, and Slices used is almost the same. In some cases PSL
achieved resource savings due to the elimination of the multiplexers to access the
memories shared between two stages in the reference designs. Those memories are
transformed to the dual-port inter-stage buffers when using PSL. The clock
frequencies are also similar (Figure 8 shows the differences between the obtained

434 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

clock frequencies having as a reference each example without PSL). This was
expected, because the PSL examples do not add hardware complexity. Note that
designs with PSL also need on-chip memories (see in Figure 7(b) the BRAMs needed
for different sizes of the inter-stage buffers).

1.14

1.00
0.96

1.13
1.131.00 1.00 1.00 1.03 0.99 1.00 0.99

1

10

100

1000

10000
fd

ct

fd
ct

-h
as

h

fd
ct

-ta
bl

e

sm
oo

th
+s

ob
el

sm
oo

th
+s

ob
el

-h
as

h

sm
oo

th
+s

ob
el

-ta
bl

e

R
G

B
2g

ra
y+

hi
st

og
ra

m

R
G

B
2g

ra
y+

hi
st

og
ra

m
-h

as
h

R
G

B
2g

ra
y+

hi
st

og
ra

m
-ta

bl
e

fw
t2

D

fw
t2

D
-h

as
h

fw
t2

D
-ta

bl
e

FP
G

A
 re

so
ur

ce
s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

FFs # 4-LUTS # Slices Normalized Freq.

Figure 8: FPGA resources needed reported after P&R.

5 Related Work

Due to the impact in performance, loop pipelining has been focus of intense research
efforts for many years [Allan, 95]. It has been considered for both microprocessors
and application specific architectures. With respect to compilation for FPGAs, the
work in [Weinhardt, 96] has been one of the first efforts considering pipelining of
innermost, well-behaved, loops. Other examples of efforts on loop pipelining to
FPGA-based systems are presented in [Maruyama, 00], [Diniz, 00], [Callahan, 00],
[Haldar, 01], [Gokhale, 00], and [Snider, 02]. Beside the efforts on generating the
pipelining structures for efficient execution of loops in FPGAs, authors have used
some loop transformations (e.g., unrolling, interchange, tiling, etc.) to make, e.g., the
most promising loops innermost loops, since only them are pipelined by most
compilers [Weinhardt, 01]. Other loop pipelining schemes try to overlap subsequent
iterations of an outer loop with an inner loop, as is shown by the example presented in
[Bondalapati, 01].

In [Cardoso, 05], a dynamically loop pipelining scheme applied to a coarse-
grained reconfigurable, data-driven, architecture is presented. It takes advantage of a
ready/acknowledge protocol between operations to achieve loop pipelining of
innermost loops. An example is also given showing loop pipelining of two nested
loops. Although this scheme can be implemented in FPGAs, there is no strong

435Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

evidence of its efficiency using the fine-grained resources and synchronous model of
the current commercial FPGAs.

Most relevant to our approach is the work presented in [Ziegler, 02], [Ziegler,
03], and [Ziegler, 06], which is a coarse-grained synchronization approach to overlap
some of the execution steps of sequences of loops or functions (i.e., functions or loops
waiting for data start computing as soon as the required data items are produced in a
previous function or by a certain iteration of a previous loop). They communicate data
to subsequent stages in the code using a FIFO mechanism. Each FIFO stage stores an
array element or a set of array elements (e.g., a raw of pixels in an image). Array
elements in each FIFO stage can be consumed by different order they have been
produced. Examples with the same order of producer/consumer only need FIFO
stages with one element. In the other case, each stage must store a sufficient number
of array elements in order that all of them are consumed (by any order) before the
next FIFO stage is considered. This is the major bottleneck of the technique, since a
FIFO stage may need to store the entire image and in that case no loop pipelining is
achieved, and is a consequence of using coarse-grain (the grain is related to the size of
the FIFO stages) instead of fine-grain synchronization. Note also that the coarse-grain
synchronization limits the applicability of the technique. In [Ziegler, 06] they present
analysis schemes to determine the communication needed by this type of pipelining.
To the best of our knowledge, the work of [Ziegler, 06] has been in the context of
design space exploration and concerning speed-ups only one example is referred (with
a speed-up of 1.76). Regarding their work, the work presented in this paper can be
thought as a more generic approach, without having their major constraints.

Orthogonally to the work presented in this paper, empty/full tagged memories
have been presented in [Smith, 81] and used more recently in machines such as the
MIT Alewife [Agarwal, 95], both in the context of shared memory multi-processor
architectures. Those memories are used for fine-grain synchronization of data
produced/consumed by tasks executing in distinct microprocessors and can be seen as
the empty/full tables used in the work presented in this paper. Note, also, that the
optimized solution using the inter-stage buffers with hash-functions has not been, as
far as we know, used before.

6 Conclusions

This paper presents a technique for pipelining sequences of data-dependent loops
using a fine-grain synchronization scheme. With the proposed technique, before the
end of a stage (typically a loop or a set of nested loops), a subsequent stage is able to
start execution as long as the array elements required have been produced by the
previous stage. The scheme is implemented using inter-stage buffers to communicate
both the produced-consumed data between stages and the ready flags. It also uses
concurrent units to control each stage with synchronization being achieved by the
ready flags. Doing this, the approach presented in this paper is able to deal with
irregular (out-of-order) produced-consumed array elements in a natural way.

Although different inter-stage buffer schemes are proposed, a simple hash
function, without needing additional hardware resources and without degrading the
maximum clock frequency achieved, is shown to be an efficient implementation. It

436 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

permitted to substantially reduce the size of the buffers for the examples used in the
experiments.

The technique is able to both improve performance and to reduce the memory
requirements related to the data communication between sequences of loops. The
experiments conducted so far, give strong evidences that the technique is able to
achieve performance improvements close to the theoretical limit.

It is also shown how the technique can be applied in the context of a compiler of
imperative software programming languages (a subset of Java is used) to specific
architectures suitable for implementation in FPGAs.

Ongoing work focuses on static analysis techniques to decide about the use of the
loop pipelining scheme and to estimate the size of the inter-stage buffers needed to
communicate array elements between the set of loops being pipelined. Future work
will also include studies about the use of loop and data layout transformations that
may lead to further reductions of the sizes of the inter-stage buffers. Another
interesting path would be to evaluate the technique with stages having conditional
structures that may impose non-deterministic behavior.

Acknowledgements

This work is partially supported by the Portuguese Foundation for Science and
Technology (FCT) - FEDER and POSI programs - under the CHIADO project
(POSI/CHS/48018/2002). The authors would like to thank the fruitful discussions
with Pedro Diniz regarding aspects of the technique presented in this paper. We also
thank the suggestions pointed out by the anonymous reviewers.

References

[Agarwal, 95] Agarwal A., Bianchini R., Chaiken D., Johnson K.L., Kranz D., Kubiatowicz J.,
Lim B.-H., Mackenzie K., and Yeung D., “The MIT Alewife Machine: Architecture and
Performance,” Proceedings 22nd Annual International Symposium on Computer Architecture
(ISCA’95), 22-24 June,1995: pp. 2-13.

[Allan, 95] Allan V.H., Jones R.B., Lee R.M., Allan S.J., “Software Pipelining”, ACM
Computing Surveys, (Vol. 27, Issue 3), Sept. 1995: pp. 367-432.

[Bondalapati, 01] Bondalapati K., “Parallelizing of DSP Nested Loops on Reconfigurable
Architectures using Data Context Switching”, Proceedings of IEEE/ACM 38th Design
Automation Conference (DAC’01), Las Vegas, Nevada, USA, June 18-22, 2001: pp. 273-276.

[Callahan, 00] Callahan T. J., Wawrzynek, J. “Adapting Software Pipelining for Reconfigurable
Computing”, Proc. of the Int’l Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES’00), San Jose, CA, USA: ACM Press, Nov. 17-19, 2000: pp. 57-
64.

[Cardoso, 03] Cardoso J. M. P., and Neto H.C., “Compilation for FPGA-Based Reconfigurable
Hardware,” IEEE Design & Test of Computers Magazine: March/April, 2003, vol. 20, no.2: pp.
65-75.

[Cardoso, 05] Cardoso J.M.P., “Dynamic Loop Pipelining in Data-Driven Architectures,” in
Proc. of the ACM International Conference on Computing Frontiers (CF’05), Ischia, Italy, 4-6
May 2005, ACM Press: pp. 106-115.

437Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

[Diniz, 00] Diniz P., Park J., “Automatic Synthesis of Data Storage and Control Structures for
FPGA-based Computing Engines”, Proc. of IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’00), IEEE CS Press, 2000: pp. 91-100.

[Gokhale, 05] Gokhale M. and Graham P. S., Reconfigurable Computing: Accelerating
Computation with Field-Programmable Gate Arrays, Springer, 2005, ISBN: 0387261052.

[Gokhale, 00] M. Gokhale M.., Stone J.M.., Gomersall E., “Co-synthesis to a hybrid
RISC/FPGA architecture”, Journal of VLSI Signal Processing Systems for Signal, Image and
Video Technology, (Vol. 24, No. 2), March 2000: pp. 165-180.

[Haldar, 01] M. Haldar M., Nayak A.., Choudhary A., Banerjee P., “A System for Synthesizing
Optimized FPGA Hardware from Matlab”, Proc. of IEEE/ACM Int’l Conference on Computer
Aided Design (ICCAD’01), San Jose, CA, USA, Nov. 4-8, 2001: pp. 314-319.

[Hendrich, 00] N. Hendrich N., “A Java-based Framework for Simulation and Teaching”, Proc.
of the 3rd European Workshop on Microelectronics Education (EWME’00), Aix en Provence,
France: Kluwer Academic Publishers, 18-19, May 2000: pp. 285-288.

[Knuth, 73] Knuth D., The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison-Wesley, 1973.

[Maruyama, 00] Maruyama T., Hoshino T., “A C to HDL compiler for pipeline processing on
FPGAs”, Proc. of the IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’00), IEEE CS Press, 2000: pp. 101-110.

[Rodrigues, 05a] Rodrigues R., Cardoso J. M. P., “Pipelining Sequences of Loops: A First
Example,” in International Workshop on Applied Reconfigurable Computing (ARC2005), held
in conjunction with IADIS International Conference Applied Computing 2005, Algarve 22-23,
Portugal, pp. 147-151.

[Rodrigues, 05b] Rodrigues R., Cardoso J. M. P., “An Infrastructure to Functionally Test
Designs Generated by Compilers Targeting FPGAs,” Interactive Presentation at the Design,
Automation and Test in Europe Conference (DATE’05), Munich, Germany, March 7-11, 2005,
IEEE Computer Society Press, pp. 30-31.

[Smith, 81] Smith B., “Architecture and Applications of the HEP Multiprocessor Computer
System,” Society of Photo-optical Instrumentation Engineers, 298, 1981: pp. 241–248.

[Snider, 02] Snider G., “Performance-constrained pipelining of software loops onto
reconfigurable hardware”, Proc. of ACM 10th Int’l Symposium on Field-Programmable Gate
Arrays (FPGA’02), New York, USA: ACM Press, 2002: pp. 177-186.

[Weinhardt, 01] Weinhardt M., Luk W., “Pipeline Vectorization”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, (Vol. 20, no. 2), Feb. 2001: pp.
234-233.

[Weinhardt, 96] M. Weinhardt M., “Portable Pipeline Synthesis for FCCMs”, Proc. 6th Int’l
Workshop on Field-Programmable Logic and Applications (FPL’96), Darmstadt, Germany:
LNCS 1142, Springer-Verlag, Sept. 1996: pp. 1-13.

[Ziegler, 02] Ziegler H., So B., Hall M., P. Diniz, “A Parallelizing Compiler Approach for
Coarse-Grain Pipelining on Multiple FPGA Architectures”, Proc. of 10th IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM’02), Napa, CA, USA, 2002: pp. 77-
86.

438 Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

[Ziegler, 03] Ziegler H., Hall M., Diniz P., “Compiler-Generated Communication for Pipelined
FPGA Applications”, Proceedings of the 40th Design Automation Conference (DAC’03): pp.
610-615.

[Ziegler, 06] Ziegler H., Compiler-directed design space exploration for pipelined field-
programmable gate array applications, PhD thesis, University of Southern California,
California, USA, May 2006.

439Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...

