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Abstract: Nowadays, the information security has achieved a great importance, both when 
information is sent through a non-secure network (as the Internet) and when data are stored in 
massive storage devices. The cryptographic algorithms are used in order to guarantee the 
security of data sent or stored. A lot of research is being done in order to improve the 
performance of the current cryptographic algorithms, including the use of FPGAs. In this work 
we present an implementation of the IDEA cryptographic algorithm using reconfigurable 
hardware (FPGAs). In addition, in order to improve the performance of the algorithm, partial 
and dynamic reconfiguration has been used to implement our final circuit. This fact allows us 
to obtain a very high encryption speed (14.757 Gb/s), getting better results than those found in 
the literature. 

Keywords: FPGA, Partial and Dynamic Reconfiguration, IDEA, Cryptography. 
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1 Introduction 

At present, the field of cryptography is on the increase in the telecommunications 
world. As a consequence, there is a constant need for more secure and efficient 
cryptographic algorithms. Among them we find the IDEA algorithm [Schneier, 96], 
the one used in our research. This is one of the most popular algorithms, especially 
thanks to its use in the PGP (Pretty Good Privacy) system [Garfinkel, 95]. 

We have made an implementation of the IDEA cryptographic algorithm using 
FPGAs and both partial and dynamic reconfiguration. Other authors have already 
done implementations of this algorithm using FPGAs; among them we can point out 
[González, 03], where KCM multipliers and a super-pipelining implementation are 
used to achieve a high performance implementation (8.3 Gb/s). We use a similar 
technique, but we develop new reconfigurable elements (like KCA) and we combine 
the utilization of VHDL to implement the reconfigurable elements and Handel-C 
[Celoxica, 05] to implement the non-reconfigurable elements. These improvements 
give us a better performance (14.757 Gb/s). In addition, Handel-C language allows us 
to decrease the development time because it is a high-level language closer to the 
traditional programmer. Pipelining is also used in other papers, like [Hämäläinen, 02], 
who implements 7 stages by phase, whereas we employ 16 stages. The optimization 
of the multipliers is also an important task. In [Hämäläinen, 02] partial product 
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generation and a three-stage diminished-one adder is used to calculate the 
multiplication modulo 216+1. We can find another multiplier implementation 
technique in [Leong, 00] and [Cheung, 01], where parallel-serial multipliers are used. 
However, we implement KCM multipliers [Vaidyanathan, 03], that is, constant 
coefficient multipliers which are very fast because they employ LUTs to store part of 
the result of the multiplication. 

Taking all this into account, we achieve to improve the results obtained by these 
authors, among which the best result is 8.3 Gb/s [González, 03] and our result is 
14.757 Gb/s. 

The structure of this work is the following: First of all, we present a description of 
the IDEA cryptographic algorithm; next we show the languages used to implement 
the components. We also provide a description of the implemented (dynamically and 
not dynamically reconfigurable) components. Later, we describe how the partial and 
dynamic reconfiguration is performed, showing the steps followed to implement the 
IDEA algorithm. Finally, we analyse the results and give the conclusions. 

2 The IDEA algorithm 

IDEA [Schneier, 96] is a 64-bit text block cryptographic algorithm which uses a 128-
bit key. This key is the same for both encryption and decryption, in other words, it is a 
symmetric algorithm, and it is used to generate 52 16-bit keys. 

The algorithm consists of 9 phases: 8 identical phases (figure 1(a)) and a final 
transformation phase (figure 1(b)). The encryption takes place when the 64-bit block 
is propagated through each of the first 8 phases in a serial form, where the block, 
divided into four 16-bit sub-blocks, is modified using the six sub-keys corresponding 
to each phase (elements Zj

i of figure 1: 6 sub-keys per phase and 4 sub-keys for the 
last phase). When the output of the 8th phase is obtained, the block goes through a last 
phase, the transformation one, which uses the last 4 sub-keys. 

The decryption follows an identical pattern but computing the sum or 
multiplication inverse of each sub-key, depending on the case, and altering the order 
of use of the sub-keys. 

As we can suppose, the major problem lies in the multipliers, since, apart from 
taking a great amount of computation and resources, they are executed 4 times in each 
phase. The improvement of this component is one of the most studied aspects in the 
literature. In our case, we will use KCM multipliers and partial and dynamic 
reconfiguration, as we will see later. 

3 Hardware description languages used 

We have used two hardware description languages to implement the components: 
First of all, we have used the VHDL language [Pedroni, 04] to implement 

components which will be reconfigured in runtime. 
We have also used the Handel-C language [Celoxica, 05] of Celoxica [Celoxica, 

07], a language with an abstraction level which is higher than VHDL. We employ this 
language to implement the pipelining registers, the memory, the interconnection 
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among the implemented components using VHDL and the Host-FPGA 
communication. 

 

Figure 1: Description of the cryptographic IDEA algorithm phases. 

4 Reconfigurable elements of the design 

In figures 1(a) and 1(b) all multipliers and several adders make their operations with a 
sub-key which will be fixed in the complete encryption process. 

This allows us to use KCM (Constant Coefficient Multiplier) multipliers and 
KCA (Constant Coefficient Adder) adders, which will be changed dynamically in 
runtime. 

4.1 KCM multipliers 

KCMs [Vaidyanathan, 03] are a kind of multiplier in which a datum is a constant. 
They are based on the use of LUTs (Look-Up Table) to store all possible 
multiplication values. In order to avoid storing the possible 216 results of the 
multiplication (we have 16-bit data), we have chosen the following procedure. 
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We use only 4 LUTs with 4 input bits and 20 output bits (the resultant number of 
bits of multiplying a 4-bit number by a 16-bit number). 

Then, we built an adder tree using the LUT results in order to obtain the final 
multiplication result (figure 2). Each LUT of the KCM multiplier is composed of 20 
4x1 LUTs . Each 4x1 LUT obtains one bit of the multiplication result. The content of 
these 4x1 LUTs will be changed in runtime according to the value of the subkey used 
in each multiplication. 

 

Figure 2: KCM multiplier structure. 

4.2 The KCM multiplier modulo 216+1 

The multipliers used in the description of the IDEA algorithm phases are multipliers 
modulo 216+1. In order to implement these multipliers we use the Low-High 
algorithm [Lai, 92]. In this algorithm we can distinguish three situations: 

• a==0  The result will be 1-k. 
• k==0  The result will be 1-a. 
• a≠0 and k≠0  The result will be a*k in modulo 216+1. 
Where ‘a’ stands for the input datum of the multiplier and ‘k’ stands for the sub-

key of the corresponding phase and multiplier. 
Let see how to implement the algorithm. 

4.2.1 The 216+1 multiplication 

In order to carry out the 216+1 multiplications, we do the following operations: 
1. m=a*k (using the KCM multiplier) 
2. r=m[15:0]-m[31:16] 
3. If (m[15:0]<m[31:16])  mult216+1=r+1 

Else  mult216+1=r 
The resulting circuit is shown in figure 3. 
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Figure 3: 216+1 multiplier structure. 

4.2.2 Multiplication and subtractions 

In the Low-High algorithm the 1-k and 1-a subtractions are done, that is, we need two 
subtractors. Nevertheless, as k is a constant in this case, then 1-k is a constant too. So, 
the 1-k calculation is done in a reconfigurable way. 

On the other hand, in the original algorithm a multiplexer selects either a*k, 1-k 
or 1-a. However, in this case, we employ a reconfigurable method to select the output. 
This is possible because, in runtime, we know if k is zero or not. Therefore, we have 
two possibilities: 

• if k==0 then the output = 1-a. 
• if k≠0 the output depends on the a value (=0 or ≠0). 
The first case is easy: if k==0 the selector circuit will let pass the value 1-a. 
 

1-k a*k ZeroComp1 Output 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 

Table 1: Truth table of the ith-bit selection of the complete KCM multiplier modulo 
216+1 for k≠0. 

                                                           
1 This value indicates if a==0 (value 0) or if a≠0 (value 1). 
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In the second case, we do not know the a value (because it is variable) in the 
partial and dynamic reconfiguration time. So, for any a value we must make the 
selector circuit to choose the right value. To do that, we are going to analyze the truth 
table shown in table 1. 

As we know, when the dynamic and partial reconfiguration of the selector circuit 
is done, we do not know the value of a. So, we will obtain the output based on the 1-k 
value because it is the only value we know. Therefore, we obtain that: 

• If 1-k==0 then the output = ZeroComp & a*k 
• If 1-k≠0 then the output = ~ZeroComp | (ZeroComp & a*k) 
Therefore, the complete code for each selection bit is the following one: 

If (k==0) 
 Output=1-a 
Else 
 If (1-k==0) 
  Output=ZeroComp & k*a 
 Else 
  Output=~ZeroComp | (ZeroComp & k*a) 

 
Since we have based the output calculation of the selector circuit on the 1-k value, 

which is the only one known before the encryption process, we can generate the 
selector circuit by means of dynamic and partial reconfiguration. 

So, to implement the selector circuit, we employ 16 3x1 LUTs (one for each bit) 
which will be reconfigured in runtime following the previous code. This will be done 
in order for each LUT output to be calculated in function of its inputs, which are the 
a*k, 1-a and ZeroComp values. 

 

Figure 4: Complete selector circuit of the KCM multiplier modulo 216+1. 

In figure 4 the full circuit of the KCM multiplier modulo 216+1 is shown. In 
addition, it is important to mention that the circuit described in table 1 also obtains the 
1-k value, in case the value of a is zero. 

Selector Circuit 
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1 

Complete KCM Mult. modulo 216+1 
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4.3 KCA adders 

The KCA adders (Constant Coefficient Adders) are based on the same idea than the 
KCM multipliers. Three 4x5 LUTs and one 4x4 LUT are used to store the values 
resulting from adding any input value to a constant. 

 

Figure 5: KCA adder structure. 

The difference with the KCM multiplier is that in the KCM multiplier each 4x20 
LUT stores the result of multiplying a 4-bit value by a 16-bit constant. On the other 
hand, in the case of the adder, the additions are made in groups of 4 bits, that is, the 4 
LSB of the constant will be added to the 4 LSB of the a value, repeating the process 
with the other three groups, considering, of course, the carries. The carries are the 
elements which explain the 5th output bit of the 4x5 LUTs: when two 4-bit values are 
added, we will have a 5-bit result at most, the carry being the most significant bit. 
However, the most significant 4x4 LUT does not use the carry bit because these 
components are adders modulo 216, this is the reason why that bit is despised. 

At the end, as happened with the KCM multiplier, the LUTs results will be the 
inputs of an adder tree whose output will be the KCA adder final result. The complete 
design of this element can be seen in figure 5. 

5 Not reconfigurable elements 

Apart from the already mentioned components, we have implemented a set of 
components using Handel-C which is not reconfigured in runtime. These components 
are: 

• A dual-port RAM memory: We have implemented a 1024-word RAM 
memory with a 64-bit word wide, that is, the block size, in order to store the 
data that are going to be processed. The reason why we need this memory is 
to make loads and storages simultaneously. 

LUT
4x4 

16 

4 4 

LUT
4x5 4 5

LUT
4x5 4 5

LUT
4x5 4 5 

 1 

4 

 1

4

 1

4 

16

4 

413Granado-Criado J.M., Vega-Rodriguez M.A., Sanchez-Perez J.M., Gomez-Pulido J.A. ...



• Pipelining registers: We have also implemented a total of 806 16-bit 
registers, 34 32-bit registers and 102 1-bit registers to store the data in 
between the pipeline stages. These registers can be seen in figures 6 and 7. 

• Host-FPGA communication system: The PCI bus is used to communicate the 
FPGA with the Host application. 

6 Performing the partial and dynamic reconfiguration 

We have used JBits [Sun, 04], which is a Java library designed to make the dynamic 
and partial reconfiguration. 

We have implemented two functions: one to reconfigure the multipliers 
(including the selector circuit) and the other to reconfigure the adders. These two 
functions are used by another function which is in charge of making the 
reconfiguration of a complete phase. On the one hand, the first two functions receive 
the coordinates of the bottom left Slice of each component together with the 
corresponding sub-key. The third function, on the other hand, receives the bottom left 
coordinates of the phase which is going to be reconfigured. With these values, the 
three functions will be able to make the reconfiguration correctly. 

To reconfigure the LUTs involved in the multiplications and additions we only 
need to call the function jbits.setCLBBits with the results of the corresponding 
operation for the received constant. 

However, for the selector circuit reconfiguration, we must employ the formulas of 
section 4.2. Thus, we obtain the following JBits variables: 

int[] g_operator = Expr.G_LUT("~G3"); 
int[] g_k_non_zero = Expr.G_LUT("~(~G2 | (G2 & G1))"); 
int[] g_k_zero=Expr.G_LUT("~(G2& G1)"); 
 
Therefore, we only need to implement the code described in section 4.2 using the 

previous variables in the correct places. 

7 The final implementation 

The final implementation of the IDEA algorithm has been made in a Xilinx Virtex-2 
6000 FPGA [Xilinx, 07] included in a Celoxica ADMXRC2 board. We have used this 
FPGA because both it has a very large number of resources, particularly a total of 
33792 Slices, and it allows us to make partial and dynamic reconfiguration. It is 
important to clarify that although the ADMXRC2 has 18x18 multipliers, we do not 
use them because the KCM multipliers already make all the multiplications needed. 

The implementation is based on a pipelined execution. The pipeline consists of 
the following stages: 16 pipeline stages from each one of the eight normal phases 
(figure 6), 4 pipeline stages from the transformation phase and, finally, two more 
stages for loading/storing. All this adds up to a total of 134 pipeline stages. In 
addition, we want to note that each of the KCM multipliers modulo 216+1 consists of 
4 pipeline stages, as we can see in figure 7. 
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Figure 6: Pipeline of a phase of the IDEA algorithm. 

 

Figure 7: Pipeline of the KMC multiplier modulo 216+1. 
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8 Results 

As far as the results are concerned, we have made a total of ten empiric experiments 
in order to measure the performance of our implementation. The results from these 
experiments are shown in figure 8. As we can see, the results oscillate between 9.228 
and 14.757 Gb/s, giving an average of 11.382 Gb/s. These values (including the least 
value obtained in this work) are better than the results achieved by other authors, as 
table 2 shows. 
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Figure 8: Obtained results by the implementation. 

Device Performance (Gb/s) Reference 
XC2V6000-6 11.4 This work 
XCV600-6 8.3 [González, 03] 
XCV1000-6 6.8 [Hämäläinen, 02] 
XCV1000-6 5.1 [Cheung, 01] 
XCV1000-4 4.3 [Beuchat, 02] 
XCV1000-6 2.3 [Leong, 00] 
XCV1000-6 1.5 [González, 02] 

Table 2: Comparative results table. 

Another interesting datum is the reconfiguration time. This includes the time 
needed to rewrite the configuration file (around 141 ms) and the time of the FPGA 
configuration (14.34 ms, because our implementation needs 11476 Slices, where one 
CLB includes 4 Slices, and the time to configure one CLB for Virtex-II FPGAs is 5 
μs [Xilinx, 05a] [Xilinx, 05b]). This time may seem too high, but the reconfiguration 
is done when the user introduces the key and so he/she does not realise about this time 
(when the user push the configure button, the reconfiguration is already done). 
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9 Conclusions and future work 

As a way of conclusion, it only remains to say that in this work we have presented an 
implementation of the IDEA cryptographic algorithm using an FPGA, Handel-C and 
dynamic and partial reconfiguration. This implementation is a pipelined version with 
134 stages and uses constant coefficient multipliers and adders which are 
reconfigured in runtime in order to improve the performance. Thanks to this technique 
we have achieved an average performance of 11.382 Gb/s, reaching a peak of 14.757 
Gb/s, improving the obtained results by others authors. 

Therefore, we have proved that the use of partial and dynamic reconfiguration 
improves the performance of the IDEA algorithm by using KCM multipliers and 
KCA adders. In addition, although the super-pipelining increases the initial latency, it 
allows us to encrypt parts of a lot of data blocks at the same time and the clock 
frequency is increased substantially. 

In the future, the next step will be the duplication of the data path in order to 
encrypt several blocks at the same time (for example, we will be able to encrypt 
blocks in the first path and to decrypt blocks in the second path without making a new 
FPGA configuration). This is possible because both the present implementation uses 
only 11476 Slices (33% of the FPGA resources) and the ECB mode of the IDEA 
algorithm is used, in which the encryption of one block is independent of the rest. 
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