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Abstract: Sequences of data-dependent tasks, each one traversing large data sets, exist in many 
applications (such as video, image and signal processing applications). Those tasks usually 
perform computations (with loop intensive behavior) and produce new data to be consumed by 
subsequent tasks. This paper shows a scheme to pipeline sequences of data-dependent loops, in 
such a way that subsequent loops can start execution before the completion of the previous 
ones, which achieves performance improvements. It uses a hardware scheme with decoupled 
and concurrent data-path and control units that start execution at the same time. The 
communication of array elements between two loops in sequence is performed by special 
buffers with a data-driven, fine-grained scheme. Buffer elements are responsible to flag the 
availability of each array element requested by a subsequent loop (i.e., a ready protocol is used 
to trigger the execution of operations in the succeeding loop). Thus, the control execution of 
following loops is also orchestrated by data availability (in this case at the array element grain) 
and out-of-order produced-consumed pairs are permitted. The concept has been applied using 
Nau, a compiler infrastructure to map algorithms described in Java onto FPGAs. This paper 
presents very encouraging results showing important performance improvements and buffer 
size reductions for a number of benchmarks.  

Keywords: Loop Pipelining, Compilation, Hardware Schemes, FPGAs 
Categories: D.3.4, C.1.2, C.1.4, C.5.4, B.1.2, B.5.2, B.7.2 

1 Introduction  

Dedicated architectures, implemented in FPGAs, are being used to satisfy certain 
algorithm and application requirements (e.g., performance demands) [Gokhale, 05]. 
Those architectures are usually implemented by hardware design experts, due to the 
lack of efficient push-button compilation flows using software programming 
languages as the starting point. Although FPGAs are rich hardware resource 
platforms, their broad acceptance suffers from the lack of compilation flows and 
techniques able to efficiently map software languages onto FPGA flexible and 
programmable hardware resources. This is also a required support in order to deal 
with time-to-market pressures. The increasing number of available FPGA resources 
stimulates the research of new ideas and hardware schemes. Design decisions are now 
not fully driven by resource limitations, as has been in the past, but more focused on 
“how to take advantage of the very large number of available resources?”. 
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Particularly, optimizing the implementations for speed may result in larger hardware 
but with unmatched performance. 

Since the computationally intensive parts of most algorithms are related to loop 
behavior, it is comprehensible that most optimization techniques have been focused 
on the generation of dedicated architectures to efficiently implement inner loops and 
loop nested structures. Loop pipelining is one of such optimization techniques. It 
permits to generate architectures able to start subsequent iterations of a loop before 
the end of the previous iterations. 

Sequences of loops occur in most applications. Some sequences have nested 
loops with large iteration spaces and take long runtimes. Mapping such loop 
sequences to hardware structures that maintain the imperative model (i.e., only after a 
loop or a set of nested loops finishes execution, subsequent loops start their execution) 
leads in most cases to a sub-optimal hardware implementation, as far as performance 
is concerned. When those sequences of loops are data-dependent, they cannot be 
implemented as fully parallel tasks. On those sequences, a stage (herein identifying a 
loop or a set of nested loops) usually produces data consumed by a subsequent stage. 
Since a producer stage is usually able to produce data required by the consumer stage 
before the producer finishes execution, they would gain if concurrent execution is 
accomplished in a pipelining mode. Approaches to pipeline sequences of data-
dependent loops have been recently addressed in [Ziegler, 03] and [Rodrigues, 05a].  

The idea presented in this paper decouples the control units of each stage and uses 
inter-stage buffers to signal the availability of array elements to the subsequent stage. 
Doing that, the scheme achieves pipelining of sequences of loops, even when array 
elements produced by a set of loops are not consumed in the same order by 
subsequent loops. The inter-stage buffers used in this paper, for fine-grain 
synchronization of the pipelining stages, is similar to the empty/full tagged memory 
scheme used in the context of shared memory multiprocessor architectures [Smith, 
81]. Although with similarities, the technique presented in this paper distinguishes 
from the work in [Ziegler, 03] by using a fine-grained synchronization scheme 
between stages and a hash-function concept tailored to reduce the inter-stage buffers. 
The main contributions of this paper are: 

• A technique to pipeline sequences of data-dependent loops using a fine-grain 
synchronization scheme is presented and a discussion of its applicability is 
also included; 

• A scheme to reduce the size of the memory buffers for inter-stage pipelining 
is also proposed and evaluated. The scheme permits to substantially reduce 
the storage requirements of the original architectures for the examples being 
used; 

• An experimental setup, suitable to evaluate the technique by cycle-based, 
behavioral, RTL (Register Transfer Level) simulation, is introduced. The 
setup is used to determine the size of the buffers needed to communicate data 
between pipelining stages. This is performed by monitoring the data 
communication conflicts that can occur if an inappropriate buffer size is 
used; 

• Experimental results on applying the technique to a number of benchmarks 
are shown and comparisons are drawn; 
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This paper is structured as follows. Next section presents the technique to pipeline 
data-dependent sequences of loops (referred herein as stages). Section 3 explains the 
experimental setup used to test the technique with a number of benchmarks. Section 4 
shows the obtained results and Section 5 presents the related work. Finally, last 
section concludes the paper and introduces future work. 

2 Pipelining Sequences of Data-Dependent Loops 

The main idea behind the pipelining of sequences of data-dependent loops (PSL) is to 
overlap the execution of iterations of distinct loops, located in sequence, (i.e., 
iterations of a subsequent loop start before a previous loop finishes execution).  

As an example of typical sequences of loops presented in real code, consider the 
Fast DCT (Discrete Cosine Transform) algorithm, available from Texas Instruments 
Inc., shown in Figure 1. The algorithm calculates the DCT of an input image using 
blocks of 8×8 pixels of the image. The algorithm includes two stages of data-
dependent loops. The first stage consists of two nested loops (see Loops 1, 2 in Figure 
1(a) and (b)) and the second stage consists of a single loop (Loop 3 in Figure 1(a) and 
(b)). A typical architecture for this algorithm, obtained by compilation, uses a global 
FSM (Finite State Machine) to control the data-path (including memory accesses), 
and to reflect the behavior of the loops, executing them in sequence (see Figure 1(c) 
and (d)). 

As can be seen, the inter-stage data communication is performed using the array 
tmp. The data items of the array tmp are produced in the first stage and used by the 
second stage. Those data items are produced in Loop2 by the indexing order: 0, 8, 16, 
24, 32, 40, 48, 56, 1, 9, 17, (…) and are then consumed in Loop3 by the indexing 
order: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (…). Since data items of array tmp produced in the 
initial iterations of Loops 1, 2 are requested in the initial iterations of Loop 3, the 
execution of Loop 3 can be ideally started before Loops 1, 2 finish execution. This 
type of implementation produces an overlapped execution of the stages and may 
achieve important performance improvements (see Figure 2). Instead of coupled and 
global, control and data-path units, an implementation of this concept uses a data-path 
and a control unit for each of the stages (see Figure 2(b)). Those data-path and control 
units can then be executed concurrently. Inter-stage buffers are used to communicate 
array elements between the stages and to flag subsequent stages of the availability of 
data items (fine-grain synchronization). This is the main idea of the PSL loop 
pipelining technique. 

An inter-stage communication scheme must allow that array elements being 
produced in a stage became available to the subsequent stage. Note that in this 
example, the order of array elements being produced is not the same as the order of 
array elements being consumed and a scheme based on FIFOs (First-In-First-Out) 
cannot be used to communicate data between the two stages without additional 
overhead. Next sub-section explains the use of the inter-stage buffers. 

 
 
 
 

421Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...



 
#define M 64 
#define num_fdcts 7500 //image of 800x600 
#define SIZE num_fdcts*M 
                                           
short img[SIZE];      
short tmp[SIZE]; 
short dct_o[SIZE]; 
… 
i_1 = 0; 
for (i=0; i<num_fdcts; i++) {  // Loop 1   
 for (j=0; j<N; j++) {         // Loop 2   
  f0=img[ 0+i_1]; f1=img[ 8+i_1];         
  f2=img[16+i_1]; f3=img[24+i_1];          
  f4=img[32+i_1]; f5=img[40+i_1];          
  f6=img[48+i_1]; f7=img[56+i_1];          
  // computations 
  … 
  tmp[ 0+i_1]=F0;     tmp[ 8+i_1]=F1>>13;  
  tmp[16+i_1]=F2>>13; tmp[24+i_1]=F3>>13;  
  tmp[32+i_1]=F4;     tmp[40+i_1]=F5>>13;  
  tmp[48+i_1]=F6>>13; tmp[56+i_1]=F7>>13;  
  i_1++; 
  }                                        
 i_1 += 56;                                
}              
 
i_1 = 0; 
for (i=0; i<N*num_fdcts; i++) { // Loop 3  
 f0=tmp[0+i_1]; f1=tmp[1+i_1];             
 f2=tmp[2+i_1]; f3=tmp[3+i_1];             
 f4=tmp[4+i_1]; f5=tmp[5+i_1];             
 f6=tmp[6+i_1]; f7=tmp[7+i_1];             
 // computations 
 … 
 dct_o[0+i_1]=F0r; dct_o[1+i_1]=F1r;       
 dct_o[2+i_1]=F2r; dct_o[3+i_1]=F3r;       
 dct_o[4+i_1]=F4r; dct_o[5+i_1]=F5r;       
 dct_o[6+i_1]=F6r; dct_o[7+i_1]=F7r;       
 i_1 += 8; 
}            
(a)                                                                             

 img 

Loop 1 
    Loop 2 

tmp 

Loop 3 

dct_o 

 

(b) 

 img 

Loop 1 
    Loop 2              

Loop 3 

tmp 

dct_o 

Global FSM 
 

(c) 

Execution of Loop 1, 2 Execution of Loop 3 

time  
(d) 

Figure 1: Fdct example: (a) Part of the fdct code; (b) Task graph where bubbles 
represent sets of loops in the code and rectangles represent the array variables; (c) 
Block diagram of a typical architecture, with global control and data-path units and 
the use of one distinct memory for each array variable, generated by a compiler; (d) 
Execution of the loops according to the previous block diagram. 

2.1 Schemes for buffering and communication between stages  

When data is consumed in the same order of the data being produced, FIFOs having 
on each stage an array element can be used to communicate data between stages. This 
is the scheme used in [Ziegler, 03] in the context of data communication between 
designs on different FPGAs. However, that approach requires an analysis to 
determine the number of FIFO stages needed to maintain high throughput or a 
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handshake protocol in both sides of the FIFOs to temporally stall each stage in the 
sequence [Ziegler, 06]. With that approach (seen as a coarse-grained synchronization 
scheme) and when considering out-of-the-order producer/consumer rates, the width 
(number of array elements in each FIFO stage) of the stages of the FIFOs needs to be 
determined and must have a sufficient size in order to ensure a correct functionality. 
Note that in this case, all the array elements on each FIFO stage must be consumed 
before a new FIFO stage is considered. Thus, the approach by [Ziegler, 06] may need 
FIFOs with a very long width. To circumvent this limitation, the idea in this paper 
addresses other inter-stage mechanisms as is explained next. 
 
… 
boolean tab[SIZE]={0, 0,…, 0}; 
… 
for(i=0; i<num_fdcts; i++){//Loop 1    
 for(j=0; j<N; j++){      //Loop 2     
   // loads 
   // computations 

        … 
   // stores 
   tmp[48+i_1] = F6 >> 13;  
   tab[48+i_1] = true; 
   tmp[56+i_1] = F7 >> 13;  
   tab[56+i_1] = true;                 
   i_1++;                              
 }                                     
 i_1 += 56;                            
}             
 
i_1 = 0; 
for (i=0; i<N*num_fdcts; i++){//Loop 3 
 L1: f0 = tmp[0+i_1];  
    if(!tab[0+i_1]) goto L1; 
 L2: f1 = tmp[1+i_1];  
    if(!tab[1+i_1]) goto L2;           
 // remainig loads 
 // computations 
 … 
 // stores 
 i_1 += 8; 

}      
(a) 

 

 

img 

Loop 1 
    Loop 2 

Dual-port 
memory: 

tmp 

Loop 3 

dct_o 

FSM 1 FSM 2 

Dual-
port 1-

bit table: 
tab 

data connections 
address connections  

(b) 
 

 Execution of Loop 1, 2 

Execution of Loop 3 

time  
(c) 

Figure 2: The fdct example using PSL and tables for inter-stage buffers: (a) Insertion 
of the behavior needed in the original code to explain how PSL works in this case; (b) 
Block diagram of the architecture using two decoupled and concurrent control and 
data-path units; (c) Overlap of the execution of the two loop sets using the PSL 
pipelining technique. 

One possible implementation of PSL is illustrated in Figure 2 for the fdct 
example. It uses a dual-port memory to store the tmp array and a dual-port 1-bit table 
(tab) to store flag values representing the absent or availability of array elements 
(similar to ready signals). Herein, the tab table is referred as the “empty/full table”. 
Each flag indicates if an array element has been already produced (by stage with 
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Loops 1,2) and thus can be consumed by the data-path of the second stage (Loop 3). 
The two concurrent FSMs are used to control each stage. When loading an element of 
the tmp array, the second FSM only has a transition to a new state if and only if the 
correspondent flag in table tab has value one, which indicates that the associated array 
element is ready/available. Otherwise, the FSM will stay in the current state waiting 
for data availability. 

This scheme uses, for each array being produced-consumed, inter-stage buffers 
containing a buffer and an empty/full table, both with the same size of the 
correspondent array. This may require off-chip inter-stage buffers in order to have the 
memory space needed to store temporary data related to image processing stages, for 
instance. One better solution would be to enable on-chip inter-stage buffers by using a 
hash-based scheme instead of the “empty/full table” previously explained. 

The size of the inter-stage buffer needs to be sufficient to accommodate the data 
elements needed at each execution cycle to preserve the functionality of different 
producer/consumer rates and ordering. An ideal inter-stage buffer (called herein as 
perfect hash) would need a fully associative memory. Such type of memory would 
lead to inter-stage buffers with the minimal number of memory positions. In this case, 
the producer stage would write the value and associate it with the related address. The 
consumer stage would check for the availability of the address being read, and in the 
case of a hit would read the array element associated with that address and remove 
both the array element and the address from the buffer. However, that solution is 
typically impractical in terms of hardware resources and/or in terms of the read/write 
execution cycles overhead. 

A more feasible solution uses buffer units indexed by values, obtained by a 
function of the addresses generated by both stages (represented by H in Figure 3).  
Using a hash-based scheme for the fdct example, the tmp/tab pair is replaced by a 
buffer (hash_t) addressed via the hash function (H). Figure 4 illustrates a block 
diagram of the inter-stage buffers using hash-functions employed in the context of this 
work.  The hit-miss flag in Figure 4 is used by the subsequent stage in order to wait 
for data availability in the case of a miss or to proceed in the case of a hit. According 
to Figure 4: (a) a write operation stores the input data in the buffer position 
determined by the hash function H and flags in the same position the empty/full table 
with R (it corresponds to a simple store of ‘1’ when an empty/full table with size L=1 
is used); (b) a read operation loads the output data from the buffer position determined 
by the hash function H and checks if the item stored on that position of the empty/full 
table flags data availability (‘1’ in the cases of empty/full tables with sizes L=1 are 
used); (c) the read operation also updates the correspondent item of the empty/full 
table using a function T (stores a ‘0’ when an empty/full table with size L=1 is used). 

The function H is similar to the hash functions since it performs a transformation 
of a key k (here, it is an integer with the address) into a value, H(k), indexing a 
buffer element. The function H, present on both stages to pipeline, need to be 
scheduled in the memory cycles of the read and write operations in order to maintain 
the initial execution cycles (i.e., without needing to add an additional overhead to the 
memory write/read operations). Thus, those functions need to be simple to implement 
and, if possible, should not lead to degradations of the maximum clock frequency 
previously achieved by the original architecture (without inter-stage pipelining). This 
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scheme also needs a table of flags with the same size of the correspondent inter-stage 
buffer. 

From the hash functions proposed in the literature (see [Knuth 73]), the hash 
function H(k)= k MOD m, where m represents the size of the hash-table, is the 
simplest one. When m is a power of two integer, this hash function is simplified to the 
use of the ⎡log2(m)⎤ least significant bits of the integer k. Such hash functions do not 
need additional hardware resources and do not impose an additional delay because 
their implementation only requires simple connections. Although the use of buffers 
with a power of two size leads to a number of memory positions never used, their 
implementation with memories (even if they are on-chip RAMs, e.g., block RAMs) 
always requires such power of two sizes. 

 
… 
hash_t[SIZE]; 
… 
for(i=0; i<num_fdcts; i++){// Loop 1     
 for(j=0; j<N; j++){       // Loop 2     
    // loads 
    // computations 
         … 
    // stores 
    hash_t.put(H(48+i_1), F6 >> 13);  
    hash_t.put(H(56+i_1), F7 >> 13);  
    i_1++;                               
 }                                       
 i_1 += 56;                              
}             
 
i_1 = 0; 
for (i=0; i<N*num_fdcts; i++){// Loop 3 
 L1: f0 = hash_t.remove(H(0+1_1)); 
     if(f0==null) goto L1;               
 L2: f1 = hash_t.remove(H(1+i_1)); 
    if(f1==null) goto L2;                
 // remaining loads 
 // computations 
 … 
 // stores 
 i_1 += 8; 
}  
(a)       

 img 

Loop 1 
    Loop 2 

Dual-port 
memory: 
hash_t 

Loop 3 

dct_o 

FSM 1 FSM 2 

H 

H 

data connections 
address connections  

(b)       

Figure 3: The fdct example using PSL and hash-based inter-stage buffers: (a) 
Addition of the behavior needed in the original code to explain how PSL works in this 
case; (b) Block diagram of the architecture using two decoupled and concurrent 
FSMs. 

This type of implementation requires no collision among writes (i.e., a write from 
the producer must write to a vacant buffer position1). The calculation of the sizes of 
the inter-stage buffers that guarantee no collisions is not trivial. It depends on the 

                                                           
1 Assuming a single write of the producer to each array element being read by the consumer 
stage. 
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producer/consumer ordering and on the write/read rates achieved by the producer and 
the consumer for a particular algorithm implementation. In the approach presented in 
this paper, those sizes are automatically determined by cycle-based RTL simulation of 
the generated architecture including inter-stage buffers able to monitoring the 
read/write operations and to perform the required calculations. In the end of the 
simulation, the output sizes are then used as parameter values to synthesize the final 
architecture. The potential conflicts by using simple hash-functions are avoided by 
selecting the right buffer size taking into account the producer/consumer rates and 
ordering. 

Figure 5 shows the two algorithms used in the inter-stage buffer component to 
calculate the size needed for the buffer. The algorithm in Figure 5(a) calculates a 
lower bound that would be needed if a perfect hash function was used. The minimum 
size of the buffers to avoid conflicts using the hash function simplified to the use of a 
number of the least significant bits of the addresses is calculated using the algorithm 
in Figure 5(b). To reduce the search space, those calculations are started with the 
lower bound determined by the first algorithm (Figure 5(a)). 

 

L N

M

data_inaddress_in

H

address_out data_out

H

hit/miss

T

(a)

(b)

(c)

(a)

(b)

R (a)

 

Figure 4: Inter-stage buffer structure with a hash-function. 

2.2 The case when consumer stages read more than once the same array 
element 

When a consumer stage reads more than once the same array element, previously 
produced only once or less than the number of times read by the consumer, data reuse 
can be applied to the consumer stage in order to remove multiple reads to the same 
array element. The other solution is to use inter-stage buffers with empty/full tables of 
width L greater than 1. In this case, L must be sufficient to flag with “full” until all the 
reads to the same array element have been done (equation (1) presents the empty/full 
conditions). Note that in the case of a single read to the same array element an L with 
value 1 is used, and for each read to the inter-stage buffer leading to an hit the 
correspondent flag is changed to ‘0’. In the case of multiple reads mentioned here, the 
empty/full table could store integer values assigned in the first time to the maximum 
value of reads to the same array element that are performed. In this case, each 
successful read could decrement the value in the table. 
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Although the later is a possible solution, it requires subtract operations that would 
undoubtedly impose delays on the read operations of the architecture. To alleviate this 
problem, the solution presented in this paper requires L having the value of the 
number of maximum multiple reads. Each time the producer stores an array element, 
the correspondent table element is assigned to an L bit word with all the L bits equal 
to ‘1’. For each successful read the table element is shifted by one bit to the right. To 
test the availability of data the consumer only has to check the LSB (least significant 
bit) of the word read from the empty/full table. 

 
1. int size = 0; 
2. while executing do 
3.   writing: store.value(address_in, hash_t); 
4.     size = maximum(size, hash_t.current_size); 
5.   reading: remove.value(address_out, hash_t); 
6.     // read_accesses[address_out]++; 
7. end while; 
 
8. return size; 
 
(a) 
1. int size = size obtained by perfect hashing; 
2. int bits_needed = ⎡log2(size)⎤; 
 
3. while executing do 

4.   int ad_in = H(address_in, size);  

5.   int ad_out = H(address_out, size); 
 
6.   writing:  
7.     while(hash_t.contains(ad_in)) do 
8.       bits_needed++; 
9.       size = 2^bits_needed; 

10.       ad_in = H(address_in,size);  
11.     end while; 
12.     hash_t.put(ad_in, data_in); 
13.     // hash_t.put(ad_in, data_in, read_accesses[address_in]); 
14.   reading:  
15.     hash_t.remove(ad_out)  
16.     // if(read_accesses[address_out] >= 1)  
17.     //    data_out = hash_t.get(ad_out); 
18.     //    read_accesses[address_out]--; 
19.     // else hash_t.remove(ad_out);  
20. end while; 
 
21. return size; 
 

22. int H(int k, int M) {  
23.   return (k MOD M);  
24. } 
 
(b) 

Figure 5: Algorithms to determine the size of the inter-stage buffers for the hash-
based PSL scheme: (a) calculating the minimum size needed if a perfect-hash was 
used; (b) calculating the size needed to avoid collisions using a simple hash function. 

427Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...



⎩
⎨
⎧

>
==

0  (index)EF if Full,
0  (index)EF if Empty,

table

table  (1) 

 
The minimum required size of the inter-stage buffers are determined by RTL 

simulation with similar algorithms to the ones illustrated in Figure 5. In this case the 
commented line with number 6 in Figure 5(a) is included in order to determine the 
number of reads of the consumer to each array element. Those numbers are stored in a 
table that is then used by the algorithm in Figure 5(b), where line 12 is substituted by 
line 13 and line 15 is substituted by lines 16 to 19. 

2.3 Comments on the PSL Technique 

The use of the PSL technique leads theoretically to an upper bound speed-up 
determined by:  

 )x(Latencystages)/ma all with chitectureLatency(arup-speed i≤  (2) 

where Latencyi represents the execution time in cycles of stage i (1≤i≤N) and N 
represents the number of stages of the algorithm. Note that this theoretical upper 
bound must be calculated using individual latencies of the stages when an 
independent architecture is used, because in this case there is no need to multiplex 
data and address sources among the producer and the consumer stages, which is close 
to the architecture using PSL. Using PSL, each stage is able to access concurrently the 
memories for inter-stage data communication. In the case of stages with equal 
execution time, the theoretically upper bound speed-up is about N (it may slightly 
surpass this value due to the fact that stand-alone stages may execute faster than when 
integrated in a global architecture). 

Although the PSL technique can be important to extend even more the repository 
of optimization techniques, it cannot be directly applied in the following cases: when 
a producer stage writes more than once to the same array element not consumed yet; 
and when one or more of the array elements being read will not be written by the 
producer. Note, however, that those cases can be solved by changing the program 
accordingly. 

Although a simple hash function is always envisaged, since it is difficult to justify 
a more complex one due to the influence on performance degradation it may have, 
other hash functions can be evaluated. Depending on the particular algorithm being 
compiled, there can also be simple hash functions that may lead to inter-stage buffer 
size minimizations by using bits of the address in different positions than a set of least 
significant bits as is the case with the hash function used in this work. The use of 
simple one stage bitwise operations (e.g., XOR, AND) can also be used in hash 
functions with low delay overheads. 

The type of ready protocol used in this paper can be exploited at block level 
instead of array element level, i.e., the producer could flag the consumer of the 
availability of a block of data instead of an array element. With that, the consumer 
stage would not require to test of the availability of each array element. The full 
advantages of this technique are, however, not trivial as the fine-grain synchronization 
would be lost. 
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Stages with non-deterministic producer/consumer rates also impose problems to 
determine the size of the inter-stage buffers since this would need to perform RTL 
simulations with worst case scenarios which might be very difficult to achieve. 
However, this would require an analysis of the algorithms having this kind of 
behavior. 

3 Experimental Setup 

The test infrastructure used to evaluate the PSL technique consists of the Nau 
compiler, which is based on the Galadriel/Nenya framework [Cardoso, 03], and an 
RTL simulation environment [Rodrigues, 05b]. As can be seen in Figure 6, the 
compiler receives as input an algorithm described in a subset of Java bytecodes and 
generates a description of a specific architecture for the algorithm being compiled. 
Nau outputs an RTL structural description of the data-path of the generated 
architecture and an RTL behavioral description for each data-path’s control unit, both 
using XML (eXtended-Markup Language) dialects. Those XML representations are 
then translated to the target language by XSLT engines. This is useful because it 
permits to define a set of XSL translation rules to the chosen language representation 
(e.g., Verilog, VHDL, etc.).  

 Java Code with
directives

Front-End (includes
compilation to JVM)

Library
(FUs)

FU 
Models
(HDL)

Java bytecodes

Nau

Logic Synthesis and Place and
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Datapath
Units (XML)

RTG (XML)
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Figure 6: Compilation framework used to evaluate the PSL technique. 

The functional test of the architectures generated by Nau is performed using the 
Hades [Hendrich, 00] simulation engine. Hades is an event-based simulator that uses 
behavioral descriptions using the Java language. A library of operators written in 
Java, reproducing the behavior of each operator existent in the compiler library, used 
to describe the data-path (e.g., adders, registers, RAMs), is used for the referred RTL 
simulation [Rodrigues, 05b]. Memory contents and I/O data are stored in files.  

One of the advantages of this kind of simulation environment is the possibility to 
add monitors and behavior to the components of the architecture by including pure 
Java code. This has been helpful for determining the size of the inter-stage buffers and 

429Rodrigues R.M.M., Cardoso J.M.P.: On Pipelining Sequences ...



to monitor possible communication conflicts as has been explained by the algorithms 
previously presented. Having access to Java APIs and to object-oriented features, 
contribute to the use of algorithms and data-structures, hard or impossible to code in 
hardware description languages, for instance. 

Architectures without using the PSL technique are obtained by using directly the 
compilation flow illustrated in Figure 6. When applying the PSL technique the 
algorithm is split in its stages (representing the sequences of data-dependent loops) 
and each stage is then compiled by Nau to generate a specific architecture for each 
stage. The PSL technique is then applied to the set of architectures generated by Nau. 
At the moment, a script is used to change the memories used to communicate data 
between two stages to the type of inter-stage buffers used by PSL. The script also 
changes the FSMs of subsequent stages in order they include behavior to test the 
availability of data in the inter-stage buffers. Although PSL can be included in the 
compiler itself, evaluations of the technique have been easier to do without changing 
the compiler. 

After the changes in the XML files of the individual data-path and control units, 
functional simulations are performed using Hades. This is the step where the inter-
stage buffers are monitored and their sizes determined by RTL simulation. 

Having the size of the inter-stage buffers, the HDL (hardware description 
language) code is generated (VHDL in this case). This HDL code is then input to 
commercial logic synthesis and place and route tools. After this final step the 
architecture using the PSL technique is ready to be tested in the target FPGA board. 

4 Experimental Results 

To evaluate the impact of the PSL loop pipelining technique on performance and on 
the size of the inter-stage buffers needed, a number of experiments has been 
performed. Table 1 shows the benchmarks used, and their characteristics. The 
benchmarks are all from the image processing domain and have different 
complexities. They also represent typical image processing stages. The benchmarks 
are: a fast, 2-D, DCT version (fdct); a forward, 2-D, Haar wavelet transform (fwt2D); 
a transformation of an RBG image to pixels in gray with 256 levels plus the histogram 
calculation on that gray pixels (RGB2gray + histogram); and a smooth image filter 
(using a 3×3 window) plus a sobel edge detector (smooth + sobel). To test the 
examples a simple board containing a Xilinx Spartan-3 (xc3s400-4) FPGA has been 
used. Due to the small capabilities of those devices, the examples shown have been 
prototyped using small data sets in order to have enough on-chip memories and RTL 
simulation is used to show latencies with realistic image sizes. 

Table 2 shows the performance results achieved when comparing the benchmarks 
with sequential and PSL loop pipelined executions. The #cc column refers to the 
number of clock cycles needed to execute the sequential implementation of the 
algorithms, and #cc PSL the number of clock cycles used in the pipelined versions. 
The speed-ups achieved, which range from 1.29 to 2.02, are shown in the last column. 
One interesting observation is the fact that the experimental speed-ups almost achieve 
the theoretical speed-up limit given by equation (2). Also note that in all the 
examples, memories with 1 clock cycle to store and 2 clock cycles to load array 
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elements have been used. When using off-chip memories with a larger number of 
clock cycles to load/store data, the speed-ups achieved will increase since inter-stage 
buffers are promoted to on-chip and faster memories.  

Although out-of-order producer/consumer rates are needed, the fdct is the 
example achieving the largest speed-up due to the almost balanced stages (the 
example consists of 2 stages). 

The fwt2D example has 4 stages and the optimal PSL is obtained when applied 
between the 3rd and the 4th stages. This is because the execution times of stages 2 and 
4 are much lower than the ones for stages 1 and 3. When applying PSL between all 
the stages of the example (i.e., s1, s2, s3 and s4) a speed-up of 1.29 is obtained (image 
sizes of 512×512 pixels) which is almost equal to the obtained speed-up when PSL is 
only applied to s2 and s3. Note that the overall achieved speed-up is also limited by 
the fact that the two stages that effectively take advantage of PSL are stages s2 and s3. 
The other two are always executing sequentially. The local speed-up obtained with 
stages s2 and s3 when applying the PSL is 1.8 (image sizes of 512×512 pixels). 

 
Algorithm # Stages 

(sequences of 
loops or 
nested loops) 

#loops 
in the 
code 

Description 

fdct 2 {s1,s2} 3 Fast DCT (Discrete Cosine Transform) 

fwt2D 4 
{s1,s2,s3,s4} 

8 Forward Haar Wavelet 

RGB2gray 
+ 
histogram 

2 {s1,s2} 2 Transforms an RGB image to a gray image with 
256 levels and determines the histogram of the 
gray image 

Smooth + 
sobel, 
3 versions: 
(a) 
(b) 
(c) 

2 {s1,s2} 6 Smooth image operation based on 3×3 windows 
being the resultant image input to the sobel edge 
detector. Versions: (a): original code; (b): two 
innermost loops of the smooth algorithm fully 
unrolled (scalar replacement of the array with 
coefficients); (c): the same as (b) plus 
elimination of redundant array references in the 
original code of sobel. 

Table 1: Benchmarks used in the experiments. 

The RGB2gray followed by the histogram stage achieved practically the 
theoretical maximum speed-up (1.75).  

The smooth followed by the sobel edge detector example represents a case where 
multiple reads to the same array element are performed by the second stage (sobel). 
Most image pixels output by the first stage are read 12 times by the second stage (in 
the example (a)). Pixels in the borders of the image are read fewer times. An 
empty/full table of width L equal to 12 is used. When using optimized versions of 
sobel and smooth, (b) and (c), a better balance between the two stages is accomplished 
and speed-ups of 1.80 and 1.92 are achieved, respectively. In those optimized 
versions, the maximum number of reads to the same array element is 8 instead of 12 
and an empty/full table with 8-bit width is used.  
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Algorithm Input 
data size Stages #cc w/o PSL 

Speed-up 
Upper –
Bound: 

equation 
(2) 

#cc w/ PSL Speed-
up 

fdct 320×240 
(s1, s2) 
(s1) 
(s2) 

628,805 
312,003 
307,203 

2.02 293,015 2.01 

 
640×480 

(s1,s2) 
(s1) 
(s2) 

2,515,205 
1,248,003 
1,228,803 

2.02 1,171,415 2.02 

 
800×600 

(s1,s2) 
(s1) 
(s2) 

3,930,005 
1,950,003 
1,920,003 

2.02 1,830,215 2.02 

Fwt2D 128×128 
(s1,s2,s3,s4) 
(s1, s2) 
(s3, s4) 

296,457 
148,230 
148,230 

2.00 228,117 1.30 

 
256×256 

(s1,s2,s3,s4) 
(s1,s2) 
(s3,s4) 

1,182,729 
591,366 
591,366 

2.00 914,965 1.29 

 
512×512 

(s1,s2,s3,s4) 
(s1,s2) 
(s3,s4) 

4,724,745 
2,362,373 
2,362,373 

2.00 3,664,917 1.29 

RGB2gray + 
histogram 640×480 

(s1,s2) 
(s1) 
(s2) 

4,300,816 
1,843,209 
2,457,609 

1.75 2,457,622 1.75 

 
800×600 

(s1,s2) 
(s1) 
(s2) 

6,720,025 
2,880,015 
3,840,015 

1.75 3,840,007 1.75 

Smooth + 
sobel (a) 640×480 

(s1,s2) 
(s1) 
(s2) 

31,720,089 
21,044,433 
10,597,671 

1.51 21,044,449 1.51 

 800×600 
(s1,s2) 
(s1) 
(s2) 

49,634,009 
32,929,473 
16,606,951 

1.51 32,929,489 1.51 

Smooth + 
sobel (b) 800×600 

(s1,s2) 
(s1) 
(s2) 

30,068,645 
13,364,109 
16,606,951 

1.81 16,640,509 1.81 

Smooth + 
sobel (c) 800×600 

(s1,s2) 
(s1) 
(s2) 

25,773,809 
13,364,109 
11,862,791 

1.92 13,364,117 1.92 

Table 2: Execution cycles and speed-ups obtained with PSL. 
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Figure 7: (a) Sizes of the inter-stage buffers for the implemented architectures using 
the PSL technique. (b) FPGA BRAM resources for different sizes of the inter-stage 
buffer (including an empty/flag table with 1-bit width). 

Figure 7(a) shows the size of the inter-stage buffers for the architectures using the 
PSL techniques. The sizes for the examples with no hash functions are the same to the 
needed memory for the examples without using PSL. Note, however, that using PSL 
dual-port memories and an extra L-bit memory for the table with the flags identifying 
ready array elements (empty/full table) are needed. Those results show large 
reductions even when the simple hash-function needs over twice the size of the 
minimum buffer size if a perfect-hash (correspondent to a full-associative memory) 
was used (fdct case). Also note that the sizes of the buffers for the fdct and fwt2D 
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algorithms do not depend on the image input sizes. The hash-based inter-stage buffers 
used consider memories with sizes proportional to power of two values. 

With respect to RGB2gray plus histogram example (a), the size of the inter-stage 
is always 25% of the size of the images. This is due to the fact that the values are 
produced at a higher rate than they are consumed. When a slowdown of the producer 
stage (RGB2gray) is performed by adding one (example (b)) and two (example (c)) 
states in the FSM responsible to the first stage, large reductions are achieved. A size 
of two is required for the inter-stage buffer when adding two clock cycles of 
slowdown for each loop iteration of the RGB2gray stage. Also important is the fact 
that the slowdown of the first stage has not restrained the PSL to achieve a latency 
similar to the latency presented in Table 2 (this one achieved without using the 
slowdown of the first stage). 

The inter-stage buffer sizes for the smooth plus sobel example (a) have been 
achieved using the correct number of multiple reads to each array element. Note that 
the use of the maximum number of reads to the same array element, which is 12, 
would need a 5,568 minimum size perfect-hash buffer, corresponding to a buffer with 
the same size of the images used (800×600 pixels). This is due to the fact that a 
number of image borders are maintained in the inter-stage buffer, because their status 
never reaches the empty state. They are initialized with a word identifying 12 reads 
but there will never be 12 reads. When taking into account the correct number of 
reads per array element, an inter-stage buffer which size is presented in Figure 7 
(smooth+sobel) leading to a 256× reduction is accomplished. The example smooth 
plus sobel optimized (c) requires a maximum of 8 reads to each array element (instead 
of the 12 reads for the versions (a) and (b)). This optimized version needs the same 
previously referred size for the inter-stage buffer. 

Figure 7(b) shows the number of BRAMs (Block RAMs), each one with 18 Kb, 
needed for different sizes of the inter-stage buffer (implementing the empty/full 
tagged memory buffer with hash) in a number of Xilinx FPGAs, considering buffer 
data widths of 8, 16 and 32 bits. It is also shown the maximum number of BRAMs 
available in the considered Xilinx FPGAs. This gives an idea about the size of the 
inter-stage buffers possible to use with the actual FPGA devices. It can be seen that 
those devices have sufficient on-chip memory resources available to enable the inter-
stage buffer scheme used in this paper. 

Examples where the same ordering of producer/consumer is needed are the ones 
with potentially higher performance improvements, especially when the values are 
produced and consumed from the very beginning of the execution of the stages and 
producer/consumer operations are performed on continuous loop iterations. Although 
this may occur in some algorithms (some image kernels include this kind of 
behavior), most examples have different behavior. The technique presented in this 
paper is not constrained by the former kind of behavior and can also be applied to 
reduce both execution time and storage requirements.  

Figure 8 shows the impact on resource usage when applying PSL. It can be seen 
that the number of 4-LUT, FF, and Slices used is almost the same. In some cases PSL 
achieved resource savings due to the elimination of the multiplexers to access the 
memories shared between two stages in the reference designs. Those memories are 
transformed to the dual-port inter-stage buffers when using PSL. The clock 
frequencies are also similar (Figure 8 shows the differences between the obtained 
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clock frequencies having as a reference each example without PSL). This was 
expected, because the PSL examples do not add hardware complexity. Note that 
designs with PSL also need on-chip memories (see in Figure 7(b) the BRAMs needed 
for different sizes of the inter-stage buffers). 
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Figure 8: FPGA resources needed reported after P&R. 

5 Related Work 

Due to the impact in performance, loop pipelining has been focus of intense research 
efforts for many years [Allan, 95]. It has been considered for both microprocessors 
and application specific architectures. With respect to compilation for FPGAs, the 
work in [Weinhardt, 96] has been one of the first efforts considering pipelining of 
innermost, well-behaved, loops. Other examples of efforts on loop pipelining to 
FPGA-based systems are presented in [Maruyama, 00], [Diniz, 00], [Callahan, 00], 
[Haldar, 01], [Gokhale, 00], and [Snider, 02]. Beside the efforts on generating the 
pipelining structures for efficient execution of loops in FPGAs, authors have used 
some loop transformations (e.g., unrolling, interchange, tiling, etc.) to make, e.g., the 
most promising loops innermost loops, since only them are pipelined by most 
compilers [Weinhardt, 01]. Other loop pipelining schemes try to overlap subsequent 
iterations of an outer loop with an inner loop, as is shown by the example presented in 
[Bondalapati, 01]. 

In [Cardoso, 05], a dynamically loop pipelining scheme applied to a coarse-
grained reconfigurable, data-driven, architecture is presented. It takes advantage of a 
ready/acknowledge protocol between operations to achieve loop pipelining of 
innermost loops. An example is also given showing loop pipelining of two nested 
loops. Although this scheme can be implemented in FPGAs, there is no strong 
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evidence of its efficiency using the fine-grained resources and synchronous model of 
the current commercial FPGAs. 

Most relevant to our approach is the work presented in [Ziegler, 02], [Ziegler, 
03], and [Ziegler, 06], which is a coarse-grained synchronization approach to overlap 
some of the execution steps of sequences of loops or functions (i.e., functions or loops 
waiting for data start computing as soon as the required data items are produced in a 
previous function or by a certain iteration of a previous loop). They communicate data 
to subsequent stages in the code using a FIFO mechanism. Each FIFO stage stores an 
array element or a set of array elements (e.g., a raw of pixels in an image). Array 
elements in each FIFO stage can be consumed by different order they have been 
produced. Examples with the same order of producer/consumer only need FIFO 
stages with one element. In the other case, each stage must store a sufficient number 
of array elements in order that all of them are consumed (by any order) before the 
next FIFO stage is considered. This is the major bottleneck of the technique, since a 
FIFO stage may need to store the entire image and in that case no loop pipelining is 
achieved, and is a consequence of using coarse-grain (the grain is related to the size of 
the FIFO stages) instead of fine-grain synchronization. Note also that the coarse-grain 
synchronization limits the applicability of the technique. In [Ziegler, 06] they present 
analysis schemes to determine the communication needed by this type of pipelining. 
To the best of our knowledge, the work of [Ziegler, 06] has been in the context of 
design space exploration and concerning speed-ups only one example is referred (with 
a speed-up of 1.76). Regarding their work, the work presented in this paper can be 
thought as a more generic approach, without having their major constraints.  

Orthogonally to the work presented in this paper, empty/full tagged memories 
have been presented in [Smith, 81] and used more recently in machines such as the 
MIT Alewife [Agarwal, 95], both in the context of shared memory multi-processor 
architectures. Those memories are used for fine-grain synchronization of data 
produced/consumed by tasks executing in distinct microprocessors and can be seen as 
the empty/full tables used in the work presented in this paper. Note, also, that the 
optimized solution using the inter-stage buffers with hash-functions has not been, as 
far as we know, used before. 

6 Conclusions 

This paper presents a technique for pipelining sequences of data-dependent loops 
using a fine-grain synchronization scheme. With the proposed technique, before the 
end of a stage (typically a loop or a set of nested loops), a subsequent stage is able to 
start execution as long as the array elements required have been produced by the 
previous stage. The scheme is implemented using inter-stage buffers to communicate 
both the produced-consumed data between stages and the ready flags. It also uses 
concurrent units to control each stage with synchronization being achieved by the 
ready flags. Doing this, the approach presented in this paper is able to deal with 
irregular (out-of-order) produced-consumed array elements in a natural way. 

Although different inter-stage buffer schemes are proposed, a simple hash 
function, without needing additional hardware resources and without degrading the 
maximum clock frequency achieved, is shown to be an efficient implementation. It 
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permitted to substantially reduce the size of the buffers for the examples used in the 
experiments. 

The technique is able to both improve performance and to reduce the memory 
requirements related to the data communication between sequences of loops. The 
experiments conducted so far, give strong evidences that the technique is able to 
achieve performance improvements close to the theoretical limit. 

It is also shown how the technique can be applied in the context of a compiler of 
imperative software programming languages (a subset of Java is used) to specific 
architectures suitable for implementation in FPGAs. 

Ongoing work focuses on static analysis techniques to decide about the use of the 
loop pipelining scheme and to estimate the size of the inter-stage buffers needed to 
communicate array elements between the set of loops being pipelined. Future work 
will also include studies about the use of loop and data layout transformations that 
may lead to further reductions of the sizes of the inter-stage buffers. Another 
interesting path would be to evaluate the technique with stages having conditional 
structures that may impose non-deterministic behavior. 
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