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Abstract: Since all the algebras connected to logic have, more or less explicitely, an
associated order relation, it follows that they have two presentations, dual to each
other. We classify these dual presentations in ”left” and ”right” ones and we consider
that, when dealing with several algebras in the same research, it is useful to present
them unitarily, either as ”left” algebras or as ”right” algebras. In some circumstances,
this choice is essential, for instance if we want to build the ordinal sum (product)
between a BL algebra and an MV algebra. We have chosen the ”left” presentation and
several algebras of logic have been redefined as particular cases of BCK algebras.

We introduce several new properties of algebras of logic, besides those usually existing
in the literature, which generate a more refined classification, depending on the prop-
erties satisfied. In this work (Parts I-V) we make an exhaustive study of these algebras
- with two bounds and with one bound - and we present classes of finite examples, in
bounded case.

In this Part I, divided in two because of its length, after surveying chronologically
several algebras related to logic, as residuated lattices, Hilbert algebras, MV algebras,
divisible residuated lattices, BCK algebras, Wajsberg algebras, BL algebras, MTL al-
gebras, WNM algebras, IMTL algebras, NM algebras, we propose a methodology in
two steps for the simultaneous work with them (the first part of Part I).

We then apply the methodology, redefining those algebras as particular cases of reversed
left-BCK algebras. We analyse among others the properties Weak Nilpotent Minimum
and Double Negation of a bounded BCK(P) lattice, we introduce new corresponding
algebras and we establish hierarchies (the subsequent part of Part I).
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1 Introduction

Surveying chronologically several algebras related to logic, we find they look
rather very different:
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Residuated lattices, the algebraic counterpart of logics without contraction
rule, were introduced in 1924 by Krull; they have been investigated (cf. Kowalski-
Ono [Kowalski and Ono 2001] ) by the following researchers: Krull [Krull 1924],
Dilworth in [Dilworth 1939], Ward and Dilworth in [Ward and Dilworth 1939],
Ward in [Ward 1940], Balbes and Dwinger [Balbes and Dwinger 1974], Pavelka
in [Pavelka 1979], Idziak in [Idziak 1984a] and others. Residuated lattices have
been known under many names; cf. [Kowalski and Ono 2001], they are called
BCK lattices in [Idziak 1984a], full BCK-algebras in [Okada and Terui 1999],
FLew-algebras in [Ono and Komori 1985] and integral, residuated, commutative
l-monoids in [Höhle 1995]; some of those definitions are free of 0. We consider in
this paper their definition free of 0 (the smallest element), i.e. as posets (partially
ordered sets) with greatest element 1.

Hilbert algebras were introduced in a dual form in 1950, by Leon Henk in
[Henkin 1950], under the name “implicative model”, as a model of positive im-
plicative propositional calculus - an important fragment of classical propositional
calculus introduced by Hilbert [Hilbert 1923], [Hilbert and Bernays 1934]. They
are posets with 1. Cf. A. Diego [Diego 1966], it was Antonio Monteiro who has
given the name “Hilbert algebras” to the dual algebras of Henkin’s implicative
models.

MV algebras were introduced in 1958, by C. C. Chang [Chang 1958], as a
model of ℵ0-valued Lukasiewicz logic. They are posets with 0 and 1.

An important class of residuated lattices is that of “divisible” residuated lat-
tices (or “divisible integral, residuated, commutative l-monoids” [Höhle 1995]),
introduced in 1965, in a dual, more general form, by Swamy [Swamy 1965]. The
“divisible” residuated lattices are residuated lattices satisfying divisibility (div)
condition, where:

(div) for all x, y, x ∧ y = x � (x → y).
Hence, they are posets with 1. A divisible residuated lattice is a hoop, according
to [Blok and Ferreirim 2000], which is also ∨−semilattice. A duplicate name
in the literature for bounded divisible residuated lattices is that of “bounded
commutative Rl-monoid” [Rachunek and Salounová 2007] - not appropriate, in
our opinion.

BCK algebras were introduced in 1966, by K. Iséki [Iséki 1966], starting
from the systems of positive implicational calculus, weak positive implicational
calculus by A. Church, and BCI, BCK-systems by C.A. Meredith (according
to [Iséki and Tanaka 1978]). They are posets with 0. Latter on, BCK algebras
with condition (S) and BCK lattices were introduced and studied by Iséki and
his school. In connection with dual reversed BCK algebras, we shall need the
conditions (P), (RP), (DN) and (lattice), where:

(P) for all x, y, there exists x � y
notation= min{z | x ≤ y → z},

(RP) for all x, y, z, x � y ≤ z ⇐⇒ x ≤ y → z,
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(DN) (Double Negation) for all x, (x−)− = x,
(lattice) there exists x ∧ y

notation= inf{x, y} and x ∨ y
notation= sup{x, y}, for

all x, y.
Wajsberg algebras were introduced in 1984, by Font, Rodriguez and Torrens

[Font et al. 1984], but they were also considered earlier by Komori in the papers
[Komori 1978], [Komori 1981], under the name of CN algebras; they are a model
of ℵ0-valued Lukasiewicz logic too, studied by Wajsberg in 1935 [Wajsberg 1935].
They are term equivalent to MV algebras [Font et al. 1984].

BL algebras were introduced in 1996, by P. Hájek in the papers [Hájek 1996],
[Hájek 1998a], [Hájek 1998b], as a common generalization of MV algebras, Prod-
uct algebras and Gödel algebras, in connection with continuous t-norms. They
are bounded residuated lattices (i.e. residuated lattices with 0 too) satisfying
(div) and the pre-linearity (prel) conditions, where:

(prel) for all x, y, (x → y) ∨ (y → x) = 1.
An important class of bounded residuated lattices is that of MTL = weak-

BL algebras. MTL algebras presented in [Esteva and Godo 2001] and weak-BL
algebras presented in [Flondor et al. 2001] were introduced independently in
2001; they are duplicate names for the same structure. MTL algebras were in-
troduced as algebraic model for the monoidal t-norm logic, a generalization of
Hájek’s Basic Logic, while weak-BL algebras were introduced as commutative
weak-pseudo-BL algebras (pseudo-BL algebras [Georgescu and Iorgulescu 2000],
[Di Nola et al. 2002a], [Di Nola et al. 2002b] being non-commutative generaliza-
tions of BL algebras). They are bounded residuated lattices satisfying (prel)
condition.

WNM, IMTL and NM algebras, which are particular classes of MTL algebras
[Esteva and Godo 2001], were introduced in 2001, too.

The first goal of this paper, Part I, is to clarify the connections between
the surveyed algebras, which in many cases have been given several equivalent
definitions, and to find unifying tools. It is achieved in Sections 1 and 2.

The second goal is to treat all the involved algebras unitarily, by redefining
them as classes of BCK algebras, and study them gradually, from the general
ones to the particular ones. It is achieved in Section 3.

The third goal is to study some properties of (bounded) BCK(P) algebras
(BCK(P) lattices) and the new algebras obtained by adding new properties
(conditions). The stress is on the conditions (DN), (WNM), but also (P1), (P2),
(C), (G), (chain), where:

(WNM) (Weak Nilpotent Minimum) (x � y)− ∨ [(x ∧ y) → (x � y)] = 1, for
all x, y,

(P1) for all x, x ∧ x− = 0,
(P2) for all x, y, z, (z−)− � [(x � z) → (y � z)] ≤ x → y,
(C) (Chang) for all x, x ∨ y = (x → y) → y,
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(G) (Gödel) for all x, x � x = x,
(chain) for all x, y, x ≤ y or y ≤ x.

This goal is achieved in Section 3.
In this paper, we shall use the universal algebra concepts of “algebra” (an

algebra A is a pair (A, F ), where A is a nonvoid set and F is a family of finitary
operations on A) and “relational system” (a relational system A is a pair (A, R),
where A is a nonvoid set and R is a family of (finitary) relations on A) from
[Grätzer 1979]. More general, a structure (A, F, R) is a mixture of an algebra
(A, F ) and a relational system (A, R).

1.1 The clarification of the connections between the surveyed
algebras

In order to clarify the connections between the surveyed algebras of logic, which
in many cases have been given several equivalent definitions, let us make two
remarks.

Remark 1.1 All the surveyed algebras have essentially an associated
(attached) order relation (denoted by ≤), which usually does not appear
explicitely in the definitions. The presence of an order relation ≤ implies the
presence of the duality. Thus, each such algebra has a dual algebra, where the
dual (inverse) order relation (denoted by ≥) acts (for each x, y, x ≥ y iff y ≤ x);
the dual of a t-norm is a t-conorm, the dual of a residuum is a co-residuum and
vice-versa [Gottwald 1984], [Gottwald 1986], [Gottwald 1993].

Starting from this remark, we have obtained two criteria of classifications of the
involved algebras.

• First classification: left-algebras, right-algebras. In order to clarify
the connections between the surveyed algebras from the duality point of view,
let us look at the definitions of the surveyed algebras: in BL algebras there is
a t-norm � as a principal primitive operation, while in MV algebras there is
a t-conorm ⊕ as a principal primitive operation. In Hilbert algebras there are
an implication (residuum) → and 1 as principal primitive operations, while in
reversed Iséki’s BCK algebras there are an implication (co-residuum) and 0 as
principal primitive operations.

We shall give a name: “left-algebra” (when the principal primitive
operations are the t-norms, 1 and/or the residua) or “right-algebra” (when
the principal primitive operations are the t-conorms, 0 and/or the co-residua)
to each algebra of the pair of dual algebras; the concepts of “left-algebra”
and “right-algebra” are introduced in such a way that the two definitionally
equivalent corresponding classes of algebras become a class containing only “left-
algebras” and a class containing only “right-algebras”. Thus, a BL algebra as
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defined by Hájek, is a “left-algebra”, while the MV algebra, as defined by Chang,
is a “right-algebra”.

Thus, we can choose between left- and right-algebras. In some circumstances,
this choice is essential, for instance if we want to build the ordinal sum (product)
between a BL algebra and an MV algebra. Our first unifying tool, when
dealing with more than one algebra, consists in working only with
“left-algebras”.

• Second classification: four possible definitions of left-algebras
(right-algebras). In order to clarify the connections between the surveyed
“left-algebras” from principal primitive operations point of view, let us look
at the definitions of left-algebras of logics and at the definitions of the corre-
sponding logics; we remark that they are very different, in general: in algebras
of logics, usually, the principal primitive operation is the t-norm, while in the
corresponding logics, usually, the principal primitive operation is the implica-
tion = residuum. We can also remark that basically, “left-algebras” contain as
principal primitive operations (belonging to the signature): either “a residuum
→=→L and 1” or “a t-norm � and 1”; a derived operation from the primi-
tive operations (term function) can appear: either a t-norm �, associated to the
residuum →, or a residuum →, associated to the t-norm �. We shall say that a
“left-algebra” belongs either to “the general world of →, 1” or to “the general
world of �, 1” (see Figure 2).

Moreover, we can refine each of the two “general worlds” of “left-algebras”
by remarking that “left-algebras” contain:
1. in “the general world of →, 1”:

- 1.1: either “a residuum → and 1” as primitive operations and a derived
associated t-norm �,

- 1.2: or “a residuum →, an associated t-norm � and 1” as primitive opera-
tions;
2. in “the general world of �, 1”:

- 2.1: either “a t-norm � and 1” as primitive operations and a derived asso-
ciated residuum →,

- 2.2: or “a t-norm �, an associated residuum → and 1” as primitive opera-
tions.

Note that these four corresponding “worlds” of “left-algebras” exist simul-
taneously, they containing four corresponding definionally equivalent classes of
“left-algebras”. None, one or maximum two such definitionally equivalent classes
of “left-algberas” are usually appearing in the literature.

Thus, we can choose between the four definitions of “left-algebras”. Our sec-
ond unifying tool consists in working only with “left-algebras” defined
by using (→, 1) as principal primitive operations.
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Remark 1.2 All the surveyed algebras have at least one bound with
respect to the associated order relation (i.e. there exist either the smallest ele-
ment, denoted by 0, or the greatest element, denoted by 1). Among them, many
are bounded (i.e. they have both 0 and 1) - but sometimes only one bound
from the existing two appears in the signature; take for examples the MV alge-
bras, the Wajsberg algebras, the BL algebras and the MTL algebras. Several
have only one bound; take for examples the residuated lattices, the Hilbert
algebras, the BCK algebras and the divisible residuated lattices.

Starting from this remark, we have obtained a third criterion of classification:
the number of bounds.

• Third classification: “two bounds” and “only one bound” left-
algebras (right-algebras).

In this paper Part I, we want to analyze both cases for each “left-algebra”:
“bounded (i.e. two bounds)” algebra and “only the bound 1” algebra, for each
surveyed left-algebra; therefore, we shall define for left-algebras the “missing”
algebra, either by “bounding” the algebra having “only the bound 1” (i.e. by
adding the “missing” bound 0 in the signature), or by “generalizing” the bounded
algebras. The definitions of the “bounding” operation and of the “generalizing”
operation of left-algebras are as follows.

Definition 1.3 Let A = (A, G ∪ {1}) be an “X algebra”, which has an order
relation ≤ associated to A, where 1 ∈ A, 1 is the greatest element of A with
respect to ≤ (i.e. x ≤ 1, for all x ∈ A) and some axioms are satisfied. If there
is a unique element 0 ∈ A, satisfying 0 ≤ x, for all x ∈ A, then 0 is called the
zero (smallest element) of A. An “X algebra” with zero is called to be bounded
and it will be denoted by: Ab = (A, G ∪ {0, 1}). Let X denote the class of “X
algebras” and Xb denote the class of bounded “X algebras”.

Definition 1.4 Let “Y algebra” be a bounded algebra of logic (i.e. an algebra
A = (A, G ∪ {0, 1}), which has an order relation ≤ associated to A, where
0, 1 ∈ A, 0 is the smallest element of A, 1 is the greatest element of A, with
respect to ≤, and some axioms are satisfied). Let “X algebra” denote an algebra
with only the bound 1 (i.e. an algebra A = (A, F ∪ {1}), which has an order
relation ≤ associated to A, where 1 ∈ A, 1 is the greatest element of A with
respect to ≤ and some axioms are satisfied). If bounded “X algebra” is term
equivalent to “Y algebra”, we shall say that “X algebra” is a generalized-“Y
algebra”. Let us denote by Y the class of “Y algebras” and by Yg the class of
generalized-“Y algebras”.

Remarks 1.5
(0) The general concept of “generalized-Y algebra” and the above defini-

tion are new; for the definition, we have had in mind the following example
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(see [Iorgulescu a] Remark 3.27): the implicative BCK algebra is a generalized-
Boolean algebra, since a bounded implicative BCK algebra is (term equivalent
to) a Boolean algebra.

(1) There exist some bounded algebras “Y algebras”, whose free of
0-reduct is a generalized-“Y algebra”. In this case, we shall call the
free of 0-reduct as “standard” generalization.

Example 1.1 Take the bounded lattice (i.e. an algebra (L,∧,∨, 0, 1) of type
(2, 2, 0, 0) satisfying the idempotent, commutative, associative and absorption
laws and x ∧ 1 = x = x ∨ 0, for all x ∈ L); its free of 0-reduct is the lattice
with 1 (i.e. an algebra (L,∧,∨, 1) of type (2, 2, 0), satisfying the idempotent,
commutative, associative and absorption laws and x ∧ 1 = x, for all x ∈ L).
Since a bounded “lattice with 1” is a “bounded lattice”, it follows that the
lattice with 1 is the standard generalized-bounded lattice.

Example 1.2 Take the BL algebra (see Definition 2.10); its free of 0-reduct is
a “residuated lattice which satisfies (div) and (prel)”. Since bounded “residuated
lattice which satisfies (div) and (prel)” is a BL algebra, it follows that “residuated
lattice satisfying (div) and (prel)” is the standard generalized-BL algebra. Note
that there exists also the “basic hoop” [Agliano et al.], which is a generalized-
BL algebra too, by Definition 1.4. It remains to clarify elsewhere the connections
between “basic hoops” and “residuated lattices satisfying (div) and (prel)”.

(2) But, there exist several bounded algebras “Y algebras”, whose
free of 0 -reduct is not a generalized-“Y algebra”.

Example 2.1 Take the Boolean algebra (i.e. an algebra (A,∧,∨,−, 0, 1) of
type (2, 2, 1, 0, 0), such that (A,∧,∨, 0, 1) is a distributive lattice with 0 and 1,
satisfying x ∧ x− = 0 and x ∨ x− = 1, for all x ∈ A). Its free of 0-reduct is an
algebra (A,∧,∨,−, 1) of type (2, 2, 1, 0), such that (A,∧,∨, 1) is a distributive
lattice with 1, satisfying x ∨ x− = 1, for all x ∈ A; let us call such an algebra a
“Boo algebra”. Since a bounded “Boo algebra” is an algebra (A,∧,∨,−, 0, 1) of
type (2, 2, 1, 0, 0), such that (A,∧,∨, 0, 1) is a distributive lattice with 0 and 1,
satisfying x ∨ x− = 1, for all x ∈ A - which is not a Boolean algebra, it follows
that “Boo algebra” is not a generalized-Boolean algebra.

Example 2.2 Take the Wajsberg algebra (see Definition 2.9) (i.e. an algebra
(A,→, 0, 1) of type (2, 0, 0) such that, for all x, y, z ∈ A, axioms (W1), (W2),
(W3) and (W4) hold). Its reduct free of 0 is an algebra (A,→, 1) of type (2, 0)
such that, for all x, y, z ∈ A, axioms (W1), (W2) and (W3) hold; let us call
such an algebra a “Waj algebra”. Since a bounded Waj algebra is an algebra
(A,→, 0, 1) of type (2, 0, 0), such that, for all x, y, z ∈ A, axioms (W1), (W2),
(W3) hold and 0 ≤ x, for all x - which is not a Wajsberg algebra, it follows that
Waj algebra is not a generalized-Wajsberg algebra. Later on, in [Iorgulescu a]
Remarks 3.24, we shall present several generalized-Wajsberg algebras and we
shall make a choice of one of them, to be studied in some respects.
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(3) Note that to an “X algebra” with greatest element we can attach exactly
one bounded “X algebra”, while to a bounded algebra “Y algebra” we can attach
more generalized-“Y algebras”; the standard generalization is taken into account
in the sequel, whenever it exists. Note that (Y g)b ∼= Y .

(4) The “bounding” operation is an easy one, while the “generalizing” oper-
ation is a difficult one in many cases; in this paper we have succeeded to find
a generalized-Y algebra in some cases of Y algebras (bounded algebras), but
several open problems still remain.

1.2 Two unifying tools

After clarifying the connections between the surveyed algebras of logic through
the above three criteria, we found the unifying tools: we found that we can
treat them unitarily by bringing to a “common denominator” their definitions,
as in the survey paper [Iorgulescu 2003] and the preprint [Iorgulescu 2004], for
bounded case. To achieve this, in Section 2, for the general case of algebras with
only one bound, we shall present a “methodology (algorithm)” in two steps:
- the first step is to choose between the existing dual algebras: the “right-defined”
or the “left-defined” algebra; our first unifying tool consists in working only with
“left-algebras”; we have chosen to work with “left-defined” algebras, because
most of the above mentioned algebras of logic were initially “left-defined”;
- the second step is to choose between the four most usual definitions (signatures)
of (bounded) “left-algebras”:

1.1 (→, 1), 1.2 (→, �, 1); 2.2 (�, →, 1), 2.1 (�, 1);

our second unifying tool consists in working only with the first sequence of princi-
pal primitive operations, i.e. to work only with implication and 1; we have chosen
→ and 1 in order to have the algebras of logic closer related to the corresponding
logics and to be able to make the connections with Hilbert algebras.

Concluding, we have chosen to treat all the above mentioned alge-
bras unitarily as special classes of reversed left-BCK algebras; in view
of the above equivalences, there is no loss of generality in so doing.

Consequently, in Section 3, we apply the methodology and we redefine uni-
tarily, as classes of (bounded) reversed left-BCK algebras, the surveyed algebras
and study them gradually, from general ones to particular ones: the reversed left-
BCK(P) algebras (which are termwise equivalent to pocrims (partialy ordered,
commutative, residuated, integral monoids)), the reversed left-BCK(P) lattices
(which are termwise equivalent to residuated lattices), the Hájek(P) algebras
(which are termwise equivalent to BL algebras), the Wajsberg algebras (which
are termwise equivalent to left-MV algebras), etc.
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Starting from the remark that we can divide the properties of Hájek(P)
algebras into three groups: those coming from the fact that they are bounded
BCK(P) algebras, those coming from the fact that they are lattices (bounded
BCK(P) lattices) and finally those coming from (div) and (prel) conditions (one
will notice that very few properties of Hájek(P) algebras come from the two
conditions (div) and (prel)), we shall study all the involved algebras by dividing
them into three groups: (1) BCK(P) algebras which are not lattices, (2) BCK(P)
algebras which are lattices (not verifying (prel) and (div) conditions) and (3)
BCK(P) algebras which are lattices verifying (prel) or/and (div) conditions.

Thus, Section 3 will involve many old, but redefined, algebras and also new
algebras, which are all particular cases of (bounded) BCK algebras, in an attempt
to unify their treatment. Some hierarchies concerning bounded BCK(P) lattices
verifying (DN), (WNM) conditions are finally presented.

In Section 4, the last of this Part I, we present conclusions, the resuming
list of open problems presented in the previous sections and final remarks.

We overview now the contents of next Parts II-V [Iorgulescu b] - [Iorgulescu e]:
In Part II [Iorgulescu b], we find equivalent conditions with divisibility (div)

and prelinearity (prel) and we decompose (div) and (prel) in the general case of
BCK(P) lattices. We introduce then the new algebras: (bounded) α, β, γ, δ, ε,
π algebras and αβ, αγ, . . ., αβγδεπ algebras and we establish connections with
the old algebras and hierarchies. Finally, we introduce and study the ordinal sum
(product) of two bounded BCK algebras.

In Part III [Iorgulescu c], we give classes of examples of finite proper Wajsberg
algebras (MV algebras) and of Wajsberg algebras satisfying (WNM) condition,
of Hájek(P) algebras (BL algebras) and of Hájek(P) algebras satisfying (WNM)
condition and, finally, of divisible bounded BCK(P) lattices and of divisible
bounded BCK(P) lattices satisfying (WNM) condition.

In Part IV [Iorgulescu d], we give classes of examples of finite proper IMTL
algebras and of NM algebras, of MTL algebras and of WNM algebras, of bounded
αγ algebras and of bounded αγ algebras satisfying the condition (WNM).

In Part V [Iorgulescu e], we give classes of examples of finite proper bounded
α, β, γ, βγ algebras and BCK(P) lattices (residuated lattices), satisfying or not
satisfying the conditions (WNM) and (DN). We give finally examples of some
finite proper bounded BCK algebras.

The groundwork of this big research in five parts was made in 2003 and
was announced on January 10th, 2004, in the five preprints [Iorgulescu 2004] -
[Iorgulescu 2004].

This Part I is a paper of “macromathematics” and not of “micromathemat-
ics”, since it connects almost all algebras of logic in a comprehensive unifying
study, we hope. We use essentially the results from the paper [Iorgulescu 2003]
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and from the preprint [Iorgulescu 2004], but the paper is self-contained as much
as possible. Note that in [Iorgulescu 2003] and [Iorgulescu 2004] only the bounded
case is considered. The old results are presented without proof.

Hence, this Part I is organized as follows:
1. Introduction - this section.
2. A methodology: How to bring to a “common denominator” the definitions

of algebras of logic.
3. A unitary treatment of algebras of logic as particular cases of (bounded)

reversed left-BCK algebras. New algebras.
4. Conclusions.

Sections 1 and 2 are treated in this first part of Part I, while Sections 3 and 4
are treated in [Iorgulescu a], the subsequent part of Part I.

2 A methodology: How to bring to a “common denominator”
the definitions of algebras of logic

After surveying, in chronological order, in Section 1, some algebras connected
with logic, we propose in this section a methodology in two steps to bring
their definitions to a “common denominator”, in order to better see the connec-
tions between these algebras and to be able to treat them unitarily.

Note that in this paper, we deal simultaneously with the two cases:
- the more general case of algebras with one bound,
- the case of bounded algebras.

The methodology is defined for both cases.
Between algebras, or classes of algebras, or categories of algebras,

let ∼= mean “are term equivalent”, or “are termwise equivalent” (“are
definitionally equivalent”) , or “are categorically isomorphic”, respec-
tively, and = mean “is a duplicate name” through this paper. When
X ∼= Y, we shall also write X (Y).

2.1 The first step: choose between “right” or “left” algebras

We know that there are two possible dual definitions of algebras of logic and we
have given them names [Flondor et al. 2001], [Iorgulescu 2004], [Iorgulescu 2003]:
“right-definition” and “left-definition”. When an algebra is “right-defined” (“left-
defined”), we shall say that it is a right-algebra (left-algebra, respectively).

Hence, the notions of “right” and “left” algebras are dual; they are connected
with the right-continuity of a t-conorm and with the left-continuity of a t-norm,
respectively. We can also say that they are connected with the “positive (right)”
cone and with the “negative (left)” cone, respectively, of a commutative l-group
(i.e. commutative lattice-ordered group).
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Roughly speaking, we could say that an algebra endowed with a partial order
is a “right” algebra if it contains a t-conorm (and/or a coresiduum) and 0 as
principal operations, and is a “left” algebra if it contains a t-norm (and/or a
residuum) and 1 as principal operations (see [Iorgulescu a] Definition 3.6 of a
residuum).

Recall that t-norms (triangular norms) and t-conorms were defined initially
on the real interval [0, 1], then on a poset with one bound [Iorgulescu 2003], as
follows:

Definition 2.1 A binary operation © on the poset (A,≤) with smallest element
0 (with greatest element 1) is a t-conorm (t-norm) iff it is commutative, asso-
ciative, non-decreasing (isotone) in the first argument and hence in the second
argument too, and it has 0 (1) as neutral element.

Usually, a t-norm will be denoted by “�” and a t-conorm by “⊕”.
Recall also the following definitions:
(j) A partially ordered, abelian (i.e. commutative), integral right-monoid or

a right-pocim for short is a structure (A,≤,⊕, 0) such that: (A,≤) is a poset
with smallest element 0, (A,⊕, 0) is a commutative right-monoid (i.e. ⊕ is com-
mutative, associative and has 0 as neutral element) and ⊕ is non-decreasing in
the first argument and hence in the second argument; integral means that the
smallest element of the poset (A,≤) coincides with the neutral element of the
commutative right-monoid.

(j’) A partially ordered, commutative, integral left-monoid or a left-pocim
for short is a structure (A,≤,�, 1) such that: (A,≤) is a poset with greatest
element 1, (A,�, 1) is an abelian left-monoid and � is non-decreasing in the
first argument and hence in the second argument too.

Recal also [Iorgulescu 2003], [Iorgulescu 2004] that the statement: “⊕ is a
t-conorm on the poset (A,≤) with smallest element 0” is equivalent to the state-
ment: “the structure (A,≤,⊕, 0) is a right-pocim” and that dually, the state-
ment: “� is a t-norm on the poset (A,≤) with greatest element 1” is equivalent
to the statement: “the structure (A,≤,�, 1) is a left-pocim”.

Examples.
1) Let (B,∧,∨,−, 0, 1) be a Boolean algebra. Then, ∧ is a t-norm, ∨ is a

t-conorm and their associated residua are defined as follows:
x →∧ y = (x ∧ y−)− = x− ∨ y, x →∨ y = (x ∨ y−)− = x− ∧ y = (x− →∧ y−)−.
Hence, (B,∧,∨,−, 0, 1) is the left-Boolean algebra, while (B,∨,∧,−, 1, 0) is the
right-Boolean algebra.

1’) Let us consider the termwise equivalent Boolean algebras (B,∧,−, 1) and
(B,∨,−, 0). Then, (B,∧,−, 1) is the left-Boolean algebra, while (B,∨,−, 0) is
the right-Boolean algebra.
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2) Let (L,∧,∨, 0, 1) be a bounded lattice. Since ∧ is a t-norm and ∨ is a
t-conorm, it follows that (L,∧,∨, 0, 1) is the left-lattice, while the dual lattice,
(L,∨,∧, 1, 0), is the right-lattice.

2’) Generalization. Let (L,∧,∨) be a (“Dedekind”) lattice. Then, (L,∧,∨)
is the left-lattice, while the dual, (L,∨,∧), is the right-lattice. If (L,≤) is an
“Ore” lattice (i.e. for all x, y ∈ L, there exist inf{x, y} and sup{x, y}), then the
dual “Ore” lattice is (L,≥), where x ≥ y iff y ≤ x, for all x, y ∈ L. Then, the
well-known bijection between “Ore” and “Dedekind” lattices can be formulated
as follows: “(L,≤) iff (L,∨,∧)” (right-lattices) and then the dual bijection is
“(L,≥) iff (L,∧,∨)” (left-lattices).

3) Let (L,∧,∨, 1) be a lattice with greatest element, 1 (one bound), as
for example: if Z− = {0,−1,−2,−3, . . .} (the set of negative integers), then
(Z−,∧ = min,∨ = max, 0) is a lattice with greatest element. Hence, (L,∧,∨, 1)
is a left-lattice, which has no (self) dual.

4) Dually, let (L,∧,∨, 0) be a lattice with smallest element, 0 (one bound),
as for example: if N= {0, 1, 2, 3, . . .} (the set of natural numbers=positive inte-
gers), then (N,∧ = min,∨ = max, 0) is a lattice with smallest element. Hence,
(L,∨,∧, 0) is a right-lattice, which has no (self) dual.

5) Let (G,∧,∨, +,−, 0) be a commutative l-group (lattice-ordered group).
Let G+ = {x ∈ G | x ≥ 0} be the positive cone and G− = {x ∈ G | x ≤ 0}
be the negative cone. Then, + is a t-conorm pe (G+,≤, 0) and is a t-norm on
(G−,≤, 0). Note that x ≤ y in G+ iff −x ≥ −y in G−. Hence, (G+,≤, +, 0) is a
right-pocim, while (G−,≤, +, 0) is a left-pocim.

6) MV algebras and BCK algebras were initially defined as “right” algebras,
while residuated lattices, Hilbert algebras, Wajsberg algebras and BL algebras
were initially defined as “left” algebras.

Note that “right” and “left” algebras are not “symmetric” algebras, while a
commutative l-group, for example, is symmetric, in the following sense: a com-
mutative l-group is a kind of pair of a “left” algebra (its negative cone) and a
“right” algebra (its positive cone).

The passage from the (definition of) “right” algebra to its dual, the (definition
of) “left” algebra, is made by replacing: the t-conorm ⊕ by the t-norm �, the
co-residuum →R by the residuum →notation= →L (“R” comes from “right”, “L”
comes from “left”), the negation −R (where x−R = x →R 1) by the negation
− notation= −L (where x− = x → 0), 0 by 1 (and 1 by 0), the binary relation ≤
by its inverse relation, ≥.

The passage from the “left” algebra to its dual, the “right” algebra, is made
by replacing: the t-norm � by the t-conorm ⊕, the residuum →notation= →L by
the co-residuum →R, the negation − notation= −L by the negation −R , 1 by 0 (and
0 by 1), the binary relation ≥ by its inverse relation, ≤.
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We claim that it is useful, when a research concerns several related algebras,
to define all the involved algebras in the same way, i.e. either as “right” algebras
or as “left” algebras; in some circumstances, this choice is essential, for instance
when we want to build the ordinal sum (product) between a BL algebra and an
MV algebra. This is the first step of our methodology: to choose between “right”
or “left” algebras.

We have chosen to work with “left” algebras, because most of the
algebras of logic were initially left-defined. Note that we shall freely write x ≥ y

or y ≤ x in that case.

Recall now the definitions of the surveyed algebras in Section 1, in chronologi-
cal order too, by adding the definitions of the missing “bounded” or “generalized-
” algebras.

- Residuated lattices have been introduced as “left” algebras. We shall use
the following definition, free of 0:

Definition 2.2
1) A residuated lattice is an algebra A = (A,∧,∨,�,→, 1) of type (2, 2, 2, 2, 1),
verifying:

(L ·,1) (A,∧,∨, 1) is a lattice with greatest element 1 (under ≥),
(X2) (A,�, 1) is an abelian (i.e. commutative) left-monoid,
(RP) for all x, y, z ∈ A, y → z ≥ x ⇔ z ≥ x � y.

1’) A bounded residuated lattice is an algebra A = (A,∧,∨,�,→, 0, 1) verifying
(L 0,1), (X2) and (RP), where:

(L 0,1) (A,∧,∨, 0, 1) is a bounded lattice.

Let R-L and R-Lb denote the class (or the category) of residuated lattices
and of bounded residuated lattices, respectively.

In a bounded residuated lattice we can define a negation, −, by: x− = x →
0, for all x. A bounded residuated lattice verifying (DN) (Double Negation)
condition is also called a “Girard monoid”.

- Hilbert algebras were introduced as “left” algebras, as the dual of Henkin’s
“right” implicative models.

Definition 2.3 (see [Diego 1966])
A Hilbert algebra is an algebra (A,→, 1) of type (2, 0), satisfying, for all

x, y, z ∈ A:
(h1) x → (y → x) = 1,
(h2) (x → (y → z)) → ((x → y) → (x → z)) = 1,

(h3) if x → y = y → x = 1, then x = y,

or, equivalently [Diego 1966]
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Definition 2.4 A Hilbert algebra is an algebra (A,→) of type (2), if A is a
non-void set, satisfying, for all x, y, z ∈ A:

(H1) (x → x) → x = x,

(H2) x → x = y → y,

(H3) x → (y → z) = (x → y) → (x → z),
(H4) (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y).

- MV algebras were introduced as “right” algebras. We shall give here only
the definition of left-MV algebras, which duals the right-definition presented in
[Cignoli et al. 2000].

Definition 2.5 [Flondor et al. 2001], [Iorgulescu 2003] An MV algebra is an al-
gebra (A,�,−, 1) of type (2,1,0), satisfying, for all x, y, z ∈ A:

(MV1-L) x � (y � z) = (x � y) � z,

(MV2-L) x � y = y � x,
(MV3-L) x � 1 = x,
(MV4-L) (x−)− = x,
(MV5-L) x � 1− = 1−,
(MV6-L) (x− � y)− � y = (y− � x)− � x.

The MV algebras are bounded structures, where 0=1−, verifying (DN) con-
dition. Note that an equivalent definition is the following, where the two bounds
are visible:

Definition 2.6 An MV algebra is an algebra (A,�,→, 0, 1) of type (2,2,0,0),
satisfying, for all x, y, z ∈ A:

(MV1-L) x � (y � z) = (x � y) � z,

(MV2-L) x � y = y � x,
(MV3-L) x � 1 = x,
(MV4-L) (x → 0) → 0 = x,
(MV5-L) x � 0 = 0,
(MV6-L) (((x → 0) � y) → 0) � y = (((y → 0) � x) → 0) � x.

The MV algebras come from commutative l-groups. Mundici [Mundici 1986b]
proved that MV algebras are intervals in commuative l-groups.

We shall present later ([Iorgulescu a] Remarks 3.24) a generalized-MV alge-
bra.

- An important class of residuated lattices is that of “divisible” residuated
lattices.

Definition 2.7
(1) A divisible residuated lattice (or “divisible integral, residuated, commu-

tative l-monoids”, in [Höhle 1995], Lemma 2.5) is a residuated lattice satisfying
the condition (div).
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(1’) A bounded divisible residuated lattice or a divisible bounded residuated
lattice is a bounded residuated lattice satisfying the condition (div). A duplicate
name in the literature is “bounded commutative Rl-monoid” - not appropriate,
in our opinion.

Let divR-L and divR-Lb denote the class (or the category) of divisible
residuated lattices and of bounded divisible residuated lattices, respectively.

A bounded divisible residuated lattice satisfies condition (DN) if and only if
it is an MV algebra.

- The definitions of BCK algebras and of related algebras will be given in
Section 3.

- Wajsberg algebras were introduced as “left” algebras [Font et al. 1984], as
follows:

Definition 2.8 A Wajsberg algebra is an algebra (A,→,−, 1) of type (2, 1, 0)
such that, for all x, y, z ∈ A:

(W1) 1 → x = x,
(W2) (y → z) → [(z → x) → (y → x)] = 1,
(W3) (x → y) → y = (y → x) → x,
(W4) (x− → y−) → (y → x) = 1.

Note that an equivalent definition is the following, where the two bounds are
visible:

Definition 2.9 A Wajsberg algebra is an algebra (A,→, 0, 1) of type (2, 0, 0)
such that, for all x, y, z ∈ A:

(W1) 1 → x = x,
(W2) (y → z) → [(z → x) → (y → x)] = 1,
(W3) (x → y) → y = (y → x) → x,
(W4) ((x → 0) → (y → 0)) → (y → x) = 1.

We shall present later ([Iorgulescu a] Remarks 3.24) a generalized-Wajsberg
algebra.

Wajsberg algebras are bounded algebras, with 0 = 1−, verifying condition
(DN). Let W denote the class (or the category) of Wajsberg algebras.

Wajsberg algebras are termwise equivalent to MV algebras (see
[Font et al. 1984], Theorems 4 and 5): W ∼= MV.

- BL algebras were introduced as “left” algebras. The starting point in defin-
ing and studying Basic Logic and BL algebras were the algebras of the form
([0, 1], min, max,�,→, 0, 1), where � is a continuous t-norm on [0, 1] and → is
the associated residuum; these algebras are called standard BL algebras. The
most important continuous t-norms on [0, 1] are the following three: Lukasiewicz
t-norm, Product t-norm, Gödel t-norm. These three t-norms and their associated
residua are the following:
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(1) Lukasiewicz:

x�L y = max(0, x+y−1), x →L y =
{

1, if x ≤ y

1 − x + y, if x > y
= min(1, 1−x+y);

(2) Product (Gaines):

x �P y = xy, x →P y =
{

1, if x ≤ y

y/x, if x > y,
(Goguen implication)

(3) Gödel (Brouwer):

x �G y = min(x, y), x →G y =
{

1, if x ≤ y

y, if x > y,
(Gödel implication).

They correspond to the most significant fuzzy logics: Lukasiewicz logic, Prod-
uct logic and Gödel logic, respectively. The MV algebras, the Product algebras
and the Gödel algebras constitute the algebraic models for these three types
of logics. The class of BL algebras contains the MV algebras [Chang 1958],
[Cignoli et al. 2000], the Product algebras [Hájek et al. 1996], [Mangani 1973],
[Hájek 1998a] and the Gödel algebras [Hájek 1998a] (or linear Heyting algebras
(A. Monteiro; cf. L. Monteiro [Monteiro 1970]) or L-algebras (Horn [Horn 1969]);
cf. [Boicescu et al. 1991]).

Definition 2.10
(1) A BL algebra [Hájek 1998a] is an algebra A = (A,∧,∨,�,→, 0, 1) of type
(2, 2, 2, 2, 0, 0), such that:

(R0,1) A is a bounded residuated lattice,
(div) for all x, y ∈ A, x ∧ y = x � (x → y) (divisibility),
(prel) for all x, y ∈ A, (x → y) ∨ (y → x) = 1 (pre-linearity).

(1’) A generalized-BL algebra (standard generalization) is an algebra
A = (A,∧,∨,�,→, 1), such that (R·,1), (div), (prel) hold, where:

(R·,1) A is a residuated lattice.

A BL algebra is an MV algebra iff it satisfies condition (DN) (Double Nega-
tion).

The BL algebra ([0, 1], min, max,�L,→L, 0, 1), determined by the above
Lukasiewicz t-norm, is the standard (canonical) (left-) MV algebra.

Definition 2.11 A Product algebra [Hájek 1998a] is a BL algebra A which ful-
fills the following two conditions:

(P1) for every x ∈ A, x ∧ x− = 0,
(P2) for every x, y, z ∈ A, (z−)− � [(x � z) → (y � z)] ≤ x → y.
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The standard Product algebra is the BL algebra ([0, 1], min, max,�P ,→P

, 0, 1), determined by the above Product t-norm.
A BL algebra which fulfills the condition (P1) is usually called a SBL algebra.

Let us name SSBL algebras the BL algebras fulfilling the condition (P2).
Let Product, SBL, SSBL denote the classes of Product algebras, SBL and

SSBL algebras, respectively.

Definition 2.12 A Gödel algebra [Hájek 1998a] is a BL algebra A which fulfills
the condition (G) ( idempotent multiplication):

(G) for each x ∈ A, x � x = x.

The standard Gödel algebra is the BL algebra ([0, 1], min, max,�G,→G, 0, 1),
determined by the above Gödel t-norm. Recall that Gödel algebras are exactly
the Heyting algebras verifying (prel) condition (i.e. the linear Heyting algebras).
Hence, a generalized-Gödel algebra is the relatively pseudocomplemented lattice
verifying (prel) condition. Let Gödel denote the class of Gödel algebras.

Open problem 2.13 Define generalized-Product algebras.

- Another important class of bounded residuated lattices is that of weak-BL
= MTL algebras.

Definition 2.14
(1) A weak-BL algebra [Flondor et al. 2001] or a MTL (Monoidal t-norm

Based) algebra [Esteva and Godo 2001] is a bounded residuated lattice satisfying
the condition (prel).

(1’) A generalized-weak-BL algebra or a weak-generalized-BL algebra or a
generalized-MTL algebra is a residuated lattices satisfying (prel).

- Let us recall also the following particular cases of MTL algebras presented
in [Esteva and Godo 2001]:

Definition 2.15
(1) An IMTL algebra (Involutive Monoidal t-norm based Logic) is an MTL al-
gebra satisfying the condition (DN).
(2) A WNM algebra is an MTL algebra satisfying the additional condition
(WNM) (Weak Nilpotent Minimum):

(WNM) for all x, y, (x � y)− ∨ [(x ∧ y) → (x � y)] = 1.

(3) An NM (Nilpotent Minimum) algebra is an IMTL algebra satisfying the
condition (WNM), or a WNM algebra satisfying the condition (DN).

Hence we have: NM = IMTL + (WNM) = WNM + (DN).

Open problem 2.16 Define generalized-WNM algebras, generalized-IMTL al-
gebras and generalized-NM algebras.

1644 Iorgulescu A.: On BCK Algebras ...



Remarks 2.17 (1) We shall stress in Parts III [Iorgulescu c], IV [Iorgulescu d]
of this paper, the importance of NM algebras versus MV algebras, that the class
of MV algebras and the class of NM algebras are incomparable (with respect to
set inclusion).

(2) We shall obtain new algebras by adding the condition (WNM) to bounded
residuated lattices.

- Recall [Pei 2003] that the IMTL algebras, introduced in 2001 by Esteva and
Godo [Esteva and Godo 2001], are termwise equivalent to weak-R0 algebras, in-
troduced in 1997 by G.J. Wang [Wang 1997] and that NM algebras are termwise
equivalent to R0 algebras, introduced also in 1997 by G.J. Wang [Wang 1997],
[Pei 2003], as left algebras, as follows:

Definition 2.18 [Pei 2003]
(1) A weak-R0 algebra is an algebra M = (M,∧,∨,→,−, 0, 1) of the type
(2, 2, 2, 1, 0, 0), such that:

• (M,∧,∨, 0, 1) is a bounded lattice, ≤ being the order relation,
• “−” is an order reversing involution with respect to ≤,
• the following conditions hold: for all x, y, z ∈ M ,
(R1) x− → y− = y → x,
(R2) 1 → x = x,

(R3) y → z ≤ (x → y) → (x → z),
(R4) x → (y → z) = y → (x → z),
(R5) x → (y ∨ z) = (x → y) ∨ (x → z).

(2) An R0 algebra is a weak-R0 algebra verifying the additional condition (R6):
(R6) (x → y) ∨ ((x → y) → (x− ∨ y)) = 1.

Hence, we have: weak-R0
∼= IMTL, R0

∼= NM.

2.2 The second step: choose between four possible definitions of
left-algebras (right-algebras)

In left-algebras connected with commutative logic (residuated lattices, Hilbert
algebras, MV algebras, Wajsberg algebras, BL algebras etc.) we have two (ad-
joint) operations: the implication (residuum) (→) and the product (t-norm) (�).
As it was largely developed in the survey-paper [Iorgulescu 2003], there are two
main ways of studying these algebras as posets (A,≥, 1) with greatest element:

(1) either

1.1 to start only with the residuum → as a primitive operation (i.e. to start
with the BCK algebra), and then its associated (derived) t-norm � is
defined, whenever it exists, by the condition:

(P) for all x, y, there exists x � y
notation= min{z | x ≤ y → z},
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(see the definitions of BCK algebras, BCK(P) algebras, Wajsberg alge-
bras etc.)

or, alternatively,

1.2 to start with both → and � (in this order), verifying then the condition:

(RP) for all x, y, z, x � y ≤ z ⇐⇒ x ≤ y → z,

as very seldom is the case,

(2) or

2.1 to start only with the t-norm � as a primitive operation (i.e. to start
with the commutative partially ordered monoid) and then its asociated
(derived) residuum → is defined, whenever it exists, by the condition:

(R) for all y, z, there exists y → z
notation= max{x | x � y ≤ z},

(see the definitions of commutative left-monoids, left-pocrims, Heyting
algebras, MV algebras etc.)

or, alternatively,

2.2 to start with both � and → (in this order), verifying then the condition:

(PR) for all x, y, z, x ≤ y → z ⇐⇒ x � y ≤ z,

as very often is the case (see the definitions of residuated lattices, BL
algebras etc.).

Note [Iorgulescu 2003] that (RP)=(PR).
Thus, there exist four (two plus two) different basic definitions for a “left”

algebra of logic having both � and → and usually one, maximum two, among
the four different types are used in the literature, for each algebra.

The four different basic definitions of algebras determine a left-“Mendeleev-
type” table (matrix) (Sergiu Rudeanu’s remark) with 4 columns and
as many rows as distinct (i.e. not termwise equivalent) algebras are involved in
the study. The given algebras will fill some cells of the table and the empty cells
of each row will be filled with the “missing” algebras; the only problem is the
problem of names for the “missing” algebras.

Since it was proved explicitely in [Iorgulescu 2003] (Theorems 2.13, 2.50,
2.55) the termwise equivalence existing between the algebras in Figure 1, the
“four parents algebras”, it follows that all the particular algebras, the “four
descendents”, sitting on the same row, bellow the row of the “parents”, are
termwise equivalent at their turns. Hence, between the algebras of the same row
we should use the sign ∼=.

We shall use the sign “≡” between the algebras of the same column
which are termwise equivalent and we shall read it: “is an equivalent
definition of”.
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r-BCK(P)

π−→←−
π∗ r-BCK(RP)

δ′−→←−
γ′ X-BCK(RP)

ρ∗−→←−
ρ X-BCK(R) ≡ pocrims

Figure 1: The “four parents algebras”, where r- means “reversed-”.

Note that there exists a dual (right-) “Mendeleev-type” table (matrix)
with 4 columns, determined by the four different possible definitions of right-
algebras which are (particular cases of) BCK(S) algebras or dual pocrims.

We give now two examples of left-“Mendeleev-type” tables, one in the boun-
ded case and the other in the one bound case.

Example 1. The following four bounded left-algebras: the reversed bounded
BCK(P) algebras (r-BCK(P)b), the bounded pocrims, the bounded residuated
lattices (R-Lb) and the BL algebras (BL) determine a “Mendeleev-type” table
(matrix) with 4 columns and 3 rows, where only four cells are filled. We have
then introduced the “missing” algebras [Iorgulescu 2003] in the empty cells. The
complete table of all 12 = 4× 3 algebras is presented in [Iorgulescu 2004], where
the initial four algebras are marked by a bullet. Since the 12 algebras are (direct
or indirect) generalizations (or ascendents) of Wajsberg algebras and of MV
algebras, we have added a fourth row to the table, the row of Wajsberg and MV
algebras, where we have filled only two columns.

Example 2. The following five generalized left-algebras: the reversed BCK(P)
algebras (r-BCK(P)), the pocrims, the reversed BCK(P) lattices (r-BCK(P)-
L), the residuated lattices (R-L) and generalized-BL algebras (BLg) determine
a “Mendeleev-type” table (matrix) with 4 columns and 3 rows too, where only
five cells are filled. One can introduce the “missing” algebras, and put them in
the empty cells. The complete table of all 12 = 4 × 3 generalized algebras is
presented in Figure 2, where the initial five algebras are marked by a bullet.
Since the 12 algebras are (direct or indirect) ascendents (i.e. generalizations) of
generalized-Wajsberg algebras and of generalized-MV algebras, we have added
a fourth row to the table, the row of generalized-Wajsberg and generalized-MV
algebras, not completely filled.

Recall that the axioms appearing in the tables from [Iorgulescu 2004] (the
bounded case) and Figure 2 (the generalized case) are the following (see the
papers [Iorgulescu 2003], [Iorgulescu 2004]):
(A ·,1) = (X ·,1)=(A1) (A,≥, 1) is a poset with greatest element 1,
(A0,1) = (X0,1) (A,≥, 0, 1) is a poset with greatest element, 1, and smallest ele-
ment, 0,
(A2) (A,→, 1) verifies: for all x, y, z, (R1) 1 → x = x, (R2) (y → z) → [(z →
x) → (y → x)] = 1,
(A3) x → y = 1 ⇐⇒ x ≤ y, for all x, y,
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The world of generalized left-algebras

The general world of →, 1

The world of
→, 1

•
r-BCK(P)

(A,≥,→, 1)

(A ·,1),(A2),(A3),(A4),

(P)

•
r-BCK(P)-L

(A,∧,∨,→, 1)

(L ·,1),(A2),(A3),(A4),

(P)

r-Ha(P)g

(A,∧,∨,→, 1)

(L ·,1),(A2),(A3),(A4),

(P)

(div),(prel)

Wg

(A,→, 1)

The world of
→, 	, 1

r-BCK(RP)

(A,≥,→,	, 1)

(A ·,1), (A2), (A3),

(RP)

r-BCK(RP)-L

(A,∧,∨,→,	, 1)

(L ·,1), (A2), (A3),

(RP)

r-Ha(RP)g

(A,∧,∨,→,	, 1)

(L ·,1), (A2), (A3),

(RP),

(div), (prel)

The general world of �, 1

The world of
	, →, 1

X-BCK(RP)

(A,≥,	,→, 1)

(A ·,1), (X2),

(RP)

•
X-BCK(RP)-L

= R-L

(A,∧,∨,	,→, 1)

(L ·,1), (X2),

(RP)

•
X-Ha(RP)g= BLg

(A,∧,∨,	,→, 1)

(L ·,1), (X2),

(RP),

(div),(prel)

MVg

(A,	,→, 1)

The world of
	, 1

•
X-BCK(R)

= pocrim

(A,≥,	, 1)

(A ·,1), (X2), (X3),

(R)

X-BCK(R)-L

= X-R-L

(A,∧,∨,	, 1)

(L ·,1), (X2), (X3),

(R)

X-Ha(R)g= X-BLg

(A,∧,∨,	, 1)

(L ·,1), (X2), (X3),

(R),

(div), (prel)

Figure 2: The table with four columns corresponding to the four different defi-
nitions of generalized-algebras, where g means “generalized-”
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(A4) x ≤ y =⇒ z → x ≤ z → y, for all x, y, z,
(A5) (x → y) → y = (y → x) → x, for all x, y,
(A6) (x− → y−) → (y → x) = 1,
(X2) (A,�, 1) is an abelian (i.e. commutative) left-monoid,
(X3) x ≤ y ⇒ x � z ≤ y � z, for every x, y, z,
(X4) x � 1− = 1−, for all x,
(X5) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x, for all x, y,
(DN) (x−)− = x, for all x,
(P) there exists x � y

notation= min{z | x ≤ y → z}, for all x, y,
(R) there exists y → z

notation= max{x | x � y ≤ z}, for all y, z,
(RP)= (PR) x � y ≤ z ⇐⇒ x ≤ y → z, for all x, y, z,
(L ·,1) (A,∧,∨, 1) is a lattice with last element, 1,
(L0,1) (A,∧,∨, 0, 1) is a bounded lattice,
(div) x ∧ y = x � (x → y), for all x, y,
(prel) (x → y) ∨ (y → x) = 1, for all x, y.

Remark 2.19 The above left-“Mendeleev-type” tables (matrices) with 4 co-
lumns can be completed with other rows, corresponding to other algebras of logic.
Thus, a comprehensive left-“Mendeleev-type” table of all algebras related to
logic which are particular cases of BCK(P) algebras (pocrims) (or a set of many
small “Mendeleev-type” tables, built on groups of such algebras), together with
a comprehensive “map” of the hierarchies of all these algebras (or a set of many
small “maps” of hierarchies corresponding to those groups of algebras) will give
- in our oppinion - a more clear and precise view of the domain (mathematical
logic and algebraic logic) (as well as an atlas clarifies, for the reader, by its maps,
the geographical position of one state versus other states, or a city map clarifies
the geographical position of one building versus other buildings).

We claim that it is useful, when a research concerns several related left-
algebras, to define all the involved algebras in the same manner, i.e. in only one
of the four different ways (the same for right-algebras); this is the second step
of our methodology: to choose between the four definitions.

We have chosen the first definition, (1.1), i.e. we have chosen to start
only with implication (= residuum, see [Iorgulescu a] Definition 3.6) and 1, be-
cause in this way we are much closer to logic and we can make the connections
with Hilbert algebras (while choosing (2.1), (2.2) we are closer to algebra, analy-
sis). Hence, we have chosen to treat all the above mentioned algebras unitarily as
special classes of reversed left-BCK algebras - instead of treating them unitarily
as special classes of partially ordered (left-) monoids.

Consequently, in the next section, we shall start with → and 1, i.e. we shall
work with (bounded) BCK(P) algebras, (bounded) BCK(P) lattices, (general-
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ized) Hájek(P) algebras and (generalized) Wajsberg algebras (i.e. algebras from
the first column of the table in Figure 2), etc.

Following these comments, weak R0-algebras and R0-algebras “go with”
Hájek(P) algebras and with Wajsberg algebras in column 1 of the table in
[Iorgulescu 2004], while IMTL algebras and NM algebras “go with” BL alge-
bras, in the 3rd column of that table. Consequently, we should normally refer to
“weak-R0 algebras, R0 algebras, axiom (R6), Hájek(P) algebras and Wajsberg
algebras”, but sometimes we shall refer to “IMTL algebras, NM algebras, axiom
(WNM), BL algebras and even MV algebras (from the 4th column)” too.

The subsequent Sections, 3 and 4, of Part I are presented in [Iorgulescu a].
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Quantum algebras”; Kluwer Acad. Publ., Dordrecht (2000).

[Esteva and Godo 2001] Esteva, F., Godo, L.: “Monoidal t-norm based logic: towards a
logic for left-continuous t-norms”; Fuzzy Sets and Systems 124, 3 (2001), 271-288.

[Esteva et al. a] Esteva, F., Godo, L., Hájek, P., Montagna, F.: “Hoops and fuzzy
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