
ODEDialect: a Set of Declarative Languages for
Implementing Ontology Translation Systems

Oscar Corcho
(Ontology Engineering Group, Universidad Politécnica de Madrid, Spain

ocorcho@fi.upm.es)

Asunción Gómez-Pérez
(Ontology Engineering Group, Universidad Politécnica de Madrid, Spain

asun@fi.upm.es)

Abstract: Implementing ontology translation systems is a complex task that requires taking
many types of translation decisions, which are usually hidden inside their source code. In order
to ease building, maintaining and understanding ontology translation systems, we propose
ODEDialect, a set of languages to express translation decisions declaratively and at different
layers: lexical, syntax, semantics, and pragmatics. This paper describes the three languages that
comprise ODEDialect: ODELex, which allows expressing transformations in the lexical layer;
ODESyntax, which allows expressing transformations in the syntax layer; and ODESem, which
allows expressing transformations in the semantic and pragmatic layers.

Keywords: ODEDialect, Ontology Language, Translation
Categories: I.2.4, M.2, M.8

1 Introduction

An ontology is defined as a “formal explicit specification of a shared conceptualisation”
[Gruber, 1993], that is, an ontology must be machine readable (it is formal), all its
components must be described clearly (it is explicit), it describes an abstract model of a
domain (it is a conceptualisation) and it is the product of a consensus (it is shared).

Ontologies can be implemented in varied ontology languages, which are usually
divided in two groups: classical and ontology markup languages. Among the classical
languages used for ontology construction we can cite (in alphabetical order): CycL
[Lenat and Guha, 1990], FLogic [Kifer et al, 1995], KIF [Genesereth and Fikes,
1992], LOOM [MacGregor, 1991], OCML [Motta, 1999], and Ontolingua [Gruber,
1992]. Among the ontology markup languages, used in the context of the Semantic
Web, we can cite: RDF [Lassila and Swick, 1999], RDF Schema [Brickley and Guha,
2004], and OWL [Dean and Schreiber, 2004]. Each of these languages has its own
syntax, its own expressiveness, and its own reasoning capabilities, provided by
different inference engines. Languages are also based on different knowledge
representation paradigms and combinations of them (frames, first order logic,
description logic, semantic networks, topic maps, conceptual graphs, etc.).

A similar situation applies to ontology tools: several ontology editors and ontology
management systems can be used to develop ontologies. Among them we can cite (in
alphabetical order): KAON [Maedche et al., 2003], OilEd [Bechhofer et al., 2001],
OntoEdit [Sure et al., 2002], the Ontolingua Server [Farquhar et al., 1997], OntoSaurus

Journal of Universal Computer Science, vol. 13, no. 12 (2007), 1805-1834
submitted: 15/4/07, accepted: 31/7/07, appeared: 1/12/07 © J.UCS

[Swartout et al., 1997], Protégé [Noy et al., 2000], WebODE [Arpírez et al., 2003], and
WebOnto [Domingue, 1998]. As in the case of languages, the knowledge models
underlying these tools have their own expressiveness and reasoning capabilities, since
they are also based on different knowledge representation paradigms and combinations
of them. Besides, ontology tools usually export ontologies to one or several ontology
languages and import ontologies coded in different ontology languages.

There are important connections and implications between the knowledge modelling
components used to build an ontology in such languages and tools, and the knowledge
representation paradigms used to represent formally such components. With frames and
first order logic, the knowledge components commonly used to build ontologies are
[Gruber, 1993]: classes, relations, functions, formal axioms, and instances; with
description logics, they are usually [Baader et al., 2003]: concepts, roles, and individuals;
with semantic networks, they are: nodes and arcs between nodes; etc.

The ontology translation problem [Gruber, 1993] appears when we decide to
reuse an ontology (or part of an ontology) with a tool or language that is different
from those ones where the ontology is available. If we force each ontology-based
system developer, individually, to commit to the task of translating and incorporating
to their systems the ontologies that they need, they will require both a lot of effort and
a lot of time to achieve their objectives [Swartout et al., 1997]. Therefore, ontology
reuse in different contexts will be highly boosted as long as we provide ontology
translation services among those languages and/or tools. This is important to improve
ontology reuse in different contexts, as described in works like [Tempich et al., 2005;
Valente et al., 1999, Fernández-López et al., 2000], among others, where ontology
reuse and reengineering are identified as important parts of the ontology development
process.

Several ontology translation systems can be found associated to the most relevant
ontology editors and platforms, like Protégé, SWOOP, the NeOn toolkit, KAON,
WebODE, etc. They are mainly aimed at importing ontologies implemented in a
specific ontology language to an ontology tool, or at exporting ontologies modelled
with an ontology tool to an ontology language, so as to give support to the ontology
reuse and reengineering, and implementation activities of the aforementioned
approaches.

A smaller number of ontology translation systems are aimed at transforming
ontologies between ontology languages or between ontology tools, giving support as
well to the aforementioned ontology reuse and reengineering activities. The most
well-known translation systems in this category are those available in the Ontolingua
server to translate from and to KIF (and Ontolingua). Others are also available for
transforming DAML+OIL into OWL, OWL into RDF(S), OCML into OWL and
viceversa, etc.

Since ontology tools and languages have different expressiveness and reasoning

capabilities, translations between them are not straightforward or easily reusable.
They normally require taking many decisions at different levels, which range from
low layers (i.e., how to transform a concept name identifier from one format to
another) to higher layers (i.e., how to transform a ternary relation among concepts to a
format that only allows representing binary relations between concepts).

1806 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

Existing approaches to build ontology translation systems, which are described in the
related work section, do not take into account such a layered structure of translation
decisions. Besides, in these systems translation decisions are usually hidden inside
their programming code. Both aspects make it difficult to understand how ontology
translation systems work.

To ameliorate this problem, in this paper we propose ODEDialect, a set of
languages that allow expressing declaratively translation decisions at different levels:
lexical, syntax, semantics, and pragmatics (this structure of layers is based on the
theory of signs [Morris, 1938]). This paper describes the three languages that
comprise ODEDialect: ODELex, which allows expressing transformations in the
lexical layer; ODESyntax, which allows expressing transformations in the syntax
layer; and ODESem, which allows expressing transformations in the semantic and
pragmatic layers.

This paper is structured as follows: section 2 describes the four layers where
ontology translation problems may appear, with examples of how transformations have
to be made at each layer. Section 3 describes the three languages that comprise
ODEDialect, with their grammars and examples of their use. Section 4 presents the main
conclusions of our work and future work. Section 5 presents related work on ontology
translation.

2 Ontology translation layers

The ODEDialect language allows expressing translation decisions in four different
layers, which are based on existing work on formal languages and the theory of signs
[Morris, 1938]. Such works consider the existence of several levels in the definition
of a language: syntax (related to how the language symbols are structured), semantics
(related to the meaning of those structured symbols), and pragmatics (related to the
intended meaning of the symbols, that is, how symbols are interpreted or used).

Figure 1: Relationships between classifications of semantic interoperability problems.

In the context of semantic interoperability, some authors have proposed
classifications of the problems to be faced when managing different ontologies in,
possibly, different formats. We will enumerate only the ones that are due to

Syntax

Semantic

Pragmatic

[Morris, 1938] [Chalupsky,2000] [Klein,2001] [Euzenat,2001]

Syntax

Expressivity

Syntax

Logical representation

Language expressivity
Semantics of primitives

Lexical

Semantic

Encoding

Syntax

Semiotic

1807Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

differences between the source and target formats1. [Euzenat, 2001] distinguishes the
following non-strict levels of language interoperability: encoding, lexical, syntactic,
semantic, and semiotic. [Chalupsky, 2000] distinguishes two layers: syntax and
expressivity (aka semantics). [Klein, 2001] distinguishes four levels: syntax, logical
representation, semantics of primitives, and language expressivity, where the last
three levels correspond to the semantic layer identified in the other classifications.
Figure 1 shows the relationship between these layers.

The layers described in this section are mainly based on Euzenat’s classification.
This classification is the only one in the context of semantic interoperability that deals
with pragmatics (although Euzenat uses the term “semiotics” to refer to it). However,
we consider that it is not necessary to split the lexical and encoding layers when
dealing with ontologies, and consider them as a unique layer, called “lexical”.

In the next sections we describe the types of translation problems that can be
usually found in each of these layers and will show some examples of common
transformations performed in each of them.

2.1 Lexical layer

The lexical layer deals with the “ability to segment the representation in characters
and words (or symbols)” [Euzenat, 2001]. Different languages and tools normally use
different character sets and grammars to generate their terminal symbols. Therefore,
in this layer we deal with transformations of ontology component identifiers, of pieces
of text used for natural language documentation purposes, and of values.

Lexical transformations mainly consist in replacing non-allowed characters by
other allowed ones (e.g., class identifiers in Protégé can contain blank spaces – for
instance, Travel Agency –, while this is not possible in Ontolingua – it would be
transformed to Travel-Agency –), or replacing identifiers that are reserved keywords
in a format to other ones that are not reserved keywords (e.g., if an OWL ontology
contains the class :THING, it cannot be transformed to Protégé).

Other sources of problems in lexical transformations are related to the scope of
the ontology component identifiers in the source and target formats, and the
restrictions related to overlapping identifiers. These problems appear when, in the
source format, a component is defined inside the scope of another component, and
hence its identifier is local to the latter, and in the target format the correspondent
component has a global scope. As a consequence, there could be clashes of identifiers
in case that in the source format two components have the same identifier.

2.2 Syntax problems

This layer deals with the “ability to structure the representation in structured
sentences, formulas or assertions” [Euzenat, 2001]. Ontology components in each
language or tool are defined with different grammars. Hence, this translation layer
deals with the problems related to how symbols are structured in the source and target
formats, taking into account their derivation rules for ontology components.

1 Semantic interoperability problems do not only appear because ontologies are available in

different formats, but also because of their content, their ontological commitments, etc. We
only focus on problems related exclusively to differences among ontology languages or tools.

1808 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

The following types of transformations are included in this layer: transformations
of ontology component definitions according to the grammars of the source and target
formats (e.g., the grammar to define a concept in Ontolingua is different than that of
OCML) and transformations of datatypes (e.g., the datatype “date” in WebODE must
be transformed to the datatype “&xsd;date” in OWL).

With regard to the syntax differences between formats, we can distinguish
basically three groups of languages and tools: Lisp-based formats (usual in many
classical languages and tools, such as Ontolingua, LOOM, or OCML), XML-based
formats (usual in ontology markup languages), and ad-hoc text formats (like in
FLogic). Besides, several languages and tools provide ontology management APIs in
different programming languages, such as Java, C++, Lisp, etc., which could be
considered as another form of syntax for representing ontologies.

With regard to datatypes, we can distinguish basically two groups of languages
and tools: those with their own datatypes (integer, float, number, string, etc.), and
those that allow using XML Schema datatypes (normally ontology markup
languages).

2.3 Semantic problems

The semantic layer deals with the “ability to construct the propositional meaning of
the representation” [Euzenat, 2001]. Different ontology languages and tools can be
based on the same KR paradigm, on different KR paradigms (frames, semantic
networks, first order logic, conceptual graphs, etc.) or on combinations of them.

In this layer we deal not only with simple transformations (e.g., FLogic concepts
are transformed into Ontolingua and OWL classes), but also with complex
transformations of expressions that are usually related to the fact that the source and
target formats are based on different KR paradigms (e.g., WebODE disjoint
decompositions are transformed into subclass-of relationships and PAL2 constraints in
Protégé, FLogic instance attributes attached to a concept are transformed into
datatype properties in OWL and unnamed property restrictions for the class).

Most of the work on ontology translation done so far has been devoted to solving
the problems that arise in this layer. For example, in the literature we can find several
formal, semi-formal, and informal methods for comparing ontology languages and
ontology tools’ knowledge models ([Baader, 1996], [Borgida, 1996], [Euzenat and
Stuckenschmidt, 2003], [Corcho and Gómez-Pérez, 2000], [Knublauch, 2003], etc.),
which aim at helping to decide whether two formats have the same expressiveness or
not, so that knowledge can be preserved in the transformation. And some of these
approaches can be also used to decide whether the reasoning mechanisms present in
both formats will allow inferring the same knowledge in the target format.

Basically, these studies allow analysing the expressiveness (and, in some cases,
the reasoning mechanisms) of the source and target formats, so that we can know
which types of components can be translated directly from a format to another, which
types of components can be expressed using other types of components from the
target format, which types of components cannot be expressed in the target format,
and which types of components can be expressed, although losing part of the
knowledge represented in the source format.

2 Protégé Axiom Language

1809Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

In summary, the catalogue of problems found in this layer are mainly related to
the different KR formalisms in which the source and target formats are based. This
does not mean that translating between two formats based on the same KR formalism
is straightforward, since there might be differences in the types of ontology
components that can be represented in each of them. This is specially important in the
case of DL languages, since many different combinations of primitives can be used in
each language, and hence many possibilities exist in the transformations between
them, as shown in [Euzenat and Stuckenschmidt, 2003]. However, the most
interesting results appear when the source and target KR formalisms are different.

2.4 Pragmatic problems

This layer deals with the “ability to construct the pragmatic meaning of the
representation (its meaning in context)”. In this layer we deal with transformations to
be made in the resulting ontology so that human users and ontology-based
applications will notice as less differences as possible with respect to the ontology in
the original format, either in one-direction transformations or in cyclic
transformations.

Transformations in this layer require, among other, the following: adding special
labels to ontology components so as to preserve their original identifier in the source
format (e.g., adding an own slot to all the Protégé classes obtained when transforming
an ontology from another tool or language); transforming sets of expressions into
more legible syntactic constructs in the target format (e.g., transforming a set of
Protégé PAL constraints into a single class description); somehow “hiding”
completely or partially some ontology components that were not defined in the source
ontology, but which have been created as part of the transformations (such as the
anonymous classes that are usually created when transforming between a DL-based
format to a frame-based format); etc.

2.5 Relationships between ontology translation layers

Figure 2 shows an example of a transformation from the ontology platform WebODE
to the language OWL DL. In this example, we have to transform two ad hoc relations
with the same name (usesTransportMean) and with different domains and ranges (a
flight uses an airTransportMean and a cityBus uses a bus). In OWL DL the scope of
an object property is global to the ontology, and so we cannot define two different
object properties with the same name. The example shows that translation decisions
have to be taken at all layers, and that the decisions taken at one layer can influence
on the decisions to be taken at the others, hence showing the complexity of this task.

Option 1 is driven by semantics: to preserve semantics in the transformation, two
different object properties, with different identifiers, are defined. Option 2 is driven
by pragmatics: only one object property is defined from both ad hoc relations, since
we assume that they refer to the same meaning, but some knowledge is lost in the
transformation (the one related to the object property domain and range). Finally,
option 3 is also driven by pragmatics, with more care on the semantics: again, only
one object property is defined, and its domain and range is more restricted than in
option 2, although we still lose the exact correspondence between each domain and
range.

1810 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

Figure 2: Example of translation decisions to be taken at several layers.

1811Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

3 Description of ODEDialect

Taking into account the previous layers of transformations and the main
characteristics of each of them, and the fact that implementing ontology translation
decisions is usually a difficult task, we propose a set of languages that allow
expressing such transformations declaratively. This set of languages will allow
expressing transformations in the lexical layer (ODELex), in the syntax layer
(ODESyntax), and in the semantic and pragmatic layers (ODESem). The last
language deals with problems in both the semantic and pragmatic layers because both
types of transformations are similar and hence require the same kind of language to be
implemented.

In the following sections we will present the main features of each language,
together with some examples extracted from our ontology translation system between
WebODE and OWL DL.

3.1 ODELex: declarative specification of transformations at the lexical layer

Problems in the lexical layer are normally easy to handle, because it is usually enough
to take into account the rules and conventions for creating identifiers and texts in the
source and target formats.

The language ODELex allows specifying all the transformations to be made at
this layer. This language is similar to lex [Lesk, 1975], a widely-used lexical analyser
for building compilers. While lex is aimed at building compilers, ODELex is
optimised for building ontology translation systems: it restricts some of the primitives
available in lex and provides specific ones related to the construction of this type of
systems. We will now describe the main parts of an ODELex specification.

An ODELex specification is composed of three parts, as shown in the following
derivation rule3, which contain: user code, declarations, and lexical rules. These parts
are separated by the %% symbol. Besides, Java-style comments can be added at the
beginning of the document, or inside the other parts, as will be seen later, in
derivation rules 24, 25, and 26.
 (1) ODELexDocument :: {comment} %% [userCode] %% [declarations] %%
[lexRules]

User code. The first part of an ODELex document contains the user code, where users
must include any Java functions used in the rest of the specification plus any Java
import statements needed for these functions. These functions usually implement
complex transformations to be made to ontology component identifiers or pieces of
text, or they are used as a kind of macro definitions for a sequence of transformations
that have to be performed using standard functions from the Java API.

 (2) userCode :: {comment} %(javaCode)%

3 The following notation will be used to describe the derivation rules of the ODELex,

ODESyntax and ODESem grammars: words in italics will be used for non-terminal symbols,
words in bold font will be used for terminal symbols, alternatives will be represented with
the | symbol, optional elements will be enclosed in square brackets [], iterations of 0 or more
items will be enclosed in braces { }, and ranges of values will be enclosed in parenthesis and
separated by hyphens (-).

1812 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

The derivation that corresponds to the symbol javaCode is not included here,
since it corresponds to the grammar used for any Java file, and hence can be found in
other documents that deal with that programming language. In our example, we have
defined two Java functions:
- convertToURI, which transforms a string value into a corresponding string value

that is a valid URI.
- addNumber, which adds the characters “_1” to the identifier that it receives as an

input.

%(
import java.net.*;

private String convertToURI (String id){
 URI id_URI = new URI(URLEncoder.encode(id,"ISO-8859-1"))
 return id_URI.toString();
}

private String addNumber (String identifier){
 return (identifier + "_1");
}
)%

The definitions included in the user code part will be copied verbatim into the

source file of the LexicalMapper.java file generated from this specification. In this
part there is also the possibility of referencing transformation functions from a lexer
created with typical lexical analysis tools such as lex [Lesk, 1975; Levine et al.,
1992], JLex4 [Berk, 1997], etc.
Declarations. This part of an ODELex specification contains the declaration of which
ontology components (both from the source format and from the target format) will be
dealt with by the lexical transformation tool, and of which ontology components of
the target format cannot overlap (which means that they cannot share the same
identifiers because they share the same scope).

(3) declarations :: {comment | componentDecl | overlapDecl}
(4) componentDecl :: idComponent [%transient] [scopeDecl]
(5) scopeDecl :: %scope (idScope {, idScope})
(6) idScope :: idComponent | id
(7) overlapDecl :: no-overlap (idComponent , idComponent {, idComponent})

In the example below, the declaration part defines seven WebODE ontology
components (concepts, instance attributes, class attributes, ad hoc relations, instances,
references, and axioms) and two types of values (values and documentation). With
respect to OWL, it defines four ontology components (classes, object properties,
datatype properties, instances) and two types of values (datatype values, and label and
comments). It also states that the sets of identifiers of the four ontology components
must be disjoint (they cannot overlap).

Three of the WebODE components are not first class citizens of the ontology,
since they are defined inside the scope of others: instance and class attributes are

4 http://www.cs.princeton.edu/~appel/modern/java/JLex/

1813Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

defined inside the scope of concepts, and ad hoc relations are defined inside the scope
of two concepts (their domain and range).

Finally, the %transient keyword states that once that we have performed a
transformation of the corresponding component, it is not interesting to store the result
of the transformation. In the example, this happens with attribute values and pieces of
text used to document ontology components in both formats.

/* WebODE components */
WebODE.Concept
WebODE.InstanceAttribute %scope (WebODE.Concept)
WebODE.ClassAttribute %scope (WebODE.Concept)
WebODE.AdHocRelation %scope (WebODE.Concept,WebODE.Concept)
WebODE.Instance
WebODE.Reference
WebODE.Axiom
WebODE.Value %transient
WebODE.Documentation %transient

/* OWL components */
OWL.Class
OWL.ObjectProperty
OWL.DatatypeProperty
OWL.Instance
OWL.DatatypeValue %transient
OWL.LabelComment %transient
no-overlap (OWL.Class, OWL.ObjectProperty,

 OWL.DatatypeProperty, OWL.Instance)

If a component is not included in this declaration part, its identifier or the

corresponding piece of text will not be transformed because it is legal in the target
format, and hence do not have to be transformed. This part of the code will be used to
generate the file LexicalTypes.java that contains an interface with the components to
be used in the lexical transformations. This interface will be used by the rest of lexical
tools, and also by the tools from other layers.

Lexical transformation rules. This part of an ODELex specification contains the
actual transformations that have to be performed to each ontology component of the
source format in order to obtain its correspondence in the target format.

 (8) lexRules :: {lexRule}
 (9) lexRule :: ruleHeader CR init CR table CR repeated CR overlap CR
 (10) ruleHeader :: % idComponent IDENTIFIER {idComponent
IDENTIFIER}

As shown in rule 9, for each component specified in the lexical rule header the
following information must be specified:
- INIT: it specifies the initial transformation to be performed. For instance, in the

example below we propose to transform the identifier of a WebODE ad hoc
relation to an OWL ObjectProperty by converting the identifier to a URI, with
the function convertToURI specified above.

 (11) init :: INIT:{ javaCode }
- TABLE: if the component is not transient, it specifies the information to be

stored so as to obtain it later either in the source format or in the target format. In

1814 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

the example below we propose to store the ad hoc relation identifier, and its two
associated concept identifiers in the table WebODE.AdHocRelation, and the
corresponding identifier obtained from the transformation in the table
OWL.ObjectProperty, maintaining the corresponding links to each other.
 (12) table :: TABLE:{ tableDecl }
 (13) tableDecl :: (tableColumn , tableColumn)
 (14) tableColumn :: [idComponent , numberPosition {, numberPosition}]
 (15) numberPosition :: % number | $ number

- REPEATED: if the component is not transient and cannot be repeated under
certain circumstances, it specifies the alternative transformation to be made. For
instance, if after the transformation the OWL object property identifier already
existed as an OWL object property identifier and the WebODE ad hoc relation
with the same ad hoc relation identifier and domain concept already existed, then
we propose to maintain the identifier to be provided for the transformed object
property (and we obtain it with the predefined function GET). The same applies
if the same ad hoc relation identifier and range concept already existed. In
another situation, a new identifier is created by adding the character “1” to the
current transformed identifier.
(16) repeated :: REPEATED:{ transformation {, transformation} }
(17) transformation :: tablePatternColumn ==> { javaCode } |

 default ==> { javaCode }
 (18) tablePatternColumn :: [idComponent , numberPatternPosition

 {, numberPatternPosition}]
 (19) numberPatternPosition :: % number | _
- OVERLAP: if the component is not transient and there cannot be overlaps in the

target format, it specifies the transformation to be performed to the already
generated identifier. This is repeated until there is no overlap. In the example,
we propose to add a number to the OWL object property identifier until there is
no collision with other class, datatype property and instance identifiers (not
object properties).

(20) overlap :: OVERLAP:{ javaCode }

%WebODE.AdHocRelation IDENTIFIER
 WebODE.Concept IDENTIFIER WebODE.Concept IDENTIFIER

 /* The 2nd and 3rd identifiers are of the domain and range
 concepts */

 INIT: {$1=convertToURI(%1)}
 TABLE:{([WebODE.AdHocRelation,%1,%2,%3],

 [OWL.ObjectProperty,$1])}
 REPEATED:
 {[WebODE.AdHocRelation,%1,%2,_] ==>

 {$1=GET([WebODE.AdHocRelation,%1,%2,_])},
 [WebODE.AdHocRelation,%1,_,%3] ==>

 {$1=GET([WebODE.AdHocRelation,%1,_,%3])},
 default ==> {$1=addNumber($1)}}
 OVERLAP: {$1=addNumber($1)}

1815Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

This part of the ODELex specification will be used to generate most of the
LexicalMapper.java file, which contains the lexical tools to be used by the tools
generated by other layers in order to access the lexical information of each ontology
component.

Finally, the following derivation rules are used for creating identifiers, Java-style
comments, numbers and the end of line symbol. They have been used in the previous
rules.

 (21) idComponent :: idFormat . id
 (22) idFormat :: (A-Z){A-Z}
 (23) id :: (A-Z,a-z){a-z,A-Z,0-9}
 (24) comment :: /* textIncludingCR */ | // textWithoutCR
 (25) textIncludingCR :: {a-z,A-Z,0-9,CR}
 (26) textWithoutCR :: {a-z,A-Z,0-9}
 (27) number :: (1-9){0-9}
 (28) CR :: \n

Declarative specification of transformations at the syntactic layer
Given that one of our assumptions is that both the source and the target formats of the
transformations have their own Java APIs defined, the transformations to be
expressed in this layer are also simple, as occurred with the lexical layer. With regard
to the source format, specifications at this layer describe the correspondence between
each component and its accessors (either for the component itself, for all the
components of a specific type, or for pieces of information of each component). With
regard to the target format, specifications at this layer describe the correspondence
between each component and its constructors, adding and updating methods, as well
as the accessors that might be needed . Besides, in this layer it is also specified the
correspondence between the attribute datatypes of the source and target formats.

As occurred in the lexical layer, in the syntactic layer we propose the use of the
language ODESyntax, which allows specifying all the correspondences outlined
above. This language is also based on another one available for building compilers,
such as yacc [Johnson, 1975]. A specification in this language is also divided in
several parts, which will be described in detail below, using examples that correspond
to the WebODE export service to OWL DL. The following rule shows that there are
five parts: user code, declarations, accessors, constructor and updates, and datatype
transformations.
 (1) ODESyntaxDocument :: {comment} %% [userCode] %% [declarations]
 %% [accessDecls] %% [updateDecls] %% [datatype]

User code. Like with ODELex, the first part of an ODESyntax specification contains
the user code, where all the auxiliary Java functions to be used in the rest of the
specification are included. These functions usually implement complex syntactic
transformations (e.g., of attribute datatypes) or they are used as a kind of macro
definitions for transformations, accessors, updaters, etc., that have to be implemented
as sequences of functions from the standard Java API or from the APIs of the source
and target formats. The corresponding derivation rule is the same as in ODELex:

 (2) userCode :: {comment} %(javaCode)%

1816 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

The following examples, taken from the WebODE export service to OWL DL,
show some auxiliary functions defined in this part:
- getConcepts, which receives as an input an ontology name and returns all the

concepts in the WebODE ontology. This function is defined here because the
current WebODE ontology access API does not provide such a method.

- addComment, which receives the class where the comment must be added and
the text of the comment. This function is defined here because in the Jena API
(used to generate the target OWL ontology) the language in which the comment
text is available must be specified. This function ensures that this language is set
to null. As we will see later, this could have been omitted, since this function is
used mostly as a macro.

- removeAllSuperclasses, which receives an OWL class and removes all its
references to its superclasses. This function is defined here because the Jena API
does not provide a specific function for performing this action, and it will be used
in one of the following parts of the ODESyntax specification.

%(
//Import statements for the source format
import es.upm.fi.dia.ontology.webode.service.*;
//Import statements for the target format
import com.hp.hpl.jena.ontology.*;

private Concept[] getConcepts(String ontology){
 return (Concept[] (ode.getTerms
 (ontology,

 new int [] {TermTypes.CONCEPT})));
}

private void addComment(OntClass class, String comm) {
 class.addComment(comm,null);
 //the second argument specifies the language
}

private void removeAllSuperclasses(OntClass class){
 ExtendedIterator iter = class.listSuperClasses();
 if (iter!=null){
 while (iter.hasNext()){
 class.removeSuperClass(

 (OntClass)iter.next());
 }
 }
}
…
)%

The definitions included in the user code part will be copied verbatim into the
source file of the SyntaxMapper.java file generated from this specification. We also
consider the possibility of referencing transformation functions from a syntax analiser
created with typical syntax analysis tools such as yacc [Johnson, 1975; Levine et al.,
1992], JCup5 [Hudson, 1999], etc.

5 http://www.cs.princeton.edu/~appel/modern/java/CUP/

1817Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

Declarations. Like in ODELex, this part of an ODESyntax specification contains the
declaration of which ontology components will be dealt with in the specification. This
component list does not need to contain the same components than the ODELex one,
since it has a different purpose (syntactic transformations instead of lexical ones).
Besides, it does not have to consider whether a component is transient or not, nor
whether there can be overlap or not with other components, since these problems are
already solved by the lexical layer specification. The following rules are used to
create this declaration part of the ODESyntax document:

 (3) declarations :: {comment | namespaceDecl | componentDecl }
 (4) namespaceDecl :: %NAMESPACE id javaPackage ;
 (5) componentDecl :: idComponent [scopeDecl] : javaClassID CR
 (6) scopeDecl :: %scope (idComponent {, idComponent})

The ODESyntax component list is usually based on the knowledge models of the
source and target formats, and usually corresponds as well to their APIs. If there is a
strong correspondence between the format API and its knowledge model (either of the
source or of the target format), the transformations to be specified in ODESyntax are
quite straightforward. If not, the transformations are more complex and hence more
effort is needed to construct the ODESyntax specification.

The declaration part also includes a list of namespaces, which is used to
abbreviate long Java packages in the rest of the specification. To refer to these
namespaces, the corresponding namespace identifier must be placed between square
brackets (e.g., [ode] to refer to es.upm.fi.dia.ontology.webode.service.).

The declaration part of the example below defines two namespaces (ode and
jenaOnt), which correspond to the packages where the knowledge models of the
source and target formats are defined. It also defines the ontology components from
the source and target formats that will be used for the syntactic transformations,
together with their scope, in case that they depend on another components, and with
their corresponding Java class or interface. In the case that a component does not have
an interface or class defined for it in the format API, we should create it in the user
code part or in an external file, and make references to it from this specification.

%NAMESPACE ode es.upm.fi.dia.ontology.webode.service.;
%NAMESPACE jenaOnt com.hp.hpl.jena.ontology.;

/* WebODE components */
WebODE.Ontology :[ode]OntologyDescriptor
WebODE.Concept %scope (WebODE.Ontology) :[ode]Concept
WebODE Group %scope (WebODE.Ontology) :[ode]Group
WebODE.InstanceAttribute

 %scope (WebODE.Concept,WebODE.Ontology)
 :[ode]InstanceAttributeDescriptor

WebODE.ClassAttribute
 %scope (WebODE.Concept) :[ode]ClassAttributeDescriptor

WebODE.AdHocRelation
 %scope (WebODE.Concept,WebODE.Concept)
 :[ode]TermRelation
WebODE.Reference

 %scope (WebODE.Ontology) :[ode]ReferenceDescriptor

1818 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

WebODE.Axiom
 %scope (WebODE.Ontology) :[ode]FormulaDescriptor

WebODE.Instance
 %scope (WebODE.Ontology,WebODE.InstanceSet)
 :[ode]Instance

WebODE.InstanceSet
 %scope (WebODE.Ontology) :[ode]InstanceSet

/* OWL components */
OWL.Ontology :[jenaOnt]Ontology
OWL.Class :[jenaOnt]OntClass
OWL.ObjectProperty :[jenaOnt]ObjectProperty
OWL.DatatypeProperty :[jenaOnt]DatatypeProperty
OWL.Instance :[jenaOnt]Individual

Unlike in ODELex, the declaration part of an ODESyntax specification must include
all the components that will be managed by the syntax transformations.

Accessor methods. For each ontology component of the source and target formats that
has been declared in the previous piece of code, this part of an ODESyntax
specification may declare the methods to be used for the following purposes:
- To access all the ontology components of a specific type (e.g., a method that

retrieves all the concepts of an ontology).
- To access a specific ontology component of a specific type (e.g., a method that

retrieves a specific concept of an ontology, given its identifier).
- To access different pieces of information of the ontology component (e.g.,

methods or properties to access a concept identifier, a concept description, the
superclasses of a concept, etc.).

The following rules show how we can declare these methods:
 (7) accessDecls :: {accessDecl}
 (8) accessDecl :: header CR [all CR] [individual CR] [information CR]
 (9) header :: % idComponent IDENTIFIER {idComponent IDENTIFIER}
 (10) all :: ALL:{ functionDecl {; functionDecl } }
 (11) individual :: INDIVIDUAL:{ functionDecl {; functionDecl } }
 (12) functionDecl :: number : id (parameters) : javaClassID array
 (13) parameters :: % number { , % number } | λ
 (14) array :: [] | λ
 (15) information :: INFORMATION:{ informDecl {; informDecl } }
 (16) informDecl :: id : id [(parameters)] : javaClassID array

As shown in the previous rules, the first group of accessors will be included in the
ALL keyword, the second group will be included in the INDIVIDUAL keyword, and
the third group will be included in the INFORMATION keyword. For each method in
the first and second groups, we will indicate a number that identifies the method
(because there can be different methods with the same purpose), the method name and
parameters, and the object that it returns. For the third group, we specify the piece of
information’s identifier (which determines how we will access this information from
the semantic and pragmatic layers), the property or method to be used to access to that
information given a specific object of that type, and the datatype.

The following example shows the declaration corresponding to an ontology
component of the source format: a WebODE instance attribute. It shows that instance
attributes are defined inside the scope of an ontology and of a concept. There are two

1819Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

methods that allow accessing all the instance attributes of a concept in an ontology:
the first one is used to access the instance attributes that are defined explicitly in that
concept, and the second one returns also those inherited through the concept
taxonomy. Both of them return an array of objects of the class
InstanceAttributeDescriptor.

There is one method to get a specific instance attribute, given the ontology name,
the concept name and the attribute name.

Finally, the following information can be accessed from an instance attribute: the
concept to which it belongs, the attribute name, the attribute description, its type, its
maximum and minimum cardinality, its maximum and minimum value, and the set of
explicit values. They are accessed using properties of the Java class
InstanceAttributeDescriptor, except for the attribute type, which is accessed with an
ad hoc function defined in the user code part.

%WebODE.InstanceAttribute IDENTIFIER
 WebODE.Concept IDENTIFIER

 WebODE.Ontology IDENTIFIER
ALL:

 {1:getInstanceAttributes(%3,%2):
 [ode]InstanceAttributeDescriptor[];
 //gets instance attributes defined locally to concept
 2:getInstanceAttributes(%3,%2,true):
 [ode]InstanceAttributeDescriptor[]
 //gets also inherited instance attributes

 }
INDIVIDUAL:

 {1:getInstanceAttribute(%3,%2,%1):
 [ode]InstanceAttributeDescriptor}

INFORMATION:
 {concept :termName :String;

 Name :name :String;
 Description :description :String;
 Type :getValueTypeName(valueType) :String;
 MaxCard :maxCardinality :int;
 MinCard :minCardinality :int;
 MaxValue :maxValue :float;
 MinValue :minValue :float;
 Values :values :String[]}

The following example shows the declaration that corresponds to an OWL class

(an ontology component of the target format). It shows that OWL classes are not in
the scope of other components, that there is a method that lists all the classes of an
ontology, that there is also a method to access a specific class, given its identifier, and
that we can access to the class name, description and to its superclasses. In some of
these cases a java.util.Iterator is returned.

%OWL.Class IDENTIFIER
ALL: {1:listClasses() :java.util.Iterator}
INDIVIDUAL: {1:getOntClass(%1) :[jenaOnt]OntClass}
 INFORMATION:

 {name :getURI() :String;
 description :listComments(null) :java.util.Iterator;
 subclassOf :listSuperClasses() :java.util.Iterator}

1820 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

As commented for the declaration part, if a specific method or property that we
want to specify in this part is not defined in the ontology access API of a format, we
can define them either in the user code part of the ODESyntax specification or in a
separate file that will extend the current API.

Constructor and update methods. For each ontology component of the target format
that has been declared in the declaration part, this part of an ODESyntax specification
may declare the methods that will be used for the following purposes:
- To create the ontology component in the target ontology (e.g., a constructor or a

method that creates an OWL class). We use the keyword CREATE.
- To remove the ontology component from the target ontology (e.g., a method that

removes a class from an OWL ontology). We use the keyword REMOVE.
- To add information about the ontology component (e.g., the method or property

to be used to add information about the class documentation, the class
superclasses, etc.). We use the keyword ADD.

- To remove all the information about a specific piece of information of the
ontology component (e.g., the method or property to be used to remove all the
class documentations, all the class superclasses, etc.). We use the keyword
REMOVEALL.

- To remove a value from a specific piece of information of the ontology
component (e.g., the method or property to be used to remove a specific class
documentation, a specific class superclass, etc.). We use the keyword
REMOVEINDIVIDUAL.

The following derivation rules show the syntax to be used to declare these
constructors and update methods:
 (17) updateDecls :: {updateDecl}
 (18) updateDecl :: header CR [create CR] [remove CR] [add CR]
 [removeall CR] [removeindividual CR]
 (19) create :: CREATE:{ createremDecl {; createremDecl } }
 (20) remove :: REMOVE:{ createremDecl {; createremDecl } }
 (21) createremDecl :: number : id (parameters)
 (22) add :: ADD:{ addremDecl {; addremDecl } }
 (23) removeall :: REMOVEALL:{ addremDecl {; addremDecl } }
 (24) removeindividual :: REMOVEINDIVID:{ addremDecl {; addremDecl } }
 (25) addremDecl :: id : id (parameters)

For each method in the first and second groups, we will indicate a number that
identifies the method (because there can be different methods with the same purpose),
the method name and parameters. For the rest of groups, we specify the piece of
information’s identifier (which determines how we will access this information from
the semantic and pragmatic layers), and the property or method to be used to add,
remove all, and remove one of the value(s) of that piece of information, respectively.
Not all the pieces of information must be specified in all the cases, but only those
ones that will be used by the transformations in the semantic and pragmatic layers.

The following example shows the declaration corresponding to an OWL class. It
shows that there is one method that allows creating classes in the target ontology,
createClass, which receives as an input the identifier of the class. It also defines the
methods that can be used to add a natural language description to the class and to

1821Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

remove all the descriptions, and the ones to be used to add a superclass, to remove all
the class superclasses, and to remove a specific superclass. The %1 parameter refers
to the OWL class identifier, and the $1 in the parameter means that the value for this
parameter (the actual description and the class identifier) will be provided by the
semantic or pragmatic layers in the first order. We will see how to define this
information in the semantic and pragmatic transformation layers.

%OWL.Class IDENTIFIER
CREATE: {1:createClass(%1)}
ADD: {description :addComment(%1,$1);
 subclassOf :addSuperClass(createClass($1))}
REMOVEALL: {description :removeAllComments(%1);
 subclassOf :removeAllSuperclasses(%1)}
REMOVEINDIVIDUAL:{

 subclassOf:removeSuperClass(createClass($1))}

As commented for other parts of the specification, if a specific method or
property used in this part is not defined in the ontology access API of a format, we
can define them either in the user code part of the ODESyntax specification or in a
separate file that will extend the current API.
Datatype transformations. This part of an ODESyntax specification contains the
transformations that have to be made to the attribute datatypes that appear in the
source format so as to transform them to the target format. This specific feature,
which may have been included in the previous part of the specification (constructors
and updater methods), aims to make it easier to specify these common
transformations.

The following derivation rules are defined in the ODESyntax grammar to deal
with this type of transformations:
 (26) datatype :: {datatypeTransf}
 (27) datatypeTransf :: " datatypeID " : " datatypeID " ; |
 default %1 : (datatypeID | %1 | { javaCode })

The following example shows how to specify these transformations. In the first
column, we specify the String term used to identify the type in the source format. The
second column specifies the correspondence for each datatype of the source format in
the target format (in this example, all of them are XML Schema datatypes, since
OWL DL only allows them to specify datatypes). The transformations will be
checked sequentially, according to the order specified in this table. Besides, the
“default” keyword can be used at the last line to specify any other kind of datatype
that could be found.

/* Datatype transformations */
"boolean": "http://www.w3.org/2001/XMLSchema#boolean";
"cardinal":

 "http://www.w3.org/2001/XMLSchema#nonNegativeInteger";
"integer": "http://www.w3.org/2001/XMLSchema#integer";
"float": "http://www.w3.org/2001/XMLSchema#float";
"string": "http://www.w3.org/2001/XMLSchema#string";
"date": "http://www.w3.org/2001/XMLSchema#date";
"range": "http://www.w3.org/2001/XMLSchema#float";
"URL": "http://www.w3.org/2001/XMLSchema#anyURI";
default %1: %1;

1822 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

Finally, there are some non-terminal symbols that have been used by the previous
rules of the ODESyntax grammar and whose derivation rules have not appeared yet.
Besides the rules of this type that were defined for ODELex, we have the following
additional ones:
 (36) javaClassID :: [id] id
 (37) javaPackage :: id . { id .}
 (38) datatypeID :: {a-z,A-Z,0-9,:,/,#}

Declarative specification of transformations at the semantic and pragmatic
layers
The previous sections have described how to specify declaratively the transformations
to be made in the lexical and syntactic layers. The main objective of both
transformation layers is to abstract the low-level details of the source and target
formats (their syntax specific features, the restrictions and naming conventions of
ontology component identifiers, etc.), so as to allow specifying the semantic and
pragmatic transformations at a higher abstraction level.

In our proposal, we have considered the assumption that the problems to be
solved in the semantic and pragmatic layers are the most important (and complex)
ones, and they decide which transformations have to be performed by the ontology
translation system. Hence the importance of abstracting low-level details of the source
and target formats so as to allow knowledge engineers to focus on the transformations
between their knowledge models.

The problems to be solved in the semantic layer are mainly related to complex
transformations of expressions that go beyond the rather simple limits of syntax and
whose general aim is usually the meaning preservation of the knowledge transformed.
Some examples of such transformations are:
- Transform a component of the source format into several components in the

target format. For instance, an OWL value restriction is transformed to a
WebODE instance attribute and an explicit value assignment to that instance
attribute.

- Transform a set of components of the source format into one component in the
target format. For instance, a set of OWL disjointWith expressions and subclass
of relationships are transformed into a WebODE disjoint decomposition.

- Transform a component of the source format to different components of the
target format depending on some conditions. For instance, an RDF property
must be transformed to a WebODE ad hoc relation if its range is an RDF class,
and to a WebODE instance attribute if its range is a literal or an XML Schema
datatype.

The problems to be solved in the pragmatic layer are those that permit both
human users and ontology-based applications to notice as less differences as possible
in the ontologies in the original and target formats. Examples of such transformations
are:
- Pre-processing transformations. They usually consist in the creation of

predefined ontology components in the target format so as to facilitate the
transformation of other ontology components during the semantic processing.
For example, creating the metaclass :WebODEConcept in Protégé so as to store

1823Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

additional information about the ontology concepts being transformed from
WebODE to Protégé.

- Post-processing transformations. They usually consist in transforming sets of
expressions in the target format, which have been created as a result of the
semantic transformations, into more legible (and usually equivalent) syntactic
constructs in the target format. Some examples of such transformations are:
transforming a set of WebODE formal axioms that define that several concepts
are disjoint to each other into a WebODE concept group; transforming a domain
of an OWL object property of the form C1 U C2 U … U Cn into a more
general concept that subsumes the union of that concept; etc.

- In-processing transformations. Pragmatic decisions can be also taken during the
processing of individual ontology components of the source format. These
transformations differ from the semantic ones in the fact that they do not change
the semantics of the knowledge transformed, but only how it can be interpreted
by humans. Examples of such decisions are: whether to transform an RDF
property without range to a WebODE instance attribute with type String, to a
WebODE ad hoc relation with the ontology root concept as the range, or to both;
which name should be assigned to the WebODE formal axiom derived from an
OWL complete class definition; which name should be assigned to the WebODE
anonymous class obtained from an OWL union of classes; etc.

- Other transformations. In this group we include any other transformations and
decisions to be taken during the ontology translation process for pragmatic
reasons, and that cannot be easily classified in the previous groups. For instance,
hiding in the Protégé user interface the additional ontology components used to
transform a WebODE ontology, so that users cannot find differences with the
standard Protégé knowledge model.

The translation decisions in both layers will be specified with the same
declarative language: ODESem. As with the other two languages presented in this
chapter (ODELex and ODESyntax), we will now describe the parts in which this
language is divided. The first derivation rule of the grammar shows that an ODESem
specification is divided into three parts: user defined code, declarations and semantic
and pragmatic rules:
 (1) ODESemDocument :: {comment} %% [userCode] %% [declarations] %%
[semRules]
User code. Like with the other two languages, the first part of an ODESem
specification contains the user code, where all the auxiliary Java functions to be used
in the rest of the specification are included. As we have commented above, there
might be a need for performing complex transformations that might not be easily
represented with the primitives used in the other parts of the specification. In this
case, this user defined functions can be used from those parts. The grammar rule used
for the user code part of an ODESem specification is like the ones used in the other
two languages:

 (2) userCode :: {comment} %(javaCode)%
The following examples, taken from the WebODE export service to OWL DL,

show some auxiliary functions defined in this part:
- obtainDatatypes and obtainDomains, which receive as an input the identifier of

an OWL datatype property and return all the datatypes and domains associated

1824 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

to it, as stored in the lexical transformation mapping tools created from the
ODELex specification. These functions are provided as shortcuts for the use of
the predefined lexical function obtainDistinctSourceParametersFromTargetId.

- obtainDatatype and obtainDomain, which are similar to the previous ones, but
return only one datatype and domain, respectively. These functions are used
when the datatype property has only one datatype or range.

- allDatatypesEqual and allDomainsEqual, which receive as an input the
identifier of an OWL datatype property and return whether it has only one
datatype or not, and one domain or not, respectively. These functions are also
shortcuts for the use of the predefined lexical function
obtainDistinctSourceParametersFromTargetId and the check of the return value
length.

private String[] obtainDatatypes (String propID){
 return

 obtainDistinctSourceParameterFromTargetID
 (LexicalMapper.OWL_DatatypeProperty,propID,2);

}
private String obtainDatatype (String propID){
 return

 obtainDistinctSourceParameterFromTargetID
 (LexicalMapper.OWL_DatatypeProperty,propID,2)[0];

}
private String[] obtainDomains (String propID){
 return

 obtainDistinctSourceParameterFromTargetID
 (LexicalMapper.OWL_DatatypeProperty,propID,1);

}
private String[] obtainDomain (String propID){
 return

 obtainDistinctSourceParameterFromTargetID
 (LexicalMapper.OWL_DatatypeProperty,propID,1)[0];

}
private boolean allDatatypesEqual (String propID){
 return

 (obtainDistinctSourceParameterFromTargetID
 (LexicalMapper.OWL_DatatypeProperty,propID,2).
 length<=1);

}
private boolean allDomainsEqual (String propID){

 return
 (obtainDistinctSourceParameterFromTargetID
 (LexicalMapper.OWL_DatatypeProperty,propID,1).
 length<=1);

}
As with the other two languages, the user code part will be copied verbatim into the
source file of the SemMapper.java file generated from this specification.

Semantic and pragmatic transformation rule declarations and processing order.
This part of an ODESem specification contains the declaration of the transformation
rules that will be defined later, together with the order in which they have to be
processed. Unlike in the rest of declarative specifications, where the order of the

1825Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

definitions is not relevant, in this case the processing order of the semantic and
pragmatic transformations might be relevant and hence it is considered in this
specification.

The following rules of the ODESem grammar define how these rules and their
processing order are defined:
 (3) declarations :: {comment | ruleDecl }
 (4) ruleDecl :: number : % id ;

The following piece of code shows these declarations for the WebODE export
service to OWL DL. This export service does not need to execute pre-processing
rules. The rules 1 to 7 are in charge of the semantic and pragmatic transformations of
the components found in the source format (the WebODE ontology). As we can infer
from the rule names, the ontology translation system will first add general information
about the ontology (ontology container), the classes, the object properties, the disjoint
and exhaustive decompositions, and the ontology instances. Finally, three pragmatic
post-processing transformations will be performed, in order to remove redundant
domains in OWL datatype property definitions, and redundant domains and ranges in
OWL object property definitions.

/* Semantic and pragmatic transform. rule declaration,
 and processing sequence */
1: %AddOntologyContainer;
2: %AddClasses;
3: %AddObjectProperties;
4: %AddDisjointDecompositions;
5: %AddExhaustiveDecompositions;
6: %AddInstances;
7: %PostProcessing_RemoveDPRedundantDomains;
8: %PostProcessing_RemoveOPRedundantDomains;
9: %PostProcessing_RemoveOPRedundantRanges;

Semantic and pragmatic transformation rules. The last part of an ODESem
specification contains the rules to be applied in order to transform the ontology
components in the source format to the corresponding ontology components in the
target format. This part of the specification must at least contain the rules declared
previously, plus any other auxiliary rules that can be called from these ones.

A semantic and/or pragmatic transformation rule is referenced to with an
identifier, which is preceded by the symbol ‘%’. This is what is called header in the
ODESem grammar, as shown below:
 (7) semRules :: {semRule | comment}
 (8) semRule :: header CR lhs --> { rhs }
 (9) header :: % id

Besides, as shown in the previous derivation grammar rule, a transformation rule
is define with two parts: the left hand side (LHS) and the right hand side (RHS):
- The LHS (Left Hand Side) of the rule, aka antecedent, contains the information

needed to trigger the rule, which can be either the source ontology component to
be transformed or a target component to be modified. In both cases, the
antecedent is defined with the ontology component type, as defined in the
ODESyntax specification, and with an identifier that will be used to refer to the
specific component in the RHS (Right Hand Side) of the rule. If no information
is needed to trigger the rule, the keyword NULL must be used.

 (10) lhs :: idComponent id | NULL

1826 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

- The RHS of the rule, aka consequent, contains the sequence of actions that have
to be performed in order to obtain the corresponding ontology component(s) in
the target format.

The following rule of the ODESem grammar defines the set of actions that can be
performed in the RHS of the transformation rule:
 (11) rhs :: { create | add | remove | removeall
 | exec | ifThen | forEach
 | error | assign | functionCall} ;

These actions can be grouped in three types: actions that create new ontology
components in the target format, and add or remove components or information;
actions that specify the control flow of the translation system; and general actions
used to throw error messages, assign values to variables or call other functions, either
predefined or defined by the user.

Let us start with the first group of actions, whose corresponding piece of grammar
is shown below:
 (18) create :: CREATE (idComponent , number , var {, var})
 (19) add :: ADD (id , id , (create | var | getComponents))
 (20) remove :: REMOVE (id , id , var)
 (21) removeall :: REMOVEALL (id , id)
- CREATE. It creates (and returns) an ontology component in the target ontology.

This action receives as input parameters the ontology component type to be
created, the number of the specific constructor to be used, and the rest of
parameters needed to create the ontology component. All the information needed
(the ontology component type, the number of the specific constructor and the
number and order of the additional input parameters) must follow the restrictions
coded in the ODESyntax specification.

- ADD. It adds one or several values to a specific property of an ontology
component of the target ontology. The ontology component, the property and the
value(s) are specified as input parameters.

- REMOVE. It removes a value from a specific property of an ontology
component of the target ontology. The ontology component, the property and the
value to be removed are specified as input parameters.

- REMOVEALL. It removes all the values from a specific property of an ontology
component of the target ontology. The ontology component and the property are
specified as input parameters.

The actions specified in the consequent of a transformation rule are executed
sequentially. Besides, the following control flow structures can be used:
 (22) exec :: EXEC (% id , var)
 (15) ifThen :: if (condition) [{] rhs [}] else [{] rhs [}]
 (16) condition :: javaComparison | functionCall
 (17) forEach :: forEach id IN var [{] rhs [}]
- EXEC. It starts the execution of a rule, with the set of parameters that match its

antecedent.
- If condition {actions} else {actions}. It specifies the set of actions to be

performed if the condition specified is evaluated as true (then body), and,
optionally, the set of actions to be performed if the condition specified is
evaluated as false (else body).

1827Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

- ForEach variable IN set_variable {actions}. It specifies the set of actions to be
performed for each ontology component inside the multiple-valued variable.

Finally, any variable assignments can be used, using the form var = value, and the
predefined functions GETCOMPONENT and GETALLCOMPONENTS can be used to
obtain a specific component or all the components of either the source or the target
format (with the parameters specified in the ODESyntax specification). The ERROR
function can be used in cases where the options that allow executing it are not
allowed. These actions are considered in the following ODESem grammar rules:
 (12) assign :: id = { create | functionCall | getComponents}
 (13) functionCall :: id (parameters)
 (14) parameters :: id { , id } | λ
 (26) getComponents :: GETCOMPONENT (idComponent , id) |
 GETALLCOMPONENTS (idComponent , id)

Below we provide the code of some transformation rules of the WebODE export
service to OWL DL, specifically those that transform WebODE concepts and their
instance attributes in OWL classes and datatype properties.

The first rule (AddClasses) appeared in the declaration and processing order part
of the specification. For each concept defined in WebODE, it creates an OWL class
with the concept name, it adds a natural language description, in case that it exists and
that the concept is not an imported term from another ontology, and it states that it is a
subclass of the parent concepts, as specified in the source format. Finally, for each
instance attribute of the concept, the rule ADDInstanceAttributes is triggered.

%AddClasses
WebODE.Concept concept -->
 {C = CREATE(OWL.Class,1,concept.name);
 if (concept.description != null && !concept.isImported)

 ADD(C,description,concept.description);
 ADD(C,subClassOf,concept.parentConcepts);
 forEach ia IN concept.instanceAttributes

 EXEC(%AddInstanceAttributes,WebODE.InstanceAttribute,ia);

 }
The second rule (AddInstanceAttributes) did not appear in the declaration and

processing order part of the specification, hence it is considered as an auxiliary rule. It
creates an OWL datatype property out from a WebODE instance attribute, and
implements a decision tree that depends on whether there are several instance
attributes in WebODE that produce the same OWL identifier or not, and in the first
case, whether all those instance attributes have the same datatype associated or not.
Depending on these conditions, the rules AddInstanceAttributes_1 or
AddInstanceAttributes_2 will be triggered, or an error will be obtained.

%AddInstanceAttributes
WebODE.InstanceAttribute instAttr -->
 {P = CREATE(OWL.DatatypeProperty,1,propertyID);
 if (targetIDhasSeveralSources (WebODE.InstanceAttribute,

 instAttr.name,instAttr.concept,instAttr.type) {
 if (allDatatypesEqual (WebODE.InstanceAttribute,
 instAttr.name,instAttr.concept,instAttr.type))
 EXEC(%AddInstanceAttributes_1,P);
 else

1828 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

 ERROR("Datatype property multiple datatypes");
 }else
 EXEC(%AddInstanceAttributes_2,P);
 }
Finally, the last two auxiliary rules are in charge of updating the information that

corresponds to the datatype property created by the previous one. The first one
(AddInstanceAttributes_1) is used when there are several instance attributes in
WebODE that produce the same identifier, since they share the same datatype. This
rule creates the union of all the concepts where those instance attributes are defined
and set it as the domain of the datatype property. It also establishes the range of the
property as the datatype of all those instance attributes. Finally, for each OWL class
in the domain of the property it creates an OWL AllValuesFrom restriction, and the
corresponding minimum and maximum cardinality restrictions, and attach them as
subclass of restrictions of the class. The second rule (AddInstanceAttributes_2) is
used when there is only one instance attribute that produces that datatype property
identifier. In that case, the rule establishes the domain and range of the property, and
adds OWL AllValuesFrom and maximum and minimum cardinality restrictions to the
corresponding domain class.

%AddInstanceAttributes_1
OWL.DatatypeProperty P -->
 {domains = obtainDomains(P);
 ADD(P,domain,CREATE(OWL.UnionOf,1,domains));
 ADD(P,range,obtainDatatype(P.name));
 forEach d IN domains {
 D = GETCOMPONENT(OWL.Class,d);
 ADD(D,subClassOf,

 CREATE(OWL.AllValuesFrom,1,P,obtainDatatype(P.name)));
 if (instAttr.minCard!=0)
 ADD(D,subClassOf,

 CREATE(OWL.MinCardRestriction,1,P,instAttr.minCard));
 if (instAttr.maxCard!=-1)
 ADD(D,subClassOf,

 CREATE(OWL.MaxCardRestriction,1,P,instAttr.maxCard));
 }
 }
%AddInstanceAttributes_2
OWL.DatatypeProperty P -->
 {ADD(P,domain,obtainDomain(P.name));
 ADD(P,range,obtainDatatype(P.name));
 D = GETCOMPONENT(OWL.Class,d);
 ADD(D,subClassOf,
 CREATE(OWL.AllValuesFrom,1,P, obtainDatatype(P.name)));
 if (instAttr.minCard!=0)
 ADD(D,subClassOf,
 CREATE(OWL.MinCardRestriction,1,P,instAttr.minCard));
 if (instAttr.maxCard!=-1)
 ADD(D,subClassOf,
 CREATE(OWL.MaxCardRestriction,1,P,instAttr.maxCard));
 }

1829Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

Finally, we will show a transformation rule that corresponds to the pragmatic
post-processing of datatype properties so as to remove the redundant domains. This
transformation rule consists in checking whether the domain of a datatype property is
an OWL union of classes. In that case, if any of the classes in that union is already a
subclass of any of the other concepts in the union, then the class can be removed,
since it is already considered in the domain.

%PostProcessing_RemoveDPRedundantDomains
OWL.DatatypeProperty P -->

 {forEach U in P.domain {
 if (U.isUnionOf)
 forEach D in U.classes
 forEach E in U.classes
 if (E.isSubclassOf(D))

 REMOVE(U,class,E)
 }

4 Conclusions and Future Work

In this paper we have described the ODEDialect language, which is composed of the
following three languages: ODELex, ODESyntax, and ODESem. These languages
allow expressing declaratively the translation decisions to be made at four different
layers (lexical, syntax, semantic, and pragmatic), based on existing classifications of
semantic interoperability and on the theory of signs.

One of our assumptions in the development of these languages is that it is easier
to construct and maintain ontology translation systems if their translation decisions
are divided in the previous four layers. The types of transformations to be made at
each layer are different, and consequently the languages for expressing
transformations at each layer are different as well, except for the semantic and
pragmatic ones.

Besides, one of the design issues considered for the creation of these languages
has been that they should allow expressing declaratively most of the transformations
to be made at each layer. However, at the same time it should be flexible enough to
allow representing any type of transformations that could be needed for any
translation system. We have achieved these objectives by proposing a large set of
primitives in these languages and by allowing the inclusion of user-defined code in
the general purpose programming language Java. Even if this may provide too much
freedom for users, since they can use any Java construct to build their translation
systems, our experience has shown that these constructs are only used in very few
cases, and that due to the fact that many languages share common characteristics at
different layers, these pieces of code can be normally reused across translation
systems.

The ODEDialect language has been successfully used for the specification of the
translation decisions of the import and export services of the WebODE ontology
engineering workbench to and from OWL DL, RDF(S), and Protégé-Frames, and for
their automatic generation and deployment in the workbench. These services have

1830 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

been evaluated in the context of the EON interoperability workshops6, with overall
good results.

5 Related Work

Though there are no other integrated methods for building ontology translation
systems available, we can find some technology that allows creating them.
Specifically, we can cite two tools: Transmorpher and OntoMorph:
- Transmorpher7 [Euzenat and Tardif, 2001] is a tool that facilitates the definition

and processing of complex transformations of XML documents. Among other
domains, this tool has been used in the context of ontologies, using a set of
XSLT documents that are able to transform from one DL language to another,
expressed in DLML8. This tool is aimed at supporting the “family of ontology
languages” approach for ontology translation, described in [Euzenat and
Stuckenschmidt, 2003]. The main limitation of this approach is that it only deals
with problems in the semantic layer, not focusing on other problems related to
the lexical, syntax and pragmatic layers.

- OntoMorph [Chalupsky, 2000] is a tool that allows creating translators
declaratively. Transformations between the source and the target formats are
specified by means of pattern-based transformation rules, and are performed in
two phases: syntactic rewriting and semantic rewriting. The last one needs the
ontology or part of it translated into PowerLoom, so that this KR system can be
used for certain kinds of reasoning, such as discovering whether a class is
subclass of another, whether a relation can be applied to a concept or not, etc.
Since this tool is based on PowerLoom (and consequently on Lisp), it cannot
handle easily all the problems that may appear in the lexical and syntax layers.

ODEDialect improves the support given by these systems by allowing the
specification of transformations at more levels, so that ontology translation systems
are easier to create, understand and maintain. Besides, ODEDialect can be applied to
a wider range of formats, not necessarily based on XML or Lisp.

Another theoretical work that is worth mentioning, since it was applied for the
formalization and development of KIF/Ontolingua translators to and from several
languages (including LOOM, CLASSIC and EXPRESS) is the work on reversible
grammars described in [van Baalen and Fikes, 1994]. Given a translation system
between two models developed using a grammar based on Horn clauses, the authors
define the set of conditions under which such a translation system can be used to
perform the reverse translation. While this was an important contribution for ontology
translation, it had an important limitation with respect to its applicability for the
development of translation systems between any two models, since it is not always
possible to specify all translation decisions using a grammar exclusively based on
Horn clauses. Let us consider pragmatic decisions implemented with ODEDialect to
remove facts from the target knowledge base and replace them with a different

6 http://km.aifb.uni-karlsruhe.de/ws/eon2007
7 http://transmorpher.inrialpes.fr/
8 Description Logic Markup Language. http://co4.inrialpes.fr/xml/dlml/

1831Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

knowledge representation primitive. This type of transformation cannot be
represented with Horn clauses as this approach requires. Even for semantic decisions
(which are the ones that this approach is focused on), they cannot be always reduced
to Horn clauses either. For instance, it is not possible to express exclusively with a
finite number of Horn clauses that if property P of a set of Protégé-Frames classes
{C1,...,Cn} has always the same range (class D), then we can create in OWL an
ObjectProperty P whose domain is the union of the set of classes {C1,...,Cn} and
whose range is the class D. Only in the case where all decisions can be ultimately
transformed into Horn clauses, this approach could provide the formal bases for
determining whether there is a possibility of using that grammar to derive a reverse
translator between the languages.

References

[Arpírez et al., 2003] Arpírez, J.C., Corcho, O., Fernández-López, M., Gómez-Pérez, A.:
(2003) WebODE in a nutshell. AI Magazine 24(3):37-48. Fall 2003

[Baader, 1996] Baader, F.: (1996) A Formal Definition for the Expressive Power of
Terminological Knowledge Representation Languages. Journal of Logic and Computation
6(1):33–54

[Baader et al., 2003] Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.: (2003) The
Description Logic Handbook: Theory, implementation and applications. Cambridge University
Press, Cambridge, United Kingdom

[Bechhofer et al., 2001] Bechhofer, S., Horrocks, I., Goble, C., Stevens, R.: (2001) OilEd: a
reasonable ontology editor for the Semantic Web. In: Baader F, Brewka G, Eiter T (eds) Joint
German/Austrian conference on Artificial Intelligence (KI’01). Vienna, Austria. (Lecture Notes
in Artificial Intelligence LNAI 2174) Springer-Verlag, Berlin, Germany, pp 396–408

[Borgida, 1996] Borgida, A.: (1996) On the relative expressiveness of description logics and
predicate logics. Artificial Intelligence 82(1-2):353–367

[Brickley and Guha, 2004] Brickley, D., Guha, R.V.: (2004) RDF Vocabulary Description
Language 1.0: RDF Schema. W3C Recommendation. http://www.w3.org/TR/PR-rdf-schema

[Chalupsky, 2000] Chalupsky, H.: (2000) OntoMorph: a translation system for symbolic
knowledge. In: Cohn AG, Giunchiglia F, Selman B (eds) 7th International Conference on
Knowledge Representation and Reasoning (KR’00). Breckenridge, Colorado. Morgan
Kaufmann Publishers, San Francisco, California, pp 471–482

[Corcho and Gómez-Pérez, 2000] Corcho, O., Gómez-Pérez, A.: (2000) A Roadmap to
Ontology Specification Languages. In: Dieng R, Corby O (eds) 12th International Conference in
Knowledge Engineering and Knowledge Management (EKAW’00). Juan-Les-Pins, France.
Springer-Verlag, Lecture Notes in Artificial Intelligence (LNAI) 1937, Berlin, Germany, pp
80–96

[Dean and Schreiber, 2004] Dean, M., Schreiber, G.: (2004) OWL Web Ontology Language
Reference. W3C Recommendation. http://www.w3.org/TR/owl-ref/

[Domingue, 1998] Domingue, J.: (1998) Tadzebao and WebOnto: Discussing, Browsing, and
Editing Ontologies on the Web. In: Gaines BR, Musen MA (eds) 11th International Workshop
on Knowledge Acquisition, Modeling and Management (KAW'98). Banff, Canada, KM4:1–20

1832 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

[Euzenat, 2001] Euzenat, J.: (2001) Towards a principled approach to semantic
interoperability. In: Gómez-Pérez A, Grüninger M, Stuckenschmidt H, Uschold M (eds)
IJCAI2001 Workshop on Ontologies and Information Sharing, Seattle, Washington

[Euzenat and Stuckenschmidt, 2003] Euzenat, J., Stuckenschmidt, H. (2003) The `family of
languages' approach to semantic interoperability. In: Omelayenko B, Klein M (eds)
Knowledge transformation for the semantic web, IOS press, Ámsterdam, The Netherlands,
pp49-63

[Euzenat and Tardif, 2001] Euzenat, J., Tardif, L.: (2001) XML transformation flow processing.
Markup languages: theory and practice 3(3):285–311

[Farquhar et al. 1997] Farquhar, A., Fikes, R., Rice, J. (1997) The Ontolingua Server: A Tool
for Collaborative Ontology Construction. International Journal of Human Computer Studies.
46(6):707–727

[Fernández-López et al., 2000] Fernández-López, M., Gómez-Pérez, A., Rojas-Amaya, M.D.:
(2000) Ontologies' crossed life cycles. In: Dieng R, Corby O (eds) 12th International
Conference in Knowledge Engineering and Knowledge Management (EKAW’00). Juan-Les-
Pins, France. (Lecture Notes in Artificial Intelligence LNAI 1937) Springer-Verlag, Berlin,
Germany, pp 65–79

[Genesereth and Fikes, 1992] Genesereth, M.R., Fikes, R.E.: (1992) Knowledge Interchange
Format. Version 3.0. Reference Manual. Technical Report Logic-92-1. Computer Science
Department. Stanford University, California, available at
http://meta2.stanford.edu/kif/Hypertext/kif-manual.html

[Gómez-Pérez et al., 2003] Gómez-Pérez, A., Fernández-López, M., Corcho, O.: (2003)
Ontological Engineering: with examples from the areas of knowledge management, e-
commerce and the Semantic Web, Springer-Verlag, New York.

[Gómez-Pérez et al., 1997] Gómez-Pérez, A., Juristo, N., Montes, C., Pazos, J.: (1997)
Ingeniería del Conocimiento. Centro de Estudios Ramón Areces

[Gruber, 1992] Gruber, T.R.: (1992) Ontolingua: A Mechanism to Support Portable
Ontologies. Technical report KSL-91-66, Knowledge Systems Laboratory, Stanford University,
Stanford, California. ftp://ftp.ksl.stanford.edu/pub/KSL_Reports/KSL-91-66.ps

[Gruber, 1993] Gruber, T.R.: (1993) A translation approach to portable ontology specification.
Knowledge Acquisition 5(2):199–220

[Johnson, 1975] Johnson, S.C.: (1975) Yacc: Yet Another Compiler Compiler, Computing
Science Technical Report No. 32, Bell Laboratories, Murray Hill, New Jersey

[Kifer et al., 1995] Kifer, M., Lausen, G., Wu, J.: (1995) Logical Foundations of Object-
Oriented and Frame-ased Languages. Journal of the ACM 42(4):741–843

[Klein, 2001] Klein, M.: (2001) Combining and relating ontologies: an analysis of problems
and solutions. In: Gómez-Pérez A, Grüninger M, Stuckenschmidt H, Uschold M (eds)
IJCAI2001 Workshop on Ontologies and Information Sharing, Seattle, Washington

[Knublauch, 2003] Knublauch, H.: (2003) Editing Semantic Web Content with Protégé: the
OWL Plugin. 6th Protégé workshop. Manchester, United Kingdom

[Lassila and Swick, 1999] Lassila, O., Swick, R.: (1999) Resource Description Framework
(RDF) Model and Syntax Specification. W3C Recommendation. http://www.w3.org/TR/REC-
rdf-syntax/

1833Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

[Lenat and Guha, 1990] Lenat, D.B., Guha, R.V.: (1990) Building Large Knowledge-based
Systems: Representation and Inference in the Cyc Project. Addison-Wesley, Boston,
Massachusetts

[Lesk, 1975] Lesk, M.E.: (1975) Lex - A Lexical Analyzer Generator, Computing Science
Technical Report No. 39, Bell Laboratories, Murray Hill, New Jersey

[MacGregor, 2001] MacGregor, R.: (2001) Inside the LOOM classifier. SIGART Bulletin
2(3):88–92

[Maedche et al. 2003] Maedche, A., Motik, B., Stojanovic, L., Studer, R., Volz, R.: (2003)
Ontologies for Enterprise Knowledge Management. IEEE Intelligent Systems 18(2):26–33

[Morris, 1938] Morris, C.W.: (1938) Foundations of the theory of signs. In: Neurath O, Carnap
R, Morris CW (eds) International encyclopedia of unified science. Chicago University Press
[reprinted in C W Morris 1971 Writings on the theory of signs. Mouton, The Hague]

[Motta, 1999] Motta, E.: (1999) Reusable Components for Knowledge Modelling: Principles
and Case Studies in Parametric Design. IOS Press. Amsterdam, The Netherlands

[Noy et al. 2000] Noy, N.F., Fergerson, R.W., Musen, M.A.: (2000) The knowledge model of
Protege-2000: Combining interoperability and flexibility. In: Dieng R, Corby O (eds) 12th
International Conference in Knowledge Engineering and Knowledge Management
(EKAW’00). Juan-Les-Pins, France. (Lecture Notes in Artificial Intelligence LNAI 1937)
Springer-Verlag, Berlin, Germany, pp 17–32

[Schreiber et al., 1999] Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt,
N., van de Velde, W., Wielinga, B.: (1999) Knowledge engineering and management. The
CommonKADS Methodology. MIT press, Cambridge, Massachusetts

[Sure et al., 2002] Sure, Y., Staab, S., Angele, J.: (2002) OntoEdit: Guiding Ontology
Development by Methodology and Inferencing. In: Meersman R, Tari Z (eds) Confederated
International Conferences CoopIS, DOA and ODBASE 2002, University of California, Irvine.
(Lecture Notes in Computer Science LNCS 2519) Springer-Verlag, Berlin, Germany, pp 1205–
1222

[Swartout et al., 1997] Swartout, B., Ramesh, P., Knight, K., Russ, T.: (1997) Toward
Distributed Use of Large-Scale Ontologies. In: Farquhar A, Gruninger M, Gómez-Pérez A,
Uschold M, van der Vet P (eds) AAAI’97 Spring Symposium on Ontological Engineering.
Stanford University, California, pp 138–148

[Tempich et al., 2005] Tempich, C., Pinto, H.S., Sure, Y., Staab, S.: (2005) An Argumentation
Ontology for DIstributed, Loosely-controlled and evolvInG Engineering processes of
oNTologies (DILIGENT). ESWC 2005: 241-256

[Valente et al., 1999] Valente, A., Russ, T., MacGregor, R.M., Swartout, W.R.: (1999) Building
and (Re)Using an Ontology of Air Campaign Planning. IEEE Intelligent Systems. 1999

[Van Baalen and Fikes, 1994] Van Baalen, J., Fikes, R.E.: (1994) The Role of Reversible
Grammars in Translating Between Representation Languages. In Doyle J, Sandewall E,
Torasso P (editors): Proceedings of KR94: Principles of Knowledge Representation and
Reasoning, pp 562-571

1834 Corcho O., Gomez-Perez A.: ODEDialect: a Set of Declarative Languages ...

