
Design and Implementation of the AMCC Self-Timed
Microprocessor in FPGAs

Susana Ortega-Cisneros
(Universidad de Guadalajara, CUCEI, México

sortecis@uicm.net)

Juan Jóse Raygoza-Panduro
(Universidad de Guadalajara, CUCEI, México

jjraygoza@uicm.net)

Alberto de la Mora Gálvez
(Universidad de Guadalajara, CUCEI, México

divec@cucei.udg.mx)

Abstract: The development of processors with full custom technology has some disadvantages,
such as the time used to design the processors and the cost of the implementation. In this article
we used the programmable circuits FPGA such as an option of low cost for the development
and implementation of Self-Timed (ST) systems. In addition it describes the architecture and
the modules that compose the Asynchronous Microprocessor of Centralized Control (AMCC),
and reviews the results of the occupation in the implementation of the FPGA. The operation of
this processor only requires of an external pulse to the input of the first asynchronous control
block, and with this pulse the sequence of request-recognition of the control unit begins, that it
activates the cycle search and it begins the process of execution of the instructions, without the
need of having a clock feeding the system. Once concluded the program, the microprocessor
stops and include inherently the stoppable clock feature; i.e., circuit is stopped if it is not
required (minimal dynamic consumption). Until it is activated again by an external request
signal.

Keywords: FPGA, asynchronous microprocessor, self-timed, 4 phase protocol, Virtex II
Categories: B.1.0, B.2.1, B.6.0, C.1.1, C.1.3

1 Introduction

Implementation of asynchronous digital circuits has been not consolidated yet;
therefore, there are not commercial asynchronous tools of easy approaching that allow
to develop this kind of design. Nowadays, the major achievements obtained in
asynchronous microprocessors implementation have been developed in the ASIC
level [Brunvand, 99], [Beerel, 02].

Design and implementation of a ST processor in a FPGA is a relatively complex
task, since it is necessary to group together several modules, which perform different
tasks in a continuous operation sequence. These modules are to be ruled by local
control blocks that activate each stage of the process.

The ST processor, introduced in this article, is useful for general purpose. It is
structured by asynchronous control blocks that govern the data flow through the

Journal of Universal Computer Science, vol. 13, no. 3 (2007), 377-387
submitted: 27/11/06, accepted: 19/2/07, appeared: 28/3/07 © J.UCS

whole system, based on a micropipeline structure, which generates activation pulses
to the several modules of the processor, using the 4 phase protocol [Berkel, 96],
[Furber, 96].

In four-phase signalling only one type of transitions (typically rising) is used to
signal events; the other, the falling, is used once the transaction is complete, to return
wires to their initial state. The first two phases of the transaction are similar to the
transition signalling protocol (i.e. request high – acknowledge high) but in this case
they are followed by another two phases which restore the wires to their initial state
(i.e. request low – acknowledge low) [Theodoropoulos, 95].

2 Implementation of the architecture

The AMCC ST processor has two main memories: one for storing programs and the
other one for the data and results from processing. The data flow is ruled by
asynchronous control units, connected through simple rails canals [Ortega, 05]. The
core unit of the process performs the control of the data flow and of the memory
directions towards the rest of the elements of the processor.

The ST microprocessor developed in this work has 16 bits of word length, with
RISC architecture and a Self-Timed Centralized Control Unit (STCC), also has the
following characteristics:

• Uniform format of instructions.
• Small instruction group.
• 6 direction modes.

Instruction format: each instruction is divided into sections or fields, where each

field is a group of bits that provide a part of the information required to determine the
type of operation to be executed and the location of the data on which it will be
executed.

The instruction set avoids including micro-instructions that could seem attractive
and of a big computing capacity, similar to high level sentences. The simplicity of the
instruction set allows the control unit to be easily and quickly implemented in
hardware.

Because of their characteristics, all the instructions have the same length, this
simplifies the design of the Self-Timed Centralized Control Unit (STCC) [Ortega,
05B]. The instructions included in the processor are of these types: data movements
and transferring of register, displacements, arithmetical/logical instructions, control,
jumps, and input/output instructions.

Addressing modes used in this microprocessor are the following: direct, extended
direct, implicit, addressing register, indirect register, and extended register. In the
figure 1, you can see the overall diagram of the ST microprocessor, composed of the
following main modules:

• ST micropipeline module.
• Asynchronous control unit.
• 2 logical/arithmetical units.

378 Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

• Register bank.
• Fetch cycle hardware.
• Input/output ports.
• Configuration register and overflow control register.

ST micropipeline module: The ST micropipeline module is composed of (ACB)

asynchronous control blocks. The micropipeline is connected in a ring, having an
interruption of petition pulses controlled by the ST control unit [Ortega, 05B]. The
configuration in ring allows to realize cycles repeated of requests and constant ideal
recognitions for operations of recurrent calculating. Petition cycles are ruled by the
ST control unit, the general reset and the external initialization of the main petition
line of the processor.

379Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

Figure 1: ST microprocessor architecture

Asynchronous control unit: The ST control unit is composed by an instruction
decoder block, pass logic units and controlling of the petition and identification pulses
to the processor modules (gathering/distributing elements).

Arithmetical logical units: The processor has two arithmetical logical units; a)
ALU 1, which executes 14 instructions of data transferring, of rotation-displacement,
arithmetical and logical, which are executed in a direct way by the processor
instruction group; b) ALU 2 that executes 6 instructions related to registers, data
transferring, and comparing. Both logical units have 16 bits of word length. There is
only one accumulator for both units; this allows the access of data from the output
port in a direct way [Ortega, 05B].

Register bank: It is composed of 8 registers of 16 bits with direct access to the
ALU 2, which are identified with the letters C, L, N, M. The L and N registers are for
general purposes, here data or directions may be stored. The C register is for overflow
configuration. The M register stores the quantity of cycles and indicates when an
indefinite cycle shows up during the program processing. The X and Y registers have
16 bits and a direct access to the ALU 1 for logical and arithmetical operations.

Fetch cycle hardware: The fetch cycle is composed of the following blocks:

• Program counter (PC).
• Memory addressing register (MAR).
• General purpose registers (GPR).
• ROM and RAM memory block.
• Operation Register (OPR).
• Logic of the fetch cycle control.

Input/output ports: Processor has two ports with 16 bits; one as an input and the

second one as an output. The output port has a direct connection to the accumulator,
so writing is a transferring of data between registers (accumulator to output port).
The input port is a register that has a direct connection to the ALU 1.

This configuration simplifies the execution of logical and arithmetical operations
on the data coming from both ports.

Setting and overflow control registers are designed to avoid that undefined
calculation cycles showing up. Both circuits are complementary: the register
configures the system of reset general or initiation of the system and the circuit of
overflow executes the order [Ortega, 05B].

3 ST Micropipeline in a ring

The ST micropipeline implemented in this processor has a ring configuration, its
performance is determined by the number of asynchronous control blocks forming it.
Specially, a ST with a ring is used in this work for development the fetch cycle. The
STCC are based on these kinds of circuits.

In the figure 2 the occupation is observed depending on the variation of macros of
the ST micropipeline in ring used in this work. The occupation has the following

380 Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

characteristics: 33 ACBs, 32 delays and the feedback of the ST micropipeline in ring
has one delay, which allows fitting the pulse of activation adequately.

If the amount of macros corresponding to each delay is changed as it is observed
in the graph of the figure 2 (2 to 77), an increase in the number of slices from 13 to
50% of the total of these in a FPGA Virtex II, staying the total equivalent gates and
that of LUTs. For what one concludes that to more number of macros there is a
considerable increase in area.

O
cc

up
at

io
n

Figure 2: Occupation of the resources of the FPGA depending on the delay

4 Asynchronous control unit

The asynchronous control unit is formed of several combinational logical modules
corresponding to each instruction and the circuits for the distribution of the activation
signals. The control unit regulates data transferring and empowers the different
elements of the processor in a sequential way each time that an instruction is executed
in the microprocessor. The operation starts with a search cycle and continues with the
execution of the instruction.

The configuration of the unit of ST control is organized in such a way that with a
pulse of request the asynchronous logic of control is activated, it convert a signal and
establishes the sequence of activation of the components based on the instructions of
the main program of the processor.

The components are enabled in different periods and are activated sequentially,
the control has an arrangement in matrix form which is in charge to send the pulses
that activate to the components that form a part of the microinstruction, see figure 3.

381Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

The “xi” activations coming from ST micropipeline are arranged in matrix, they
activate an ‘AND-OR’ plane in the asynchronous control unit, which determines the
sequence and enable periods of the processor elements.

To realize an instruction several signals of activation (xi) are needed, these are
connected to the OR plane and this one produces a signal that activates to the AND
plane in combination with control signals, as it is observed in the figure 3.

Figure 3: Flow of the asynchronous control unit

A delay is implemented with one macro, every macro occupies a slice. The figure
4 shows the resources used in the asynchronous unit of control with different numbers
of macros, the unit of control with bigger delays increases the use of the slices and
these are independent from the occupation of other components of the unit of control.
The modification of the delays was realized to observe the behavior of the signal of
control of the processor and to verify the stability of the signals with different delays.

382 Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

Slices

0 10 20 30 40 50 60 70

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Macros per delay

Latches
LUTs
TEG (total equivalent gate)

Figure 4: Occupation in terms of macros for asynchronous control

5 Results of the interconnection during implementation

Taking into account the distribution of the post-layout interconnection lines, resulting
from the implementation to ST microprocessor with 2 macros per delay, the
distribution of the lines is as follow:

• 98.9% of the lines have a fan-out less than 40.
• 0.9% of the lines have a fan-out between 40 and 80.
• One line (reset) has a fan-out equal to 160.

Results obtained from post-layout implementation of the fan-out distribution for

ST processor are displayed in the figure 5. Reset line shows the maximum delay, 10
ns. 11 lines have delays between 2 and 4 ns, and the rest of lines show delays between
0 and 6 ns.

Nets quantity in terms of delay in the ST microprocessor showed the distribution
of the figure 6. Among 1120 nets, 63.5% of them have a delay less than 1 ns, 36%
have a delay between 1 and 5 ns. Finally, only 2 nets showed delays of 6 and 10 ns
respectively.

Distribution of fan-out in ST microprocessor, with several macros per delay,
shows a similar behaviour [Ortega, 05B]. Proving this way that connectivity is
maintained independently of the increase of macro per delay in the ST micropipeline
of the control unit.

383Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

Figure 5: Fan-out in terms of delay for ST microprocessor

-1 0 1 2 3 4 5 6 7 8 9 10 11

0

100

200

300

400

500

600

700

800

Delay (ns)

Figure 6: Quantity of nets in terms of delay

384 Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

6 Occupation of the resources in the FPGA

In order to implement Self-Timed circuits, it is important to take into account the
resources of the FPGAs. In a ST circuit, data transferring control uses a big quantity
of logical ports, contributing to the increase of final occupation. In the graph of the
figure 7, there is an example of the above mentioned, where the occupation resources
in the FPGA are showed for the ST microprocessor with different quantity of macros
used for implementation of delay [Ortega, 05].

We can see that increase of slices is proportional to macros increase. We have to
point out that, registers and LUTs remain constant, so the increase of the resources is
mainly attributed to the macros increase. The percentage of occupation of the
microprocessor with 2 macros is 18% of slices, compared to the 77 macros processor;
i.e. the last one is more or less 5 times bigger than ST microprocessor with 2 macros
per delay.

In the figure 8, we can see the distribution of the resources used by the different
modules which form the ST microprocessor. As we can see, memory module has the
highest level of occupation, with 6.5% of (TEG) Total Equivalent Gate count for
design available in FPGA. Arithmetical blocks are the 2 modules with higher
occupation, 0.29% for ALU 1 and 0.14% for ALU 2. ST control module is the fourth
biggest one, with an occupation of 0.11% of the TEG in the FPGA. These results
correspond to microprocessor with 2 macros per delay.

Figure 7: Occupation in terms of macros per delay for ST microprocessor

385Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

O
cc

up
at

io
n

Figure 8: Occupation of the components of the ST microprocessor with 2 macros per
delay

7 Conclusions

In this article, we have introduced the results of implementation of ST AMCC
processor, from these results we can conclude as follow: Implementation of ST
control circuits or blocks in Xilinx FPGA devices shows that these circuits or blocks
can be used to make a quick prototype.

Implementing delaying macros in the FPGA editor, we can obtain a determined
fixed delay to make equal processing times to computing blocks and to establish a
correct synchronization of the data flow in the microprocessor control. The ST
microprocessor developed in this work shows an execution of 9.6 MIPS, for detail of
estimate the microprocessors execution [Ortega, 05B] And include inherently the
stoppable clock feature; i.e., circuit is stopped if it is not required (minimal dynamic
consumption).

Acknowledgements

To the University of Guadalajara by the economic support that offered for to present
this work.

386 Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

References

[Beerel, 02] Beerel P.A., “Asynchronous circuits: An Increasingly Practical Design Solution”,
Proceedings of the International Symposium on Quality Electronic Design (ISQED’02) 0-7695-
1561-4/02 IEEE 2002.

[Berkel, 96] Berkel K. V. and Bink. A., “Single-track handshaking signaling with application to
micropipelines and handshake circuits”, In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 122-133. IEEE Computer Society
Press, March 1996.

[Brunvand, 99] Brunvand E., Nowick S., Yun K., “Practical advances in asynchronous design
and in asynchronous/synchronous interfaces”, Proc. 36th Design Automation Conference, pp.
104-109, 21-25 June 1999.

[Furber, 96] Furber B. and Liu J., “Dynamic logic in four-phase micropipelines”, Advanced
Research in Asynchronous Circuits and Systems, 1996. Proceedings, Second International
Symposium on , pp. 11 – 16, 18-21 March 1996.

[Ortega, 05] Ortega S., Raygoza J.J., Boemo E., “Diseño e implementación en FPGAs de
elementos de control pipeline con protocolo de sincronización Self-Timed”, V Jornadas de
Computación Reconfigurable y Aplicaciones (JCRA’2005), ISBN:84-9732-439-0, pp: 375-380,
Granada, España, Septiembre 2005.

[Ortega, 05B] Ortega S. “Diseño de Circuitos con Protocolos de Sincronización ST en
Dispositivos Programables FPGAs”, Tesis presentada en la EPS de la U A M, Noviembre 2005.

[Theodoropoulos, 95] Theodoropoulos G., “Strategies for the modelling and simulation of
asynchronous computer architectures”, Thesis submitted to the University of Manchester for
the degree of PHD, Faculty of Science and Engineering, 1995.

387Ortega-Cisneros S., Raygoza-Panduro J.J., de la Mora Galvez A.: Design ...

