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Abstract: Ranking is a ubiquitous requirement whenever we confront a large collec-
tion of atomic or interrelated artifacts. This paper elaborates on this issue for the case
of RDF schemas. Specifically, several metrics for evaluating automatic methods for
ranking schema elements are proposed and discussed. Subsequently the creation of a
test collection for evaluating such methods is described, upon which several ranking
methods (from simple to more sophisticated) for RDF schemas are evaluated. This for-
mal way for evaluating ranking methods, apart from yielding credible and repeatable
results, gave us some interesting insights to the problem. Finally, our experiences from
exploiting these ranking methods for visualizing RDF schemas, specifically for deriving
and visualizing top-k schema subgraphs, are reported.
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1 Introduction

As the modern society and economy increasingly depends on a deluge of digital
information, the need for ranking becomes more and more crucial. The Seman-
tic Web, has so far focused only on the task of ranking ontologies, a task that
could aid the human-enacted process of ontology selection [Ding et al. 2005],
[Patel et al. 2003], [Buitelaar et al. 2004], [Alani and Brewster 2005],
[Sabou et al. 2006]. This paper focuses on the problem of ranking the elements
of a single ontology; a problem that has not been studied in the literature so
far. The motivation for this kind of ranking, is that it can alleviate the human
effort required for understanding the contents and the structure of one ontology.
This task is quite hard for ordinary users, also aggravated by the lack of satis-
fying ontology visualization tools, hence it is an obstacle for the realization and
deployment of the Semantic Web. In addition, ranking could be exploited in a
plethora of other tasks, e.g. for ordering results of queries that return schema
elements.

In this paper we elaborate on the problem of ranking schema elements. We
start by introducing and discussing a number of metrics (mainly originating from
the area of Information Retrieval) which could be used for evaluating automatic
methods for ranking schema elements. Subsequently, we introduce, and formally

Journal of Universal Computer Science, vol. 13, no. 12 (2007), 1854-1880
submitted: 15/4/07, accepted: 31/7/07, appeared: 1/12/07 © J.UCS



Top−5 Real DiagramTop−8Top−3Top−1

Figure 1: Progressive visualization based on top-k diagrams

evaluate, several possible ranking methods. This is another rather unique char-
acteristic of our work, as most (probably all), other works on related topics,
do not follow any formal evaluation method. Subsequently, we discuss how we
have exploited these ranking methods for offering visualizations that can help
users understand quickly an ontology. Specifically, the derivable top-k lists and
top-k diagrams allow exploring an ontology gradually: from the more important
elements to the less (Figure 1 illustrates the idea).

Although we confine ourselves to RDF schemas [Brickley and Guha 1999],
most of the material and results presented in this paper could be applied on
any object oriented schema, i.e. a schema defined using the classical o-o struc-
turing mechanisms: classification (objects and classes), attribution, associations
(between classes), and generalization/specialization (among classes and among
associations).

This paper is organized as follows. Section 2 proposes and discusses metrics
for evaluating schema elements ranking methods and Section 3 describes the test
collection that we have built. Section 4 defines RDF schemas and introduces no-
tations, and Section 5 defines several ranking methods for RDF schemas. Section
6 reports the results of evaluating these ranking methods on the test collection.
Section 7 describes an application of ranking methods on visualization and dis-
cusses related work. Finally Section 8 concludes the paper and identifies issues
for further research.

2 On Evaluating Ranking Methods for Schema Elements

Ranking structured data and knowledge is a relatively new task which becomes
more and more important. However, most of the works around this topic lack
a formal evaluation methodology. In this section we elaborate on various met-
rics that could be used for evaluating automatic methods for ranking schema
elements.
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2.1 Evaluation Metrics

One approach to evaluate a ranking method is to suppose that for each schema
there is an ideal ranking of its classes according to their importance. This ranking
could be provided by an ”oracle” or an expert (i.e. a person that knows well the
schema and can provide us with such a ranking), or by aggregating the rankings
provided by several persons. In the latter case, the aggregated ranking can be
obtained according to various different methods (mainly coming from the area of
Social Choice), like plurality ranking, Borda [de Borda 1781] ranking, Condorcet
[de Condorcet 1785] ranking or Kemeny Optimal Aggregation [Kemeny 1959],
but we shouldn’t forget the Arrow’s impossibility theorem [Arrow 1951].

Let C = {c1, ..., cN}. Any total and one-to-one function f : [1..N ] → [1..N ]
defines a linear ordering of C. In particular, given two classes ci and cj, if f(i) <

f(j) then f ranks ci higher than cj . We can denote this ranking by Cf and write
Cf = 〈cf(1), ..., cf(N)〉.

We shall use the notation Cf (k) to denote the first k elements (k ≤ N) of the
ranking Cf , i.e. Cf (k) = 〈cf(1), ..., cf(k)〉. We shall also use Cf{k} to denote the
unordered set of elements that appear in Cf (k), i.e. Cf{k} = {cf(1), ..., cf(k)}.

Let’s denote the ideal ranking by I, i.e. CI = 〈cI(1), ...cI(N)〉. What we need is
a method for comparing an automatically derived ranking CA = 〈cA(1), ...cA(N)〉
with respect to CI . Below we introduce and discuss a number of metrics that
can be used for our purposes which are inspired from the measures used in the
area of Information Retrieval (IR).

– k-Precision

One metric used in IR, is the R-precision, where R stands for the number of
documents in the test (evaluation) collection that is known to be relevant to
the evaluation query. It is a single number metric which, in contrast to other
measures (like precision, recall, E-measure), somehow takes into account the
order of the documents returned by the system (because it considers only
the R first elements returned by the system). In our case, in place of R we
can use any k that is appropriate to our needs and thus define:

simp(I, A, k) =
|CI{k} ∩ CA{k}|

k

– 1..k-Precision

Consider two rankings CA and CB whose first k elements contain exactly
the first k elements of the ideal ranking, i.e. CA{k} = CB{k} = CI{k}.
Now assume that CA(k) = CI(k), that is, they have the same order, while
CB(k) �= CI(k) (e.g. CB(k) could be the reverse order of CI(k)). Although
A is definitely better than B, this cannot be identified with the k-precision,
because simp(I, A, k) = simp(I, B, k) = 1. To tackle such cases we can
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use k measures instead of one, specifically the measures 1-precision, ... ,
k-precision. So we can define:

simpk(I, A, k) = (simp(I, A, 1), ..., simp(I, A, k))

The results of comparing two rankings according to this k-valued measure
can be illustrated by plotting the interpolating curve for each of the two sets
of k values. The higher a curve (in the Y-axis) is, the better.

– PR-curves

We could also define a measure analog to Precision/Recall curves of IR.
However, here we have to decide which are the ”relevant” elements. We can
consider as relevant elements the first k elements of I. It is necessary to
choose a k < N , otherwise the resulting PR-curves will coincide with the
function f(x) = 1. Suppose we have selected such a k. The curve is defined
as follows: we start scanning CA and when we meet the first element, say at
position i, that belongs to CI{k} we compute the precision at that position,
i.e. the value 1/i, when we find the second, say at position i′ we compute
the value 2/i′, and so on. We continue in this way until we have consumed
the entire CA. We can then plot the interpolating curve of the values found.

Notice the differences with 1..k-precision: In 1..k-precision the nominator is
|CI{i} ∩ CA{i}| while here it is |CI{k} ∩ CA{i}|. One benefit of the lat-
ter is that CI{k} is more ”reliable” than CI(k). We made this observation
while building our test collection (which is discussed in detail at Section 3).
Specifically, we noticed that experts could easily select the major 20 classes
of a schema, however, it was not easy for them to order these 20 classes in
a principled way (the ordering was done rather arbitrarily). Consequently,
the results of an evaluation based on PR-curves is safer than those based on
1..k-precision. Finally, an obvious difference from 1..k-precision is that here
we compute the precision only when a new relevant element occurs (and not
at every i = 1..k).

– Recall/Fallout curves

Instead of PR-curves, we can employ Recall-Fallout graphs. In IR, fallout
is defined as the proportion of the non-relevant documents retrieved. In our
case, and with the assumption that the first k elements of I are considered
as the relevant ones, we can define fallout as follows

Fallout =
|(C − CI{k}) ∩ CA{k}|

N − k

The evaluation with RF-graphs has some theoretical advantages (over eval-
uation with PR-curves). Moreover RF-graphs could also be exploited practi-
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cally, i.e. for improving the effectiveness of the under-evaluation system (for
more see [Robertson 2007]).

– Kemeny distance

One single measure that takes into account the order of the elements is Ke-
meny distance [Kemeny 1959]. According to Kemeny, the distance between
two rankings equals the number of pair-wise disagreements between them.

dknm(A, B) = |{(i, j) | A(i) > A(j) and B(i) < B(j)}|

This measure can be applied directly if we want to compare the entire
rankings. If we want to compare only CA(k) and CI(k), one problem is that
they may not have the same elements, i.e. it can be CA{k} �= CI{k}. One
method to overcome this problem is to make the assumption that an element
that is not present in CA{k} resides on the k + 1 position of CA (like in
[Tzitzikas 2001]). Formally, if ci �∈ CA{k}, we can assume that A(k + 1) = i.
We can make exactly the same assumption if we don’t know the entire CI

but only CI(k). This is very convenient for building a test collection as it is
much more easy for an expert to come up with an ordered list of the top 20
elements, than an ordered list of 100 elements. Also note that we can apply
this measure also to weakly ordered sets.

As all of the above metrics contain expressions of the form |CI{k}∩CA{k}|,
it is important to be able to compute these values with accuracy. This is not
always possible because a ranking method may produce a lot of ties (especially
if the schema is large). This is because there are not so many things (graph
features) that can be used to discriminate classes. It follows that a ranking
method for schemas is expected to yield more ties than a ranking method for
documents because in the latter case the documents are characterized by several
words and consequently several numerical values (e.g. according to the TF-IDF
weighting scheme). So it is more safe to assume that a ranking method will
derive weakly ordered sets (else called bucket orders, or rankings with ties). For
instance, assume that CA = 〈c1, {c2, c3}, c4〉, meaning that c2 and c3 are equally
ranked. This means that CA(2) is either 〈c1, c2〉, or 〈c1, c3〉, and that CA{2} is
either {c1, c2}, or {c1, c3}. It follows that we cannot compute expressions of the
form |CI{k} ∩ CA{k}| with accuracy. Also notice that the ideal ranking could
be a weakly-ordered set too.

We can rectify this problem by adopting an approach similar to that of
the Expected Search Length (proposed in [Cooper 1968]). Specifically, we can
consider that every possible linear order of a weakly-ordered set is equiprobable
and then compute the ”expected” size of |CI{k}∩CA{k}|. For instance, assume
that CA = 〈c1, {c2, c3}, c4〉 and CB = 〈c2, {c4, c1}, c3〉, and suppose that we want
to compute |CA{2} ∩ CB{2}|. It follows that CA{2} ∩ CB{2} can be one of the
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Schema |C| |P | no attributes |Attrs| |C|/|P |
CIDOC 78 243 7 0.312

PhOntology 181 125 7 1.37
Wine Ontology 76 17 0 4.47

Table 1: Schema Features of the Test Collection

following: {c2}, ∅, {c1, c2}, {c1}. So the expected value of |CA{2} ∩ CB{2}| is
(1 + 0 + 2 + 1)/4 = 1. This method can be followed to all the above metrics.

3 Building a Test Collection

Here we describe and discuss how we have built a test collection. We selected
three RDF schemas:

(a) CIDOC CRM 1. It is the international standard (ISO 21127:2006) for con-
trolled exchange of cultural heritage information.

(b) PhOntology 2. It is a top level ontology.

(c) Wine Ontology 3. It represents knowledge about wines and it is one of the
w3c example ontologies.

We selected these three schemas for several reasons. Firstly, we need mid-
dle sized schemas, because for small ones (e.g., with 20 classes) the problem of
finding top-k classes looses its interest, while for big ones (e.g., with 500 classes)
the production of the ideal ranking by experts would be a very difficult task.
Additionally, we would like to experiment on schemas of various values of |C|

|P | ,
where |C|, |P | is the number of classes/properties respectively. So we selected a
schema (CIDOC CRM) with |C| << |P |, i.e., a rich ontology, another (PhOn-
tology) with |C| 
 |P | and finally one (Wine Ontology) with |C| >> |P |, i.e., a
schema that can be considered more as a taxonomy rather than an ontology.

In this manner we can observe how different ranking methods are affected by
the kind of a schema (i.e., whether it is a rich ontology, a taxonomy or something
in between). Although building of a bigger test collection is a challenging task,
the three schemas selected here can be exploited for a first study (intended by
this paper) on ranking RDF schema elements.

Table 1 shows the number of classes, properties and attributes (properties
pointing to literal types) of each schema of the test collection.

1 http://cidoc.ics.forth.gr/
2 http://athena.ics.forth.gr:9090/RDF/VRP/Examples/phOntology.rdf, http://
glotta.ntua.gr/nlp/StateoftheArt/Ontologies/phOntology.html

3 http://www.w3.org/TR/owl-guide/wine.rdf
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Note that in general, an RDF schema may reuse and extend elements from
other schemas. Our test collection comprises schemas that do not import any
other schema4.

3.1 Deriving Ideal Rankings

Here we describe how we derived the ideal ranking of each schema. We refer to
CIDOC as an indicative example of the procedure followed for all schemas.

Each of the four persons involved was asked to study the schema and then
select the 10 (and 20) more important classes of the schema. In particular, we
asked them to select the 10 classes which according to their opinion would aid
them to understand the schema if they did not know anything about it. As the
selection of the more important classes is not a ”well-defined” task, the evaluators
were not feeling comfortable at the beginning of the ranking process. Each of
the evaluators was free to follow his own process on coming up with the top-10
or top-20 classes of the CIDOC ontology. Each person needed approximately
40 minutes to complete this task. The ontology was available in the form of a
printout containing a list of classes with the superclass of each and a separate
printout containing a table with the domain and range of the properties. It was
also available electronically in Protégé [Noy et al. 2001] and visually using its
Jambalaya viewer.

Two out of four persons begun (each one separately) by excluding the less
significant classes in their opinion until they reached the 20 most important for
them. Then they continued until reaching the 10 most important. The other two
(one of them is actually the chair of the CIDOC CRM committee) decided on
the top-10 first and then went on to pick the top-20. All noticed that, although
they could easily select the major 20 classes of the schema, it was not so easy
for them to order these 20 classes in a principled way.

The union of the top-20 classes of the four experts contained 36 classes. We
aggregated the results using the Borda method [de Borda 1781]. We assumed
that each input has two blocks 〈{top11}, {top12−20}〉. The resulting aggregated
weak order (comprising 5 blocks) is shown at the left column of Table 2.

The middle and right column of Table 2 shows the result of an analogous
process on the PhOntology and WineOntology. The evaluators of these ontologies
were not those that evaluated CIDOC.

4 RDF Schemas

Definition 1. The graph of an RDF schema is a graph Γ = ({C∪L}, P, SC, SP )
where C is a set of nodes labeled with a class name, L is a set of nodes labeled
4 Although the Wine ontology imports the Food schema, there are only 3 classes that

extend classes of the Food Ontology.
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CIDOC

1 E39.Actor
2.1 E4.Period
2.2 E5.Event
2.3 E7.Activity
2.4 E18.Physical Stuff
2.5 E19.Physical Object
2.6 E53.Place
3.1 E21.Person
3.2 E28.Conceptual Object
3.3 E55.Type
3.4 E73.Information Object
4.1 E26.Physical Feature
4.2 E41.Appellation
4.3 E70.Stuff
4.4 E71.Man-Made Stuff
5.1 E22.Man-Made Object
5.2 E24.Physical Man-Made St.
5.3 E52.Time-Span
5.4 E72.Legal Object
5.5 E77.Persistent Item

PhOntology

1 Process
2.1 Role
2.2 Description
3 Collection
4 Situation
5 SpatialEntity
6 CausalEntity
7.1 TimeMeasure
7.2 ConstrainedRelationClass
7.3 KnowledgeEngineering
8 Entity
9 Documentation
10 PhysicalEntity
11 AttributeOrMeasure
12.1 EntityPlayingSomeRole
12.2 Repository
13 DescriptionContent
14 Language
15 Protocol
16 ProceduralLanguage

Wine

1 Wine
2.1 WineTaste
2.2 WineDescriptor
3 Bordeaux
4 Loire
5 RedWine
6 WhiteWine
7 VintageYear
8 Burgundy
9 Vintage
10 Medoc
11 WineGrape
12 WineColor
13.1 WineDescriptor
13.2 DessertWine
14 DryWine
15 SemillonOrSauvBlanc
16 LateHarvest
17.1 Region
17.2 TableWine

Table 2: The ideal rankings of the test collection

a cbp1

p3
p2

p4

Figure 2: An example of an RDF schema

with a data type (literals), SC is a binary relation over C (subsumption between
classes), P is a set of arcs of the form 〈c1, p, c2〉 where c1 ∈ C, c2 ∈ C ∪ L, and
p is a property name, and finally SP is a binary relation over P (subsumption
between properties).

We consider only schemas that are valid according to the RDF semantics
[Hayes 2004]. If 〈c1, p, c2〉 ∈ P we shall write domain(p) = c1 and range(p) = c2.
Table 3 introduces notations that we shall use in the sequel. Roughly, for a
given c ∈ C, we use conn(c) to denote those classes which are connected with c

through a property. More precisely, we consider only user defined classes, so the
elements of conn(c) are always members of C. We use � to denote bag union (so
the operands as well as the result of this operation can contain duplicates), e.g.
[a, b, c]�[a] = [a, a, b, c]. For instance, consider the schema drawn in Figure 2 with
three classes a, b, c, and four properties: 〈a, p1, a〉, 〈a, p2, b〉, 〈b, p3, c〉, 〈c, p4, b〉. In
this case we have: conn(a) = [a, a, b], conn(b) = [a, c, c], conn(c) = [b, b]. Given
a binary relation R, we use Tr(R) to denote its transitive closure. The bottom
part of Table 3 contains notations that take into account the semantics of RDF.

We shall also use Attrs to denote the set of all properties whose range is a
literal type (i.e. Attrs = ∪{ attrs(c) | c ∈ C}).
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Notation Meaning

sub(c) = {c′ | (c, c′) ∈ SC}
sup(c) = {c′ | (c′, c) ∈ SC}

subp(c) = sub(c) ∪ sup(c)
sub(p) = {p′ | (p, p′) ∈ SP}
sup(p) = {p′ | (p′, p) ∈ SP}

propFrom(c) = {p | domain(p) = c}
propTo(c) = {p | range(p) = c}

prop(c) = propFrom(c) ∪ propTo(c)
attrs(c) = {p | from(p) = c and to(p) ∈ L}
conn(c) = (�{ range(p) ∩ C | p ∈ propFrom(c)}) �

(�{ domain(p) | p ∈ propTo(c)})
subAll(c) = {c′ | (c, c′) ∈ Tr(SC)}
supAll(c) = {c′ | (c′, c) ∈ Tr(SC)}

propAllFrom(c) = {p | domain(p) ∈ {c} ∪ supAll(c)}
propAllTo(c) = {p | range(p) ∈ {c} ∪ supAll(c)}

propAll(c) = propAllFrom(c) ∪ propAllTo(c)
attrsAll(c) = {p | from(p) ∈ {c} ∪ supAll(c) and to(p) ∈ L}

Table 3: RDF-related Notations

5 Ranking Methods for RDF Schemas

Below we introduce a number of methods for ranking RDF schema classes.

(m0) : R(c) = |sub(c)| + |sup(c)| + |prop(c)|
This is the most simplistic method. It views the schema graph as if it was a plain
graph (i.e. it does not distinguish arc types).

(m1) : R(c) = |sub(c)| + |sup(c)| + |propFrom(c)|
This is a variation of (m0) that considers only the properties that define as
domain the given class.

(m2) : R(c) = q + (1 − q)
∑

c′∈conn(c)

R(c′)
|conn(c′)|

If we view classes as states, and properties as bidirectional transitions, then we
can realize that according to this method, the score of a class is equal to the
stationary probability that a random surfer is at that class5. Note that this
method ignores properties pointing to literal types, as well as the generaliza-
tion/specialization hierarchies.

(m3) : R(c) = q
attrs(c)
|Attrs| + (1 − q)

∑

c′∈conn(c)

R(c′)
|conn(c′)|

This is variation of (m2) that also considers the properties that point to literal
types. Specifically, here the probability of reaching a class after a random jump
5 With probability q the surfer can jump to a randomly selected class while with

probability 1 − q he selects to follow one of the property-derived transitions.
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is not the same for all classes. The more attributes a class has, the more probable
a surfer jumps to that class. Again, generalization/specialization hierarchies are
ignored.

(m4) :

R(c) = q1
attrs(c)
|Attrs| + q2

∑

c′∈subp(c)

R(c′)
|subp(c′)| + (1 − q1 − q2)

∑

c′∈conn(c)

R(c′)
|conn(c′)|

This is variation of (m3) that takes into account the generalization/specialization
relationships among classes. Each generalization relationship is viewed as a bidi-
rectional transition. With probability q1 the surfer jumps to a random class (with
preference to those holding more attributes), with probability q2 he selects to
follow one of the isa-derived transitions, while with probability 1 − q1 − q2 he
selects to follow one of the property-derived transitions.

(m5) : R(c) = |subAll(c)|+ |supAll(c)| + |propAll(c)|

This is actually a variation of (m1). It is like viewing the ”completed” graph,
i.e. the graph that particularizes all inherited features (superclasses, subclasses,
property domains and ranges), as a plain graph.

It is evident that (m3) is a special case of (m4) (corresponding to q2 = 0).
Similarly, (m2) is also a special case of (m4).

An alternative approach to rank classes, would be to first score properties
and then define the scores or the ranking of the classes. One approach to define
the significance of properties is to exploit the definition of betweenness centrality
of edges [Freeman 1977, Freeman 1979] in a graph. According to this definition,
an edge is more important than another, if it appears in more shortest paths
between nodes than the other. Formally, let G : (V, E) be a graph. Then, the
edge betweenness centrality BC(e) of an edge e ∈ E is defined as: BC(e) =∑

u,w∈V,u�=w
σu,w(e)

σu,w
, where σu,w(e) denotes the total number of shortest paths

between u and w that pass through edge e and σu,w denotes the total number
of shortest paths between u and w.

Note that to compute this metric we can exclude from the schemas multiple-
edges because they do not affect the measure of betweenness centrality. It is
evident that in this way we will actually rank the distinct pairs of classes rather
than the properties. Below we present two methods for ranking classes based on
the scores of the properties.

(m6) : R(c) =
∑

p∈prop(c)

BC(p)

Here the score of a class c is defined as the sum of the BC scores of the properties
that have c as domain or range.
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An alternative approach is to define top-k classes as the classes that are
encountered as domain or range of the top-l properties, where l is the smallest
integer. We can call this method (m7).

6 Experimental Evaluation

We decided to evaluate the ranking methods (m0), (m1), (m4), (m5), (m6) and
(m7). As noticed in Section 5, (m2) and (m3) are special cases of (m4) and
thus, they are considered in the experimental evaluation through the appropriate
values of the parameters of (m4). For computing (m4) scores we employed an
iterative algorithm with at most 100 iterations6.

We decided to evaluate the above ranking formulas according to the ideal
ranking because this method is less subjective and its results are repeatable.
Moreover the ideal ranking can serve as the baseline for comparing different
ranking methods. Concerning evaluation metrics, we decided to employ the k-
precision metric for various values of k. The selection of the values of k was based
on the ideal ranking of the schema at hand. For instance, for CIDOC CRM we
used the values 1, 7, 11, 15, 20 because these values follow the block sizes of the
ideal ranking (see Table 2). As the points are not so many, we will present the
results in a tabular form and not in the form of curves. However, as an automatic
method for ranking may yield ties (equally scored classes), the computation of
the k-precision was based on Expected Search Length (recall Section 2) so that
to obtain more precise results.

We should notice that (m5) gave by far the worst results. This is due to
the fact that (m5) always favors the classes located deeply in the class hier-
archies. These classes inherit a big number of properties from their ancestors.
However, psycholinguistic evidence has shown that middle level concepts tend
to be more detailed and prototypical of their categories than classes at lower hi-
erarchical levels [Rosch 1978]. This fact has also been experimentally verified for
RDF schemas in [Theoharis 2007]. Moreover, methods (m6), (m7) gave always
worse (or rarely the same) results than (m0), (m1), (m4). In the sequel, for each
of the three schemas of our collection we only report the results of (m5), (m6)
and (m7) without further discussion. Instead, we focus on the comparison of the
rest methods (i.e., m0, m1, m4).

6.1 Schema: CIDOC CRM

Table 4 shows the results of evaluating our ranking methods using 11 and 20-
precision.
6 In general, the number of iterations required for convergence is empirically O(log n)

where n is the number of links.
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Method (q1, q2, q3) 11-precision 20-precision

(m4) (q1, 0.0, 1 − q1) 0.63 - 0.72 0.6 - 0.7
(m4) (q1, 0.1, 0.9 − q1) 0.54 0.65 - 0.75
(m4) (q1, 0.2, 0.8 − q1) 0.45 - 0.54 0.65 - 0.75
(m4) (q1, 0.3, 0.7 − q1) 0.45 - 0.54 0.65 - 0.7
(m4) (q1, 0.4, 0.6 − q1) 0.36 - 0.54 0.65 - 0.7
(m4) (q1, 0.5, 0.5 − q1) 0.45 - 0.54 0.65 - 0.7
(m4) (q1, 0.6, 0.4 − q1) 0.45 0.7
(m4) (q1, 0.7, 0.3 − q1) 0.45 0.7

(m0) 0.63 0.71
(m1) 0.63 0.7
(m5) 0.09 0.2
(m6) 0.63 0.61
(m7) 0.57 0.6

Table 4: Results of the Evaluation on CIDOC CRM

Let us now analyze in more detail (m4). Recall that:

(m4) :

R(c) = q1
attrs(c)
|Attrs| + q2

∑

c′∈subp(c)

R(c′)
|subp(c′)| + (1 − q1 − q2)

∑

c′∈conn(c)

R(c′)
|conn(c′)|

Note that q3 in Table 4 corresponds to the value 1−q1−q2. For instance, the
first row of Table 4 corresponds to m4 where q2 is considered as constant (more
precisely q2 = 0.0) and q1 as variable that takes values in {n × 0.1 | n ∈ Z, 0 ≤
n ≤ 10}. Therefore, q3 = 1 − q1 − q2 = 1 − q1. The derived 11-Precision (resp.
20-Precision) lies in [0.63, 0.72] (resp. [0.6, 0.7]) depending on q1. As the above
ranking method is parametric, below we present some figures that illustrate the
precision results for various combinations of q1, q2, q3 values. The x-axis of each
figure has various values of q1 (0, 0.1, 0.2, . . .1), while the y-axis corresponds
to precision values [0,1]. Figure 3 shows the corresponding plots for 7 and 11
precision, while Figure 4 shows the corresponding plots for 15 and 20 precision.
Each figure contains a plot for various values of q2 (the values of q3 are not
shown, as they are derived from the rest values, i.e. q3 = 1 − q1 − q2).

From these we observe that the best k-precision values are obtained for low
values of q2. Moreover, we observe that they are obtained for q3 > q1, i.e.,
associations are more significant than attributes. Specifically, the combinations
(q1, q2, q3) that give the highest 11-precision are ([0.1−0.4], 0.0, 1−q1). The corre-
sponding combinations for 20-precision are (0.1, 0.2, 0.7), ([0.4−0.5], 0.1, 0.9−q1).

It is interesting to note that method (m0) is almost as good as (m4): although
it does not give the maximum values (i.e. 0.72, 0.75 for top-11 and 20 resp.), it
gives very close values (i.e. 0.63, 0.71 for top-11 and 20 resp.). In addition, there
are several combinations of q1, q2 values that make (m4) to give much worse
than (m0) results. The recall/fallout curve of methods m0 and m4 (Figure 5)
can provide a means to compare these two methods. As we can see from the
curve, (m0) is slightly better than (m4), since (m0) usually lies closer to the
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Figure 3: Results for 7 (left) and 11 (right) precision on CIDOC CRM
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Figure 4: Results for 15 (left) and 20 (right) precision on CIDOC CRM

upper-left corner of the curve (where the recall is 1.0 and the fallout is 0.0) than
(m4).

We should note that each association of the CIDOC CRM ontology has been
represented in RDFS as two counterpoising properties between the involved pair
of classes (each labeled with a different name). This fact does not hold for at-
tributes, i.e., properties pointing to Literal class, since Literal cannot be the do-
main of any property. This means that in this ontology, ranking classes according
to prop(c) is almost equivalent to ranking them according to propFrom(c) or
propTo(c).

Finally, Table 5 shows the top-20 distinct pairs of classes of CIDOC CRM.

6.2 Schema: PhOntology

Table 6 shows the results of evaluating our ranking methods using 10 and 20-
precision.

Here, method (m0) gives the best results ( (m0) yields much higher 10-
precision and slightly lower 20-precision than (m1) ). Concerning (m4), the
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Figure 5: The Recall/Fallout curve of (m0) and (m4) on CIDOC CRM

k Pair of Classes
1 (E39.Actor, E7.Activity)
2 (E5.Event, E39.Actor)
3 (E77.Persistent Item, E5.Event)
4 (E39.Actor, E18.Physical Stuff)
5 (E1.CRM Entity, Literal)
6 (E19.Physical Object, Literal)
7 (E7.Activity, E1.CRM Entity)
8 (E19.Physical Object, E53.Place)
9 (E53.Place, E39.Actor)
10 (E74.Group, E39.Actor)
11 (E52.Time-Span, Literal)
12 (E18.Physical Stuff, E53.Place)
13 (E70.Stuff, E7.Activity)
14 (E1.CRM Entity, E24.Physical Man-Made Stuff)
15 (E54.Dimension, E70.Stuff)
16 (E57.Material, E18.Physical Stuff)
17 (E55.Type, E7.Activity)
18 (E71.Man-Made Stuff, E7.Activity)
19 (E11.Modification Event, E55.Type)
20 (E79.Part Addition, E18.Physical Stuff)

Table 5: Top-20 pairs of classes of CIDOC CRM

combination of (q1, q2, q3) values that yield the best 10-precision are of the form
(q1, 0.0, 1 − q1), while the combinations that yield the best 20-precision is (0.5,
0.4, 0.1). More details are given in Figure 6 for the 5- and the 10-precision, and
in Figure 7 for the 14- and the 20-precision. We can conclude, that for small
values of k the k-precision increases as long as q2 decreases. However, for high
values of k (e.g. k=20), the best k-precision is yielded for high q2 values, i.e.
q2 = 0.4.

Finally, Table 7 shows the top-20 distinct pairs of classes of PhOntology.
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Method (q1, q2, q3) 10-precision 20-precision

(m4) (q1, 0.0, 1 − q1) 0.6 0.45
(m4) (q1, 0.1, 0.9 − q1) 0.5 0.45 - 0.5
(m4) (q1, 0.2, 0.8 − q1) 0.4 - 0.5 0.45 - 0.5
(m4) (q1, 0.3, 0.7 − q1) 0.4 - 0.5 0.4 - 0.45
(m4) (q1, 0.4, 0.6 − q1) 0.4 - 0.5 0.4 - 0.6
(m4) (q1, 0.5, 0.5 − q1) 0.3 - 0.5 0.4 - 0.55
(m4) (q1, 0.6, 0.4 − q1) 0.3 - 0.4 0.4 - 0.55
(m4) (q1, 0.7, 0.3 − q1) 0.3 - 0.4 0.4 - 0.45

(m0) 0.9 0.79
(m1) 0.8 0.81
(m5) 0.18 0.3
(m6) 0.53 0.4
(m7) 0.5 0.3

Table 6: Results of the Evaluation on PhOntology
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Figure 6: Results for 5 (left) and 10 (right) precision on PhOntology

6.3 Schema: Wine Ontology

Table 8 shows the results of evaluating our ranking methods using 10 and 20-
precision. As one can see, (m1) is better than (m0). This is due to the fact that
Wine Ontology has few properties and the consideration of |prop(c)| (instead
of |propFrom(c)|) yields many ties. We observe that (m1) is usually better
for 10-precision. For 20-precision (m4) is better than (m1) for specific com-
binations of q1, q2, q3. Specifically, the (q1, q2, q3) combinations that yield the
best 10-precision are of the form ([0.1, 0.7], 0.1, 0.9− q1) and ([0.1, 0.2], 0.2, 0.8−
q1), while the combinations that yield the best 20-precision are of the form
([0.1, 0.7], 0.1, 0.9 − q1) and ([0.1, 0.3], 0.2, 0.8 − q1). Figure 8 shows the corre-
sponding plots for 5 and 10 precision, while Figure 9 shows the corresponding
plots for 15 and 20 precision.

Finally, Table 9 shows the top-20 distinct pairs of classes of Wine Ontology.
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Figure 7: Results for 14 (left) and 20 (right) precision on PhOntology

k Pair of Classes
1 (Process, SpatialEntity)
2 (Process, Description)
3 (Process, Situation)
4 (Process, Entity)
5 (SpatialEntity, SpatialAttributeOrMeasure)
6 (SpatialEntity, LengthMeasure)
7 (Process, SpeedMeasure)
8 (Description, DescriptionContainer)
9 (Description, ModalityMeasure)
10 (Description, DescriptionMedium)
11 (Description, Boolean)
12 (Process, State)
13 (SpatialEntity, AreaMeasure)
14 (Process, ProcessAttributeOrMeasure)
15 (SpatialEntity, VolumeMeasure)
16 (Process, Event)
17 (Description, TimeMeasure)
18 (Process, CausalEntity)
19 (Situation, TimeMeasure)
20 (Description, CausalEntity)

Table 7: Top-20 pairs of classes of PhOntology

6.4 Summarizing the Results

In most cases, (m0) gave the best results. (m4) gave slightly better results only
for specific combinations of (q1, q2, q3) for the CIDOC and the Wine Ontology
(rows 1, 2 and 3 of Table 4 and rows 3 and 4 of Table 8).

Table 10 shows the average precisions (over our test collection) that were
obtained from each method for k = 7, 11, 20. For the case of (m4), the table
shows only the combinations of q1, q2, q3 that gave the best results.

Concerning the (m4) method and comparing with CIDOC and PhOntology
schemas, we observe, that in case of Wine Ontology the ignorance of the sub-
sumption properties (i.e. q2 = 0.0) does not yield the best (not even a good)
k-precision. This is due to the fact that Wine Ontology consists of few proper-
ties and thus the subsumption relationships play a more significant role to the
selection of the top-k classes.
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Method (q1, q2, q3) 10-precision 20-precision

(m4) (q1, 0.0, 1 − q1) 0.4 0.4
(m4) (q1, 0.1, 0.9 − q1) 0.5 - 0.7 0.5 - 0.65
(m4) (q1, 0.2, 0.8 − q1) 0.5 - 0.7 0.5 - 0.65
(m4) (q1, 0.3, 0.7 − q1) 0.5 - 0.6 0.5 - 0.6
(m4) (q1, 0.4, 0.6 − q1) 0.5 - 0.6 0.5 - 0.6
(m4) (q1, 0.5, 0.5 − q1) 0.5 - 0.6 0.5 - 0.6
(m4) (q1, 0.6, 0.4 − q1) 0.5 - 0.6 0.5 - 0.6
(m4) (q1, 0.7, 0.3 − q1) 0.5 - 0.6 0.55 - 0.6

(m0) 0.21 0.35
(m1) 0.7 0.53
(m5) 0.4 0.35
(m6) 0.25 0.2
(m7) 0.46 0.35

Table 8: Results of the Evaluation on Wine Ontology
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Figure 8: Results for 5 (left) and 10 (right) precision on Wine Ontology

Table 11 presents in detail the rankings of CIDOC CRM yielded by (m1) and
(m4), with respect to the ideal ranking and the graph features of these classes.
Specifically, the first 20 rows (i.e., 1 − 5.5) correspond to the top-20 classes of
the ideal ranking (see also the left part of Table 2), while the six following rows
(i.e., 6.1 − 8.26) correspond to classes ranked in the top-20 by (m1) method
(the first column corresponds to the rank of these classes in the ideal ranking,
e.g., E1.CRM Entity lies in the 6 − th block of the ideal ranking). For (m4)
we considered the combination (q1, q2, q3) = (0.1, 0.2, 0.7), i.e., one of those that
yield the best 20-Precision. For each ranking method we write in bold the ranks
of classes that, although included in the top-20 of the ideal ranking, they do not
appear in the top-20 of the specific method.

One interesting observation is that there are classes in the top-20 of the
ideal ranking that both methods failed to rank in their top-20 (e.g., E21.Person,
E26.Physical Feature, E71.Man-Made Stuff, E22.Man-Made Object, E72.Legal
Object). Their common characteristic is the low plain degree value (column
plainD in Table 11), that shows that these classes have not been (conceptu-
ally) analyzed in detail. A correlated observation is that there are three classes

1870 Tzitzikas Y., Kotzinos D., Theoharis Y.: On Ranking RDF Schema Elements ...



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

15
-P

re
ci

si
on

q1

q2=0.0
q2=0.1
q2=0.2
q2=0.3
q2=0.4
q2=0.5
q2=0.6
q2=0.7
q2=0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

20
-P

re
ci

si
on

q1

q2=0.0
q2=0.1
q2=0.2
q2=0.3
q2=0.4
q2=0.5
q2=0.6
q2=0.7
q2=0.8

Figure 9: Results for 15 (left) and 20 (right) precision on Wine Ontology

k Pair of Classes
1 (Array, VintageYear)
2 (Array, WineGrape)
3 (Array, WineColor)
4 (Wine, WineColor)
5 (Array, WineSugar)
6 (Array, WineFlavor)
7 (Array, WineBody)
8 (CotesDOr, WineFlavor)
9 (RedBordeaux, WineGrape)
10 (Array, Winery)
11 (Meursault, WineBody)
12 (RedBurgundy, WineGrape)
13 (PinotNoir, WineColor)
14 (WhiteBurgundy, positiveInteger)
15 (VintageYear, WineGrape)
16 (Meritage, WineColor)
17 (Vintage, VintageYear)
18 (DessertWine, WineSugar)
19 (WhiteBordeaux, WineGrape)
20 (Wine, WineDescriptor)

Table 9: Top-20 pairs of classes of Wine Ontology

(E1.CRM Entity, E2.Temporal Entity, E54.Dimension) ranked in the top-20 by
both methods that do not appear in the top-20 of the ideal ranking. Their com-
mon characteristic is the big plain degree, that shows that they are analyzed
in detail. These two observations made us to realize, that the graph features
of classes are able to capture the intuition behind the selection of significant
classes by experts (who are conceptual modelers) only up to some degree (that
fortunately yields satisfactory k-Precisions for our application).

Concerning (m0) and random walks, a related remark is that in an undi-
rected (strongly connected and non-bipartite) graph G = (V, R), the stationary
probability of a node u is given by P (u) = deg(u)

2|R| where deg(u) is the degree of
u [Motwani and Raghavan 1995]. One can easily see, that (m0) corresponds to
this case.
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Average precision
k (m0) (m1) (m4) for (q1, q2, q3)

(0.3 − 0.6, 0.2, 0.8 − q1)
7 0.57 0.57 0.57 (0.3 − 0.6, 0.2, 0.8 − q1)

(0.1, 0.4, 0.5)
11 0.63 0.63 0.60 (0.1 − 0.3, 0.1, 0.9 − q1)
20 0.71 0.7 0.63 (0.1, 0.2, 0.7), (0.5, 0.4, 0.1)

Table 10: Average Precision

CIDOC Class propsFrom propsTo subs sups plainD m0 m1 m4

1 E39.Actor 17 17 2 1 37 1 1.2 2
2.1 E4.Period 8 8 1 1 18 9 8.2 19
2.2 E5.Event 2 2 3 1 8 17.1 12.1 20
2.3 E7.Activity 11 11 7 1 30 5 2 5
2.4 E18.Physical Stuff 16 16 3 1 36 2 1.3 6
2.5 E19.Physical Object 10 9 2 1 22 7 5 15
2.6 E53.Place 15 15 0 1 31 4.1 4.2 8
3.1 E21.Person 4 4 0 2 10 15 12.4 27
3.2 E28.Conceptual Object 1 1 3 1 6 19.14 13.4 12
3.3 E55.Type 12 12 3 1 28 6 4.1 4
3.4 E73.Information Object 5 5 4 2 16 11 7.1 9
4.1 E26.Physical Feature 1 1 2 1 5 20.5 14.10 51
4.2 E41.Appellation 2 1 6 1 10 14 9.1 18
4.3 E70.Stuff 6 6 2 1 15 12.1 9.2 11
4.4 E71.Man-Made Stuff 3 3 2 1 9 16.3 12.3 25
5.1 E22.Man-Made Object 0 0 1 2 3 22.4 15.14 66
5.2 E24.Physical Man-Made Stuff 7 7 3 2 19 8 6 10
5.3 E52.Time-Span 10 6 0 1 17 10 7.2 14
5.4 E72.Legal Object 2 2 2 1 7 18.12 13.2 29
5.5 E77.Persistent Item 5 5 4 1 15 12.2 8.1 3

6.1 E1.CRM Entity 15 14 5 1 35 3 1.1 1
6.2 E2.Temporal Entity 14 14 2 1 31 4.2 3 7
7.2 E11.Modification Event 4 4 3 1 12 13.2 10 24
7.4 E13.Attribute Assignment 2 2 4 1 9 16.4 11.2 22
7.9 E63.Beginning of Existence 1 1 5 1 8 17.2 11.3 23
8.26 E54.Dimension 6 5 0 1 12 13.1 11.1 17

Table 11: Features of classes of the ideal ranking for CIDOC CRM

6.5 On Generalizing the Results

As our test collection is small, we conducted some additional experiments in
order to see whether the results of our comparative evaluation would be different
in case we had a bigger test collection. We selected 20 ontologies (those listed
at Table 12) and for each one of them we applied the formulas (m1), (m0) and
(m4). Then we compared the returned rankings, specifically to compare two
ranking formulas A and B, we used the metric sim(A, B) = |CA{20}∩CB{20}|

20 .
Table 12 shows the results and its last row shows the average values. We can see
that the pair ((m1), (m0)) behaves very similarly (similarity 0.9), while the pairs
((m1), (m4)) and ((m0), (m4)) have degree of similarity around 0.7. By making
the hypotheses that the 20-precision of (m0) is around 0.7 (as measured in our
test collection), and that the similarity of ((m0), (m4)) is not worse than 0.7 (as
measured in this experiment), we could make the conjecture that in general the

1872 Tzitzikas Y., Kotzinos D., Theoharis Y.: On Ranking RDF Schema Elements ...



ontology sim((m1), (m0)) sim((m1), (m4)) sim((m0), (m4))
1 ACM CSS 1.0 0.33 0.33
2 bsr 0.5 0.8 0.76
3 cerif 0.95 0.45 0.45
4 Datatypes 1.0 0.55 0.55
5 DCD 1.0 0.35 0.35
6 earthrealm 1.0 0.95 0.95
7 GOLD 1.0 0.87 0.87
8 Math Intern 1.0 0.48 0.48
9 mgentology 1.0 0.95 0.95
10 Mid-Level Ontology 0.88 0.72 0.75
11 moviedatabase 0.85 0.96 0.95
12 mygrid-services-lite 1.0 0.91 0.91
13 ntua3 1.0 0.78 0.83
14 p3p 0.9 0.58 0.59
15 Phenomenon 0.97 0.93 0.93
16 Property 1.0 0.9 0.9
17 spase 051214 0.5 0.59 0.59
18 substance 1.0 0.57 0.91
19 SUMO 0.8 0.55 0.69
20 tap 1.0 0.57 0.57

AVG 0.91 0.69 0.71

Table 12: Comparing (m1), (m0), (m4)

20-precision of (m0) is expected to be 0.7 ± 0.2.

7 Applications and Related Work

7.1 Visualization

To understand an ontology (from its RDF representation in XML) or to select
(from an ontology repository) the ontology that best fits the requirements of an
application, is a hard and time consuming task for a human. In this section we
show how ranking can be exploited in visualization so that to alleviate this task.

For this purpose we developed a graphical editor for visualizing RDF schemas,
called StarLion (this tool is part of the RDFSuite [FORTH-ICS 2005]). The
graphical layout in the 2D space, is derived by a force-directed placement algo-
rithm (specifically by adapting for the case of RDF schemas the algorithm de-
scribed in [Tzitzikas and Hainaut 2005]). Figure 10 shows the layout produced
for the CIDOC CRM schema. It is evident that such drawings cannot help a user
to get acquainted with a schema. From our experiments, we again verified the
observation (of [Tzitzikas and Hainaut 2005] for the case of ER diagrams, and
of [Theoharis 2007] for the case of RDF schemas), that conceptual schemas tend
to have a very connected kernel7. This means that it is rather impossible to have
a readable (and aesthetically pleasing) 2D layout for medium and large sized
schemas; instead we should expect an overwhelming number of edge crossings.
7 According to [Theoharis 2007], the total-degree distribution of the property graph

of Semantic Web schemas usually follows a power law.
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Figure 10: The layout of the entire CIDOC CRM ontology

Ranking could alleviate this problem, as it enables deriving smaller in size
(and more readable) diagrams comprising the most important concepts and rela-
tionships. The derivable top-k lists and top-k diagrams allow exploring a schema
gradually: from the more important elements to the less (Figure 1 illustrates the
idea). In addition, and given the inability to produce automatically aestheti-
cally satisfying layouts for large schemas, the small (top-k) diagrams can be
very useful for communication purposes. We implemented the ranking methods
described above and provided the ability to visualize top-k diagrams for variable
values of k. Figure 11 shows the top-7 diagram, Figure 12 shows the top-11, and
Figure 13 the top-20 diagram (due to ties this diagram comprises 23 classes) of
CIDOC CRM.

Apart from being human readable, these diagrams can be drawn much faster.
Note that the force-directed placement algorithm has quadratic time complexity.
For instance, the layout for Figure 10 required 25.637 seconds to compute, while
the top-7 diagram only 3.024 second. An internal graph representation with
double adjacency lists was employed allowing the efficient layout of the top-k
diagrams for small values of k, without having to reconstruct the graph. In this
way we obtain efficient drawing for values of k up to 20 (which is the most
common values).

In addition, StarLion supports a semi-automatic layout process, which can
greatly improve the resulting layout. Specifically, the user is allowed to nail down
some nodes at desired positions and apply the layout algorithm on the rest part
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Figure 11: The layout of the top-7 diagram of CIDOC CRM

of the diagram, or the make some elements invisible. The activity diagram of
the supported process is sketched in Figure 14. The activity ”Select Parameters”
allows the user to set the parameters (e.g. spring length and stiffness, magnitude
of electric and magnetic repulsion) of the force-directed placement algorithm.

7.1.1 Ranking Properties

For deriving the top-k diagram we first select the top-k classes, and then add
all properties among them. Usually, there will be several properties between a
given pair of classes. In that case, they are visualized by a single edge and a
label for each property. However, one might want to reduce the property labels
displayed (e.g. in Figure 11 there is one edge with more than 10 labels). We
could try to rank the properties so that to have a criterion to filter them out.
One can easily see that if we exploit the scores of classes for defining the scores
of properties, then all properties between a given pair of classes will receive the
same score, so this approach will not allow us to rank them. For this reason, we
propose exploiting the specialization relationships between properties in order
to differentiate between them. Specifically, we can define the score of a property
p as score(p) = |subAll(p)| where subAll(p) denotes the set of all (direct and
indirect) subproperties of p. The higher the score of a property is the higher this
property is ranked.
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Figure 12: The layout of the top-11 diagram of CIDOC CRM

7.2 Related Work

Most (or probably all) of the work that has been done so far, concerns solely the
problem of ontology selection and evaluation, i.e. the problem of ranking a set of
ontologies according to various criteria. This task is very useful for Semantic Web
search engines and ontology libraries (like Swoogle [Ding et al. 2005], OntoSelect
[Buitelaar et al. 2004], OntoKhoj [Patel et al. 2003]). For instance, OntoKhoj
[Patel et al. 2003] is an ontology portal that crawls, classifies and searches on-
tologies. It uses the OntoRank algorithm, a PageRank-like algorithm, which
instead of relying on HTML links it relies on the instantiation and subsump-
tion links between ontologies. Analogous approaches (for ranking ontologies, not
their constituents) include ActiveRank [Alani and Brewster 2005] and OntoSe-
lect [Buitelaar et al. 2004] (the latter also considers ontology import statements).
Swoogle [Ding et al. 2005] is another SW search engine that provides ontology
ranking in a way similar to that of OntoKhoj. Although that work also proposes
methods for ranking graphs, terms and triples, all these methods are based on
the entire network of semantic web ontologies and data. This means that the
results obtained by these methods are totally different from ours, as we confine
ourselves to the information available in each ontology in isolation (so we do not
take into account possible instantiations of the ontology or other interconnected

1876 Tzitzikas Y., Kotzinos D., Theoharis Y.: On Ranking RDF Schema Elements ...



Figure 13: The layout of the top-20 diagram of CIDOC CRM

ontologies). Finally, [Sabou et al. 2006] surveys the works on ontology ranking
and tries to relate them with the task of ontology evaluation. Of course, our work
could also be exploited by ontology search engines. For instance, each ontology
in the result of an ontology seeking query, could be accompanied by its top-k
diagram.

Other somehow related works include [Zhuge and Zheng 2003], where PageR-
ank -style ranking formulas for semantic networks are proposed but without any
form of evaluation, and [Sheth et al. 2005, Anyanwu et al. 2005] which describes
methods for ranking associations and paths among resources (not among schema
elements).

Finally we would like to stress the fact that we have conducted an experimen-
tal evaluation based on a test collection (to the best of our knowledge no other
related work has been evaluated in this way), and this allowed us to realize, the
previously unexpected for us fact, that simplistic ranking methods are not worse
than complicated ones.

Regarding visualization, we confined ourselves to the case of classical 2D
graph plain graph layout algorithms, as our focus in on ranking, not on visual-
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Figure 14: Activity diagram of the semi-automatic layout process supported by
StarLion

ization per se. So works like [van Ham et al. 2004] are out of the scope of this
paper.

8 Conclusions

The contributions of this paper are: (a) we discuss in detail the issues regarding
the evaluation of ranking schema elements and propose specific metrics, (b) we
detail the construction of a test collection for ranking RDF schema elements, (c)
we introduce and evaluate a number of ranking functions for RDF schema ele-
ments and analyze the results, and (d) we report our experiences from exploiting
the ranking functions on the problem of ontology visualization.

Concerning the results of the evaluation, although the most closely related
works on semantic web ranking, employ iterative PageRank style ranking schemes,
our experiments showed that the more simple ranking method (the plain graph
degree) gives the best results and it is more stable. Furthermore, it is the fastest
to compute method, as it does not require the employment of an iterative algo-
rithm. The average precision obtained for (top-5 to top-10) is about 0.7, which
is satisfactory for visualization application purposes.

There are several issues that are worth further research. One of them is
the extension of the test collection to a bigger and more representative corpus.
Another totally unexplored direction is the definition of appropriate evaluation
metrics that take into account both classes and properties. Furthermore, we
would like to achieve a deeper understanding of the factors that make conceptual
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modelers (experts) to decide that a class is significant. The investigation of which
is the maximum precision that could be achieved by a ranking function based
only on schema graph features could be useful in order to evaluate ranking
methods (e.g., by realizing that a method is optimal). Finally, another direction
of research is to devise ranking methods for OWL [Dean et al. 2002] schemas.
The question here, is how to best exploit the logical expressions (e.g. unionOf
and intersectionOf) that may be used in the definition of a class for ranking
purposes.
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