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1 Introduction

Spectral graph theory is the study of eigenvalues and eigenvectors of graphs.
These provide relevant information regarding the structure of a graph which is
especially important when we are dealing with large graphs.

The eigenvalues we will discuss in this paper are the eigenvalues λi of the
adjacency matrix A of a graph G, indexed so that λ1 ≥ λ2 ≥ · · · ≥ λn. The
greatest eigenvalue, λ1, is also called the spectral radius. If G is d-regular, then
it is easy to see that λ1 = d and also, λ2 < d if and only if G is connected. Note
that there are also other matrices that one can associate to a graph, namely
the combinatorial Laplacian and the normalized Laplacian (see [Chung 1997,
Grone and Merris 1994] for more details on these matrices and their eigenvalues
properties).

The spectral radius of a graph is related to the chromatic number, the inde-
pendence number and the clique number of a graph, all of which are hard to com-
pute in general(see [Haemers 1995, Hoffman 1970, Nikiforov 2001, Wilf 1986]).
Bollobás and Nikiforov [Bollobás and Nikiforov 2007] have also found connec-
tions regarding the spectral radius and the number of complete subgraphs of a
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connected graph. There are results in the literature which show that the spectral
radius is connected to the spread of viruses in a network (see [Wang et al. 2003,
Jamakovic et al.]). The spectral radius is also closely related to the top singu-
lar value of a directed graph’s adjacency matrix, which plays a central role in
Kleinberg’s hubs-and-authorities algorithm for web ranking [Kleinberg 1998].

The second largest eigenvalue λ2 of a d-regular graph contains important
information regarding the expansion properties of the graph. Informally, a con-
nected d-regular graph whose second largest eigenvalue is small (see [Cioabă 2006,
Nilli 2004] for more details on how small λ2 can be) is a very good expander.
Expanders are sparse graphs with high connectivity properties which are very
useful in various applications in computer science, error-correcting codes, net-
work design among others (see the recent survey [Hoory et al. 2006] by Hoory,
Linial and Wigderson for more details on expanders properties and applications).

The other eigenvalues can reflect structural properties of a graph as well.
The smallest eigenvalue λn is closely connected to the independence number of
a graph ([Haemers 1995, Hoffman 1970]) as well as the maximum cut of a graph
([Alon and Sudakov 2000]). In [Brouwer and Haemers 2005, Cioabă et al.], the
third largest eigenvalue λ3 of a connected regular graph has been studied in
connection with the size of the largest matching of the graph.

The spectral radius is related to density of a connected graph G. If G has n

vertices and e edges, then it is well known (see [Cvetkovic et al. 1980]) that

λ1 ≥ 2e

n
(1)

with equality if and only if G is regular. This inequality can be slightly improved
when the graph is irregular (see [Cioabă and Gregory 2007, Nikiforov a]). We
discuss some basic properties of the eigenvalues in Section 2.

In Section 3, we consider the problem of finding small subgraphs with large
spectral radius. Since the general problem of deciding whether there exists a sub-
graph having at most k vertices and spectral radius at least λ is NP-complete,
we consider the following notion of approximation for the problem. We say an
algorithm is a (f(λ), g(k))-approximation algorithm for the spectral radius prob-
lem if, whenever the input graph contains a set with spectral radius at least λ

on at most k vertices, the algorithm returns a subgraph with spectral radius at
least f(λ) on at most g(k) vertices. Our main result on this topic is a polynomial
time (λ/4, Δk2)-approximation algorithm for the spectral radius problem.

The key component of our algorithm is a subroutine that searches for a set
with bounded size and large spectral radius near a specified starting vertex. This
is related to the problem of finding a dense subgraph near a specified starting
vertex, which was considered in [Andersen 2007]. The subroutine developed in
this paper allows us to obtain a better approximation ratio for the spectral radius
problem than we could obtain by applying the algorithm from [Andersen 2007];
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by searching directly for a subgraph with large spectral radius we obtain the
stated approximation ratio of (λ/4, Δk2), while searching for a dense subgraph
would yield an approximation ratio of roughly (λ/ log n, Δk2).

In Section 4, we study large subgraphs with small spectral radius. We consider
the following spectral generalization of the usual notion of an independent set.
Recall that a subset of vertices S of a connected graph G is an independent set
if the subgraph induced by S contains no edges. Given λ > 0, we call a subset T

an λ-independent set if the subgraph induced by T has spectral radius at most
λ. It is easy to see that an λ-independent set is a usual independent set when
λ ∈ [0, 1).

We prove a Hoffman-type ratio bound for the largest order of an λ-independent
subset. This implies previous results from [Bilu 2006, Cardoso et al.]. We also
improve a previous result from [Bollobás and Nikiforov 2007].

2 Preliminaries

Let A be the adjacency matrix of an undirected, connected graph, with Ai,j =
1 if i ∼ j, and 0 otherwise. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of
A. The spectral radius λ1(A) is the largest eigenvalue of A. The corresponding
eigenvector is nonnegative.

It is well known (see [Cvetkovic et al. 1980]) that

λ1 = max
x∈Rn\{0}

xtAx

xtx
(2)

Definition 1. For a subset of vertices S ⊆ V , we define AS to be the adjacency
matrix restricted to the induced subgraph on S,

AS(x, y) =

{
A(x, y) if x ∈ S and y ∈ S

0 otherwise.

The spectral radius of the induced subgraph on S is λ1(AS), which we will
sometimes write as λ1(S). It follows easily from (2) that if S ⊆ T , then λ1(AS) ≤
λ1(AT ).

The support of a vector x is the set of vertices on which x is nonzero. The
one-step neighborhood N1(S) of a set S is the set of vertices that are in S or
reachable within 1 hop from S.

3 Finding a small subgraph with large spectral radius

The (k, λ)-spectral radius problem is the problem of deciding, given a graph
G and values for k and λ, whether there exists a subgraph of G on at most k
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vertices whose spectral radius is at least λ. This problem is NP -complete by a
reduction from k-clique, which follows from the fact that a graph on k vertices
has spectral radius at least k − 1 if and only if it is a k-clique.

In this section, we present an approximation algorithm for the spectral radius
problem. We say an algorithm is a (f(λ), g(k))-approximation algorithm for the
spectral radius problem if, whenever the input graph contains a set with spectral
radius at least λ on at most k vertices, the algorithm returns a subgraph with
spectral radius at least f(λ) on at most g(k) vertices. The following theorem
states that our algorithm, which will be described later in this section, is a
(λ/4, Δk2)-approximation algorithm for the spectral radius problem.

Theorem 2. There is an algorithm SpectralRadius(k) that takes as input a
graph and an integer k. The algorithm runs in time O(nΔk2), where Δ is the
maximum degree of the graph. If there exists a subgraph S on at most k ver-
tices whose spectral radius is λ, the algorithm outputs a subgraph S′ satisfying
λ1(S′) ≥ λ/4 and |S′| ≤ Δk2.

The proof of this theorem is given at the end of this section. First, we will
present a key subroutine that we will use in the proof— an algorithm that
searches for a set with bounded size and large spectral radius near a specified
starting vertex. We will prove Theorem 2 by applying this subroutine at many
different starting vertices, and taking the best answer obtained.

3.1 Finding a subgraph with large spectral radius near a given
vertex

In this section we develop a subroutine FindSubgraph(v, k) that searches for a
set with bounded size and large spectral radius near a specified starting vertex.
The input to the subroutine is a graph, along with a starting vertex v and a target
size k. The set returned by the algorithm always has size at most at most Δk2.
We will prove that whenever there exists a subgraph S with at most k vertices
and spectral radius λ, there is at least one starting vertex v ∈ S for which the
set returned by FindSubgraph(v, k) has spectral radius at least λ1(S)/4.

The subroutine FindSubgraph(v, k) is similar to the algorithm analyzed by
Andersen in [Andersen 2007] for finding a dense subgraph near a specified start-
ing vertex. Finding a dense subgraph is closely related to finding a subgraph
with large spectral radius, since the spectral radius of a graph is always within
a factor of log n of the maximum density of a subgraph contained inside it
(see [Kannan and Vinay 1999]). We remark that one can obtain an (f(λ), Δk2)-
approximation algorithm for the spectral radius problem by using the algorithm
from [Andersen 2007] to find a small dense subgraph, and this method yields
an approximation ratio of roughly f(λ) = λ/ log n. Using the subroutine we
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develop here, which directly finds a subgraph with large spectral radius rather
than a dense subgraph, we obtain a constant-factor approximation guarantee
f(λ) = λ/4.

The main computation performed by FindSubgraph(v, k) is to generate a
sequence of vectors, x0, . . . , xT , where the initial vector x0 is the indicator vector
for the starting vertex v. At each step, we multiply the current vector by the
adjacency matrix A, as in the power method, and then perform a pruning step
that sets to zero each entry of the vector whose contribution to the norm of the
vector is below a certain threshold. This pruning step ensures that the support
of the vector is small at each step.

Definition 3. Given a vector x, we define prune(ε, x) to be the vector obtained
by setting to zero any entry of x whose value is at most ε‖x‖,

[prune(ε, x)](u) =

{
x(u) if x(u) > ε‖x‖,
0 otherwise.

We now state the subroutine FindSubgraph(v, k). At each step, we compute
the growth rate gt = ‖xtA‖/‖xt‖, and consider the set St = N1(Support(xt)),
which is the set of vertices within 1 step of the support of xt. The algorithm
outputs the set St∗ , where t∗ is the time step where the largest growth rate was
observed.
FindSubgraph(v, k)
Input: A starting vertex v and a target size k.
Output: A set of vertices S′.

1. let T = log(
√

k), and let εt = 2t/k.

2. For t = 0, . . . , T , compute the vector xt iteratively using the following
rule:

x0 = 1v,

xt+1 = prune(εt+1, xtA).

3. For each t, compute the growth rate gt = ‖xtA‖/‖xt‖,
and let t∗ be value of t for which gt is largest.

4. Output the set S∗ = N1(Support(xt∗)), which is the set of vertices within
1 step of the support of xt∗ .

Theorem 4. The algorithm FindSubgraph(v, k) runs in time O(Δk2), and al-
ways outputs a subgraph with at most Δk2 vertices, where Δ is the maximum
degree in the graph.
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Theorem 5. Let S be a subgraph on at most k vertices whose spectral radius
is λ. Then, there exists at least one vertex v ∈ S for which FindSubgraph(v, k)
outputs a subgraph S′ satisfying λ1(S′) ≥ λ/4.

Proof (of Theorem 4). We can bound the running time of FindSubgraph(v, k)
by bounding the number of vertices in the support of xt at each step. The pruning
step ensures that xt is at least εt‖xt‖ wherever it is nonzero, so we have

‖xt‖2 ≥ |Support(xt)|ε2t .

This implies that the support of xt satisfies |Support(xt)| ≤ 1/ε2t .
At each step of the algorithm we can compute xtA and xt+1 from xt, and

compute the norm of xtA, in time proportional to the sum of the degrees of the
vertices in Support(xt), which is at most

O(Δ|Support(xt)|) = O(Δ/ε2t ) = O(Δk22−2t).

The total running time is therefore

T∑
t=0

O(Δk22−2t) = O(Δk2).

The set S′ output by the algorithm is equal to N1(Support(xt)) for some t, so
we have |S′| ≤ Δ/ε2 = Δk2.

Before we prove Theorem 5, we need the following lemma, which identifies
at least one starting vertex within S for which we can give a good lower bound
on the growth rate of the norms ‖xt‖.

Lemma6. Let S be a subset of vertices. For at least one vertex v in S, there is
a nonnegative unit vector ψ such that

1. Support(ψ) ⊆ S,

2. ψAS ≥ λ1(AS)ψ,

3. ψ(v) ≥ 1√
|S| .

Proof. Let ψ be an eigenvector of AS with eigenvalue λ1(AS), normalized so
‖ψ‖ = 1. It is easy to see that ψ satisfies properties (1) and (2). At least one
vertex v must satisfy ψ(v) ≥ 1/

√|S|, since otherwise we would have ‖ψ‖ < 1.
Together, this v and ψ satisfy property (3).

Proof (of Theorem 5). Let St = N1(Support(xt)) be the set of vertices within
one step of the support of xt. The spectral radius λ1(St) of the induced subgraph
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on St is at least as large as the growth rate gt = ‖xtA‖/‖xt‖, by the following
equation.

‖xtA‖ = ‖xtASt‖ ≤ ‖xt‖λ1(St). (3)

If at any step the growth rate satisfies gt ≥ λ/4, then the subgraph output by
the algorithm will have spectral radius at least λ/4, as desired. For the remainder
of the proof, we will assume the growth rate is less than λ/4 at each step, which
implies that for every t ≤ T ,

‖xt‖ ≤ ‖xt−1A‖ < ‖x0‖(λ/4)t = (λ/4)t. (4)

From this, we will derive a contradiction.
We now make an assumption on the starting vertex v. We assume there exists

a nonnegative vector ψ with the following properties: ψA ≥ λψ, Support(ψ) ⊆ S,
and ψ(v) ≥ 1/

√|S|. We know from Lemma 6 that such a vector exists for at least
one vertex in S. Under this assumption, we will prove the following lower bound
on the inner product of xt with ψ.

〈xt, ψ〉 ≥ 1√|S| (λ/2)t for every t ≤ T . (5)

When we prove equation (5), it will contradict equation (4) when t = T =
log(

√|S|), and we will be done.
We will prove that equation (5) holds by induction. We know it holds for

t = 0. The only difficulty in the induction step is to bound the effect of the
pruning step on the projection of xt onto ψ. We define rt to be the vector that
is removed during the pruning step.

rt = xt−1A − xt.

Let r′t be the vector that is equal to rt on the support of S, and 0 elsewhere.
Since the support of ψ is contained in S, we have

〈rt, ψ〉 = 〈r′t, ψ〉 ≤ ‖r′t‖‖ψ‖ = ‖r′t‖.
Since the value of rt at any given vertex is at most εt‖xt−1A‖, we have

〈rt, ψ〉 ≤ ‖r′t‖ ≤ εt‖xt−1A‖
√
|S|.

We will now complete the proof by induction by assuming that 〈xt−1, ψ〉 ≥
(1/

√|S|)(λ/2)t−1 and proving that 〈xt, ψ〉 ≥ (1/
√|S|)(λ/2)t.

〈xt, ψ〉 = 〈xt−1A, ψ〉 − 〈rt, ψ〉
≥ λ 〈xt−1, ψ〉 − εt‖xt−1A‖

√
|S|

≥ λ(1/
√
|S|)(λ/2)t−1 − εt

√
S(λ/4)t

=
(
(2/

√
|S|) − εt2−t

√
S

)
(λ/2)t

≥ (1/
√
|S|)(λ/2)t.

1507Andersen R., Cioaba S.M.: Spectral Densest Subgraph ...



The last step follows because we have set εt so that

εt = 2t/k ≤ 2t/|S|.

We can now prove the main theorem of this section by describing the algo-
rithm SpectralRadius(k).

Proof (of Theorem 2). The algorithm SpectralRadius(k) runs the subroutine
FindSubgraph(v, k) for each vertex v in the graph, and outputs the subgraph
with largest spectral radius found from any vertex. The running time and ap-
proximation guarantee are immediate from Theorem 4 and Theorem 5.

4 Large induced subgraphs with small spectral radius

Let G be an undirected and connected graph. A subset of vertices S of G is called
independent if no two vertices in S are adjacent. The independence number α(G)
of a graph G is the largest size of an independent set. The vertex cover number
β(G) of G is the smallest cardinality of a subset of vertices that is incident to
all the edges of G. It is easy to see that α(G) + β(G) = n for any graph G on n

vertices.
Given λ > 0, a subset S ⊂ V (G) is called λ-independent if the subgraph

induced by S has spectral radius at most λ. Let αλ(G) denote the largest order of
a λ-independent subset of G. Obviously, α0(G) equals the independence number
α(G) of G. Actually, since λ1(H) ≥ 1 for any nonempty graph H , it follows that
α0(G) = αλ(G) for any λ ∈ [0, 1). If λ < μ, then αλ(G) ≤ αμ(G). Also, if λ

equals the spectral radius of G, then αλ(G) = n.
Recall that a partition (A1, . . . , Al) of the vertex set of a graph G is called

equitable the following happens for any 1 ≤ i, j ≤ l: for any x ∈ Ai, the number
of neighbours of x which are contained in Aj depends only on i and j.

Theorem 7. Let G be a connected d-regular graph on n vertices. Then

αλ(G) ≤ n
λ − λn

d − λn
(6)

Equality holds iff G has an equitable partition (S, Sc) with S inducing a λ-regular
subgraph.

Proof. Let S be a subset of V (G) such that the subgraph induced by S has
spectral radius at most λ. Denote by dS the average degree of the subgraph
induced by S. Consider the partition of V (G) = S∪Sc which gives the following
quotient matrix (see [Haemers 1995])[

dS d − dS

d − dSc dSc

]
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It is known (see [Haemers 1995]) that the eigenvalues of the quotient matrix
interlace the eigenvalues of G. Since the eigenvalues of the quotient matrix are
d and ndS−s

n−s , it follows that

λn(G) ≤ ndS − s

n − s

which implies

s ≤ n
dS − λn

d − λn

Since dS ≤ λ, this proves inequality (6). Equality happens in the previous in-
equality if and only if the subgraph induced by S is λ-regular.

Equality happens if and only the partition (S, Sc) is equitable and S induces
a λ-regular subgraph of G.

This result implies Corollary 4.4 from [Cardoso et al.].
The λ-clustering number χλ(G) of a connected graph G is the minimum

k such that G has a partition into k subsets such that each subset induces a
subgraph whose spectral radius is at most λ (see [Bilu 2006]). Bilu (see Theorem
3 in [Bilu 2006]) showed that the λ-clustering number of a graph is at least λ1−λn

λ−λn
.

It follows easily that χλ(G) · αλ(G) ≥ n for any connected graph G on n

vertices. The previous results imply the following corollary which is Theorem 3
from [Bilu 2006] for regular graphs.

Corollary 1. If G is a connected d-regular graph on n vertices, then

χλ(G) ≥ d − λn

λ − λn
(7)

Another generalization of graph coloring was considered in [Linial et al.].
Given an integer t, let mcct(G) be the smallest integer m such that the vertices
of G can be t-colored so that no monochromatic component has cardinality
exceeding m. It is easy to see that mcct(G) = 1 if and only if χ(G) ≤ t. Also,
mcct(G) = 2 if and only if χ1(G) ≤ t. In general, we have that χt−1(G) ≤
mcct(G) ≤ χ√

t−1(G).
Inequality (6) can be extended to irregular graphs as follows. Our approach is

inspired from [Godsil and Newman]. For λ > 0, let S ⊂ V (G) be a λ-independent
set on s vertices. Let λ1 denote the spectral radius of G and let x be the positive
eigenvector corresponding to λ1 such that

∑
i∈S x2

i = s.
Let z be the restriction of x to the set S, that is zi = xi if i ∈ S and zi = 0

otherwise. The matrix B = A − λnI is positive semidefinite and thus, ytBy ≥ 0
for any y ∈ R

n. Let y = z − s
xtxx. Then the previous inequality implies(

z − s

xtx
x
)

(A − λnI)
(
z − s

xtx
x
)
≥ 0
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Expanding the left hand-side, we obtain

ztAz − 2s
λ1x

tz

xtx
+ s2 λ1

xtx
− λn

(
ztz − 2s

xtz

xtx
+

s2

xtx

)
≥ 0

Since the subgraph induced by S has spectral radius less than λ, it follows
that ztAz ≤ λztz = λs. Using this fact in the previous inequality and simplifying,
we get

s ≤ λ − λn

λ1 − λn
xtx (8)

Note that for regular graphs we can take x to be the all one vector in which case
we retrieve Theorem 6.

We conclude this section with some remarks regarding the connections be-
tween the spectral radius of a graph and its structure. In [Nikiforov a], Nikiforov
proved the following result.

Theorem 8. If a connected graph G is Kr+1-free, then λ1(G) ≤ λ1(Tr(n)),
where Tr(n) is the r-partite Turán graph on n vertices. Equality happens iff
G ∼ Tr(n).

We give now a new and short proof of this theorem.

Proof. If G is Kr+1-free, then, combining the results from [Erdös 1970] and
[Biyikoglu and J. Leydold] (see also [Bollobás], Theorem 1.4, page 295), we de-
duce that there exists an r-partite graph H on n vertices whose degree se-
quence is larger than the degree sequence of G in the majorization order such
that λ1(G) ≤ λ1(H). The result follows now easily using the results from
[Feng et al. 2007].

In [Bollobás and Nikiforov 2007], Bollobás and Nikiforov proved the follow-
ing theorem which again connects the spectral radius of a graph G and the
number of complete subgraphs in G. For i ≥ 2, let ki(G) denote the number of
complete subgraphs on i vertices contained in G.

Theorem 9. If G is a connected graph, then for r ≥ 2,

λr+1
1 (G) −

r∑
s=2

(s − 1)ks(G)λr+1−s
1 (G) ≤ (r + 1)kr+1(G)

This result was used in [Bollobás and Nikiforov 2007] to prove the following
theorem.

Theorem 10. If G is a graph on n vertices and r ≥ 2, then

kr+1(G) ≥
(

λ1(G)
n

− 1 +
1
r

)
r(r − 1)
r + 1

(n

r

)r+1
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We now improve Theorem 9.

Theorem 11. If G is a connected graph with clique number ω ≥ 3, then for
2 ≤ r ≤ ω, we have

λr+1
1 (G) − ∑r

s=2(s − 1)ks(G)λr+1−s
1 (G) + λr

1 −
∑r

s=2(s − 1)ks(G)λr−s
1 (G)

≤ (r + 1)kr+1(G)

Proof. Given u ∈ V (G) and l ≥ 0, let wl(u) denote the number of l-walks
u = u1, u2, . . . , ul starting at u. Denote by wl(G) =

∑
u∈V (G) wl the number of

l-walks in G. As shown in [Bollobás and Nikiforov 2007], for each 2 ≤ s ≤ ω(G)
and l ≥ 2, we have that

wl+r(G) −
r∑

s=2

(s − 1)ks(G)wl+r−s(G) ≤
∑

u∈V (G)

kr+1(u)wl(u) (9)

In [Bollobás and Nikiforov 2007], the authors use now the inequality wl(u) ≤
wl−1(G) and proceed to deduce Theorem 9. Note that the stronger inequality
wl(u) ≤ wl−1(G) − wl−1(u) is true because

wl−1(G) =
∑

v∈V (G)

wl−1(v) ≥ wl−1(u) +
∑
v∼u

wl−1(v) = wl−1(u) + wl(u)

Using the inequality wl(u) ≤ wl−1(G) − wl−1(u) in (9), we obtain

wl+r(G) − ∑r
s=2(s − 1)ks(G)wl+r−s(G)

≤ (r + 1)kr+1(G)Wl−1(G) − ∑
u∈V (G) kr+1(u)wl−1(u)

Using (9) again with l − 1 instead of l, we obtain that

wl+r−1(G) −
r∑

s=2

(s − 1)ks(G)wl+r−1−s(G) ≤
∑

u∈V (G)

kr+1(u)wl−1(u)

Combining the last two inequalities, we obtain that

wl+r(G) − ∑r
s=2(s − 1)ks(G)wl+r−s(G) + wl+r−1(G)

−∑r
s=2(s−1)ks(G)wl+r−1−s(G) ≤ (r+1)kr+1(G)wl−1(G)

(10)

The proof now proceeds similarly to [Bollobás and Nikiforov 2007]. It is known
(see [Cvetkovic et al. 1980], page 44) that, there exists non-negative constants
c1 > 0, c2, . . . , cn such that wl(G) =

∑n
i=1 ciλ

l−1
i (G) for each l ≥ 1. Since G is

connected and ω(G) ≥ 3, it follows that λ1(G) > |λi(G)| for each 2 ≤ i ≤ n.
This implies that for each fixed q, we have that

lim
l→+∞

wl+q(G)
wl−1(G)

= λq+1
1 (G)

Dividing (10) by wl−1(G) and using the above result, we deduce that
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λr+1
1 (G) − ∑r

s=2(s − 1)ks(G)λr+1−s
1 (G) + λr

1 −
∑r

s=2(s − 1)ks(G)λr−s
1 (G)

≤ (r + 1)kr+1(G)

which finishes the proof.

It would be interesting to calculate αλ for special families of graphs such as
hypercubes or Kneser graphs for example. Computing αλ(G) is NP-complete for
λ = O(1). At the same time, αλ(G) = n if λ = λ1(G). Another interesting open
problem is to determine in what range of λ, is computing αλ NP-complete.
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