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Abstract: A square (0, 1)-matrix X of order n ≥ 1 is called fully indecomposable
if there exists no integer k with 1 ≤ k ≤ n − 1, such that X has a k by n − k
zero submatrix. The reduced adjacency matrix of a bipartite graph G = (A,B, E)
(having A ∪ B = {a1, ..., am} ∪ {b1, ..., bn} as a vertex set, and E as an edge set), is
X = [xij ], 1 ≤ i ≤ m, 1 ≤ j ≤ n, where xij = 1 if aibj ∈ E and xij = 0 otherwise.
A stable set of a graph G is a subset of pairwise nonadjacent vertices. The stability
number of G, denoted by α(G), is the cardinality of a maximum stable set in G.
A graph is called α-stable if its stability number remains the same upon both the
deletion and the addition of any edge. We show that a connected bipartite graph has
exactly two maximum stable sets that partition its vertex set if and only if its reduced
adjacency matrix is fully indecomposable. We also describe a decomposition structure
of α-stable bipartite graphs in terms of their reduced adjacency matrices. On the base
of these findings, we obtain both new proofs for a number of well-known theorems on
the structure of matrices due to Brualdi (1966), Marcus and Minc (1963), Dulmage
and Mendelsohn (1958), and some generalizations of these statements. Two kinds of
matrix product are also considered (namely, Boolean product and Kronecker product),
and their corresponding graph operations. As a consequence, we obtain a new proof of
one Lewin’s theorem claiming that the product of two fully indecomposable matrices
is a fully indecomposable matrix.

Key Words: fully indecomposable matrix, cover irreducible matrix, total support,
Boolean product, Kronecker product, adjacency matrix, stable set, bistable bipartite
graph, perfect matching, elementary graph
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1 Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless
and without multiple edges) graph with vertex set V = V (G) and edge set
E = E(G). If U is a subset of vertices, then G[U ] is the subgraph of G induced
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by U , i.e., the graph having U as its vertex set, and containing all the edges of
G connecting vertices of U . By G−W we mean either the subgraph G[V −W ],
if W ⊂ V (G), or the partial subgraph of G obtained by deleting the edges from
W , whenever W ⊂ E(G) (we use G−a, if W = {a}). If U, W are disjoint subsets
of V , then (U, W ) stands for the set {e = uw : u ∈ U, w ∈ W, e ∈ E}.

The neighborhood of a vertex v ∈ V , denoted by N(v), is the set of vertices
adjacent to v. For any U ⊂ V (G), we denote NG(U) = ∪{N(x) : x ∈ U}, or, if
no ambiguity, N(U).

By pG we mean the disjoint union of p ≥ 2 copies of G. If Gi, 1 ≤ i ≤ q, are q

pairwise vertex disjoint subgraphs of G, such that V (G) = V (G1) ∪ ... ∪ V (Gq),
then we say that Gi, 1 ≤ i ≤ q, define a decomposition of G and we write
G = G1 ∪ ... ∪ Gq.

A subset U ⊂ V (G) is said to be 2-dominating in G if |N(v) ∩ U | ≥ 2, for
every vertex v ∈ V − U , [Gunther et al. 1993].

A stable set (i.e., a set containing pairwise nonadjacent vertices) of maximum
size will be referred to as a maximum stable set of G. The stability number of
G, denoted by α(G), is the cardinality of a maximum stable set of G.

A perfect matching is a set of non-incident edges of G covering all its vertices.
A bipartite graph is a triple G = (A, B, E), where E is its edge set and

{A, B} is its bipartition; if |A| = |B|, then G is called balanced bipartite. If
A, B are the only two maximum stable sets of G, then it is a bistable bipartite
graph, [Levit and Mandrescu 1997]. Clearly, every bistable bipartite graph is
also balanced, while the converse is not always true.

A graph G = (V, E) is called:
(i) α−-stable if α(G − e) = α(G) for every e ∈ E, [Gunther et al. 1993];
(ii) α+-stable if α(G + e) = α(G) for each e /∈ E, e = xy and x, y ∈ V ,

[Gunther et al. 1993];
(iii) α-stable if it is both α−-stable and α+-stable,

[Levit and Mandrescu 1997], [Levit and Mandrescu 2001].
Let G = (A, B, E) be a bipartite graph, where A = {a1, a2, ..., am} and also

B = {b1, b2, ..., bn}. Then G can be characterized by its adjacency matrix, which
is a square (0, 1)-matrix of order m + n

[
O X

Xt O

]
,

where
X = [xij ], 1 ≤ i ≤ m, 1 ≤ j ≤ n,

with xij = 1 if aibj ∈ E and xij = 0 otherwise. X is called the reduced adjacency
matrix of the bipartite graph G. Any (0, 1)-matrix of size m by n is the reduced
adjacency matrix of a bipartite graph. If G is balanced bipartite, then its reduced
adjacency matrix is a square (0, 1)-matrix of order n = |A| = |B|.
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The term rank ρ = ρ(X) of a (0, 1)-matrix X of size m by n is the maximal
number of 1’s of X with no two of 1’s on a line (i.e., on a row or on a column).

A collection of n elements of a square (0, 1)-matrix X of order n is called a
diagonal of X provided no two elements belong to the same row or column of
X . A nonzero diagonal of X is a diagonal containing no 0’s.

A square (0, 1)-matrix X of order n is called partly decomposable if n = 1 and
its unique entry is zero, or n > 1 and there is an integer k with 1 ≤ k ≤ n−1, such
that X has a k by n−k zero submatrix. A square matrix is fully indecomposable
provided it is not partly decomposable, [Marcus and Minc 1963]. By permuting
the lines of X , the partly decomposable matrix X can be written in the form

X =
[

X1 O

X2 X3

]
,

where O is a zero matrix of size k by n−k, while X1 and X3 are square matrices
of orders k and n − k, respectively.

Decomposition structures of α+-stable and α-stable bipartite graphs were
first established in [Levit and Mandrescu 2001]. On the base of these findings
we obtain both new proofs for several well-known theorems on the structure of
matrices that may be found in [Brualdi 1966a], [Brualdi 1966b], [Brualdi 1966c],
[Brualdi 1967], [Marcus and Minc 1963], [Dulmage and Mendelsohn 1958], and
also some generalizations of these statements. Some new results on reduced ad-
jacency matrices of α-stable bipartite graphs are presented, as well. For example,
we show that a connected bipartite graph has exactly two maximum stable sets
that partition its vertex set if and only if its reduced adjacency matrix is fully
indecomposable.

The paper is organized as follows: for the sake of self-consistency, section 2
contains a series of results referring to the structure of bistable, α+-stable, and
α-stable bipartite graphs. We use these findings in section 3, in order to prove
some assertions on reduced adjacency matrices associated with bipartite graphs.
Sections 4 and 5 are dealing with two different kinds of matrix product, (namely,
Boolean and Kronecker), and their corresponding graph operations.

2 α-Stable bipartite graphs

In this section we recall some results concerning the structure of α-stable and
α+-stable bipartite graphs in terms of bistable bipartite graphs.

The following theorem describes some stability properties of general graphs.

Theorem 1. [Haynes et al. 1990] A graph G is:
(i) α−-stable if and only if each of its maximum stable sets is a 2-dominating

set in G;
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(ii) α+-stable if and only if no pair of vertices is contained in all its maximum
stable sets.

As an immediate consequence, one can deduce that a disconnected graph G,
with components H1, ..., Hp, is α-stable if and only if the following assertions are
valid:

(i) each Hi, 1 ≤ i ≤ p, is α-stable;
(ii) at most one of Hi, 1 ≤ i ≤ p, has

|∩{Si : Si is a stability system in Hi}| = 1.

The following theorem is a generalization of a similar result for trees shown
in [Gunther et al. 1993]).

Theorem 2. [Levit and Mandrescu 1997] If G is a connected bipartite graph,
then the following assertions are equivalent:

(i) G is α+-stable;
(ii) G has a perfect matching;
(iii) G possesses two maximum stable sets that partition its vertex set.

Figure 1 illustrates some basic differences between α+-stable and α−-stable
graphs. Namely, both are bipartite, but G1 is α+-stable and non-α−-stable (since
it has a perfect matching and a non-2-dominating maximum stable set), while
G2 is α−-stable and non-α+-stable (because its unique maximum stable set is
2-dominating and it has no perfect matching).
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Figure 1: α+-stable and α−-stable bipartite graphs: G1 and G2, respectively.

A bipartite graph G = (A, B, E) is said to be cover-irreducible if it is balanced
and A, B are its only minimum vertex covers [Dulmage and Mendelsohn 1967].

In [Lovász and Plummer 1977], [Lovász and Plummer 1986] a graph H is de-
fined as elementary if the union of all its perfect matchings forms a connected
subgraph of H . The next theorem extends the characterization of elementary
bipartite graphs [Hetyei 1964]), [Lovász and Plummer 1977]).

Theorem 3. [Levit and Mandrescu 2001] If G = (A, B, E) is a bipartite graph
with at least 4 vertices, then the following assertions are equivalent:

(i) G is cover-irreducible;
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(ii) G is bistable;
(iii) for any proper subset U of A or of B, |N(U)| > |U | holds;
(iv) G is balanced and for any proper subset U of A, |N(U)| > |U | holds;
(v) G − a − b is α+-stable, for any a ∈ A and b ∈ B;
(vi) G − a − b has a perfect matching, for every a ∈ A and b ∈ B;
(vii) G is connected and each of its edges lies in some perfect matching;
(viii) G is elementary;
(ix) G can be written in the form G = G0 ∪ H1 ∪ H2 ∪ ... ∪ Hk, where G0

consists of two vertices and an edge joining them, and Hi is an even path which
joins two points of G0∪H1∪ ...∪Hi−1 in different color classes and has no other
point in common with G0 ∪ H1 ∪ ... ∪ Hi−1.

The α-stable connected bipartite graphs are completely characterized, as
follows.

Theorem 4. [Levit and Mandrescu 2001] If G is a connected bipartite graph,
then the following assertions are equivalent:

(i) G is α-stable;
(ii) G = G1 ∪ ... ∪ Gk, k ≥ 1, where each Gi, 1 ≤ i ≤ k, is bistable bipartite

and has at least 4 vertices;
(iii) G has perfect matchings and ∩{M : M is a perfect matching of G} = ∅;
(iv) for every vertex of G there exist at least two edges incident to this vertex

and contained in some perfect matchings;
(v) each vertex of G belongs to some alternating cycle.

Finally, let us recall the following result.

Proposition5. [Levit and Mandrescu 2001] A connected bipartite graph G is
α+-stable if and only if it admits a decomposition as G = G1 ∪ ... ∪ Gk, where
all Gi are bistable bipartite.

Figure 2 offers an example of decomposition of an α+-stable bipartite graph
into vertex-disjoint and bistable bipartite components: G = G1 ∪ G2 ∪ G3.
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Figure 2: A decomposition of G into bistable components: G = G1 ∪ G2 ∪ G3.
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3 Matrices and bipartite graphs

It is not difficult to see that the unity matrix In, n ≥ 1, is the reduced adjacency
matrix of nK2, i.e., of the graph consisting of n disjoint copies of K2. A simple
generalization of this observation is as follows.

Lemma6. A bipartite graph G is disconnected if and only if its adjacency matrix
X can be written as

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1 O O . . O

O X2 O . . O

. . . . . .

. . . . . .

. . . . . .

O O . . . Xk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where the blocks X1, X2, ..., Xk are the adjacency matrices corresponding to the
k ≥ 2 connected components of G, respectively.

The following findings emphasize an impact of a stable set on the structure
of the reduced adjacency matrix.

Lemma7. Let S be a proper subset of the vertex set of G = (A, B, E), with
p + q vertices, where p = |S ∩ A| ≥ 1 and q = |S ∩ B| ≥ 1. Then S is stable in
G if and only if its reduced adjacency matrix X can be written as

X =
[

X1 O

X2 X3

]
,

where O is a p by q zero matrix.

Proof. By using an appropriate indexing for A and for B, we may suppose that

S ∩ A = {a1, ..., ap} and S ∩ B = {bn−q+1, ..., bn}.
Therefore, S is stable in G if and only if xij = 0 for every i ∈ {1, ..., p} and
j ∈ {n − q + 1, ..., n}, i.e., X has exactly the form announced above.

Proposition8. Let G = (A, B, E) be a connected balanced bipartite graph with
2n vertices and X be its reduced adjacency matrix. Then G has a stable set of n

vertices that meets both A and B if and only if X is partly decomposable.

Proof. If p = |S ∩ A|, then q = |S ∩ B| = n − p, and by Lemma 7, we obtain X

in the form

X =
[

X1 O

X2 X3

]
,

where O is a p by n − p zero matrix, 1 ≤ p ≤ n − 1, i.e., the reduced adjacency
matrix X is partly decomposable.

1697Levit V.E., Mandrescu E.: Matrices ...



Proposition9. A balanced bipartite graph is bistable if and only if its reduced
adjacency matrix is fully indecomposable.

Proof. Since a bistable bipartite graph G = (A, B, E) is connected and has
only A and B as maximum stable sets, Proposition 8 ensures that its reduced
adjacency matrix can not be partly decomposable. The converse is clear.

Following the terminology from [Dulmage and Mendelsohn 1967], let us re-
call that for a balanced bipartite graph G = (A, B, E), a cover is a pair of subsets
{A0, B0} of A and B respectively, such that for every edge ab ∈ E, either a ∈ A0

or b ∈ B0. G is cover irreducible if its only minimum covers are {A, ∅} and
{∅, B}. The reduced adjacency matrix of a cover irreducible bipartite graph is a
cover irreducible matrix.

It was shown in [Lovász and Plummer 1986] that elementary bipartite graphs
and the cover irreducible bipartite graphs are the same. It turns out that bistable
bipartite graphs are exactly cover irreducible bipartite graphs, and fully inde-
composable matrices coincide with cover irreducible matrices. Our approach is
based, in principal, on the bistable property. Combining Theorem 3 and Propo-
sition 9, we get the following result from [Brualdi et al. 1980].

Corollary 10. Let G be a balanced bipartite graph with 2n vertices and X be
its reduced adjacency matrix. Then X is fully indecomposable if and only if G is
connected and every edge belongs to a perfect matching.

We also obtain a simple proof for the following characterization of fully in-
decomposable matrices from [Marcus and Minc 1963], [Brualdi 1966a].

Theorem 11. A (0, 1)-matrix X of order n ≥ 2 is fully indecomposable if and
only if every 1 of X belongs to a nonzero diagonal and every 0 of X belongs to
a diagonal whose other elements equal 1.

Proof. Let G = (A, B, E) be a balanced bipartite graph with |A| = |B| = n,
having X as its reduced adjacency matrix. Then, according to Proposition 9
and Theorem 2, X is fully indecomposable if and only if G − a − b is α+-stable
for every a ∈ A and b ∈ B, i.e., for any i, j ∈ {1, ..., n}, the submatrix Y ,
obtained by deleting the row i and the column j of X , has a nonzero diagonal,
and this completes the proof.

Corollary 12. [Marcus and Minc 1963] A fully indecomposable (0, 1)-matrix X

of order n contains at most n(n − 2) zero entries.

Proof. Let G = (A, B, E) be a balanced bipartite graph with X as its reduced
adjacency matrix. By Proposition 9, G is bistable and according to Theorem
3(iii), |N(v)| ≥ 2 holds for any vertex v of G. Consequently, any row of X
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cannot have more than n − 2 zeros, and hence X cannot contain more than
n(n− 2) zero entries. On the other hand, C2n, n ≥ 2, is bistable and its reduced
adjacency matrix has exactly n(n − 2) zero entries.

A (0, 1)-matrix of order n ≥ 2 is said to be with total support provided each
of its 1’s belongs to a nonzero diagonal.

Proposition13. [Brualdi and Ryser 1991] Let X be a (0, 1)-matrix of order
n ≥ 2 with total support, and let G be the bipartite graph whose reduced adjacency
matrix is X. Then G is connected if and only if X is fully indecomposable.

Proof. Clearly, X is with total support if and only if each edge of G is contained
in a perfect matching of G. Therefore, taking into account Theorem 3(vii) and
Proposition 9, we get that:

G is connected ⇔ G is bistable ⇔ X is fully indecomposable,

and this completes the proof.

We can now characterize the bipartite graphs whose reduced adjacency ma-
trices are with total support.

Proposition14. The reduced adjacency matrix X of a bipartite graph G has
total support if and only if each connected component of G is bistable bipartite.

Proof. If G is connected, then according to Proposition 9, X has total support
if and only if G is bistable. If G is disconnected, Lemma 6 implies that X can
be written in the form (1), and then X has total support if and only if all the
blocks X1, ..., Xk have total support, i.e., according to Propositions 9 and 13, all
connected components of G are bistable bipartite.

Proposition15. Let G be a balanced bipartite graph with 2n vertices and X be
its reduced adjacency matrix. Then the following assertions are equivalent:

(i) G is α+-stable;
(ii) X has a nonzero diagonal;
(iii) ρ(X) = n;
(iv) per(X) > 0.

Proof. According to Theorem 2, G is α+-stable if and only if it has a perfect
matching, i.e., its reduced adjacency matrix X has a nonzero diagonal, and this
clearly is equivalent to both (iii) and (iv).

Corollary 16. [Minc 1969] A (0, 1)-matrix X of order n ≥ 2 is fully indecom-
posable if and only if every (n − 1)-square submatrix Y of X has per(Y ) > 0.
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Proof. Suppose X is the reduced adjacency matrix of the balanced bipartite
graph G = (A, B, E). According to Proposition 9, X is fully indecomposable
if and only if G is bistable bipartite, and by Theorem 3, this happens if and
only if G − a − b is α+-stable, for every a ∈ A and b ∈ B, i.e., by virtue of the
Proposition 15, if and only if per(Y ) > 0 holds for each (n−1)-square submatrix
Y of X .

Corollary 17. [Brualdi 1966b] Let X be a square (0, 1)-matrix of order n and
let Xij denote the matrix obtained from X by striking the i-th row and the j-th
column. Then X is fully indecomposable if and only if per(Xij) > 0.

Proof. Let G = (A, B, E) be a bipartite graph whose reduced adjacency matrix
is X . By Proposition 9, X is fully indecomposable if and only if G is bistable,
i.e., according to Theorem 3(vi), G−a−b has a perfect matching for every a ∈ A

and b ∈ B, that is, by Proposition 15, the matrix Xab has a positive permanent.

Theorem 18. Let G be a balanced bipartite graph with 2n vertices and X be its
reduced adjacency matrix. Then G is α-stable if and only if X can be written as

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1 X12 X13 . . X1k

O X2 X23 . . X2k

. . . . . .

. . . . . .

. . . . . .

O O O . . Xk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

where X1, ..., Xk are fully indecomposable matrices of order at least 2.

Proof. According to Theorem 4(ii), G is α-stable if and only if it admits a de-
composition as G = G1 ∪ ... ∪ Gk, where all Gi, 1 ≤ i ≤ k, are simultaneously
α-stable, bistable bipartite, and pairwise vertex-disjoint. Hence, using an ap-
propriate indexing for the vertices of G, X can be written in the form (2), with
X1, ..., Xk as reduced adjacency matrices corresponding to G1, ..., Gk. By Propo-
sition 9, each Xi is fully indecomposable. In addition, every Xi is of order at
least two, since it corresponds to Gi, which has at least 4 vertices, because it is
a bistable bipartite and α-stable graph.

Theorem 19. Let G be a balanced bipartite graph with 2n vertices and X be its
reduced adjacency matrix. Then G is α+-stable if and only if X can be written
in the form (2), where all X1, ..., Xk are fully indecomposable matrices.

Proof. By Proposition 5, G is α+-stable if and only if it admits a decomposition
as G = G1 ∪ ... ∪ Gk, where all Gi, 1 ≤ i ≤ k, are bistable balanced bipar-
tite and pairwise vertex-disjoint. Hence, using an appropriate indexing for the
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vertices of G, the matrix X can be written in the form (2), with X1, ..., Xk as re-
duced adjacency matrices corresponding to G1, ..., Gk, and therefore being fully
indecomposable, by Proposition 9.

As an outcome, we obtain the following well-known result.

Theorem 20. [Dulmage and Mendelsohn 1958], [Brualdi 1966a] Let X be a
(0, 1)-matrix of order n with term rank ρ(X) equal to n. Then there exist per-
mutation matrices P and Q of order n and an integer k ≥ 1 such that P ×A×Q

has the form (2), where all X1, ..., Xk are square fully indecomposable matrices.

Proof. Let G be a balanced bipartite graph, whose reduced adjacency matrix
is X . By Proposition 15(i), G is α+-stable, and according to Proposition 5 it
admits a decomposition as G = G1∪...∪Gk , where all the graphs Gi are bistable
bipartite and pairwise vertex-disjoint. Hence, using an appropriate indexing for
the vertices of G, the matrix X can be written according to the form ( 2), with
X1, ..., Xk as reduced adjacency matrices corresponding to G1, ..., Gk. Proposi-
tion 9 ensures that all X1, ..., Xk are fully indecomposable.

Combining Theorem 20 and Theorem 4(ii),(iii) we deduce the following.

Corollary 21. Let X be a (0, 1)-matrix of order n with ρ(X) = n. Then the
number of 1 by 1 blocks Xi in the matrix (2) is equal to the number of common
elements of all nonzero diagonals of X.

We end this section with a characterization of the reduced adjacency matrix
corresponding to an α-stable bipartite graph.

Proposition22. Let G be a balanced bipartite graph and X be its reduced ad-
jacency matrix. Then G is α-stable if and only if for every non-zero entry xij of
X there exists a non-zero diagonal of X that does not contain it.

Proof. According to Theorem 4(iii), G = (A, B, E) is α-stable if and only if it
has perfect matchings and

∩{M : M is a perfect matching of G} = ∅,

that is, G has perfect matchings, and for each edge e ∈ E there is a perfect
matching M such that e /∈ M . In other words, G is α-stable if and only if for
every non-zero entry xij of X , there is a non-zero diagonal of X that does not
contain it.
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4 Boolean product of matrices

Let G = (A, B, E) and H = (B, C, F ) be two balanced bipartite graphs on 2n

vertices. We define the bipartite join of G with H as the bipartite graph

G ∗ H = (A, C, W ),

where ac ∈ W if and only if there is b ∈ B, such that ab ∈ E and bc ∈ F .
The Boolean matrix product of two (0, 1)-matrices X, Y is a (0, 1)-matrix

denoted by X • Y and having the same zero and non-zero entries as the usual
matrix product X×Y . Hence X •Y is fully indecomposable if and only if X×Y

is fully indecomposable. The term Boolean refers to the property of the Boolean
addition operation saying that: 1 + 1 = 1. For an example, see Figure 3. Using
this notation we have the following result.

Lemma23. If X, Y are the reduced adjacency matrices of the balanced bipartite
graphs G and H, respectively, then the Boolean matrix product X • Y is the
reduced adjacency matrix of the graph G ∗ H.

Proof. If X = (xij), Y = (yij) and X • Y = (zij), then clearly we have:

zij =
n∑

k=1

xikykj �= 0 ⇔

there exists k ∈ {1, ..., n}, such that xik = ykj = 1 ⇔
there is some bk ∈ B, so that aibk ∈ E and bkcj ∈ F ⇔

aicj ∈ W,

which validates the assertion.
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G H G ∗ H

a1

a2

a3

b1

b2

b3

b1

b2

b3

c1

c2

c3

a1

a2

a3

c1

c2

c3

X =

⎡
⎣1 1 0

1 1 1
0 0 1

⎤
⎦ Y =

⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦ Z = X • Y =

⎡
⎣1 1 1

1 1 1
0 0 1

⎤
⎦

Figure 3: G ∗ H and its corresponding reduced adjacency matrix Z = X • Y .
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Corollary 24. Every balanced bipartite graph G on 2n, n ≥ 1, vertices is iso-
morphic to G ∗ nK2.

Proposition25. Let G = (A, B, E) and H = (B, C, F ) be balanced bipartite
graphs. Then the following assertions are true:

(i) if G and H are α+-stable, then G ∗ H is α+-stable;
(ii) if one of G, H is α+-stable and the other is bistable bipartite, then G ∗H

is bistable bipartite;
(iii) if both G and H are bistable bipartite, then G ∗ H is bistable bipartite,

as well.

Proof. (i) Taking into account the definition of ∗-operation, it is clear that G∗H

has a perfect matching, whenever both G and H have a perfect matching. Hence,
Theorem 2 implies that G∗H is α+-stable whenever G and H are both α+-stable.

(ii) Suppose that G is α+-stable and H is bistable bipartite. If D is an
arbitrary proper subset of A or of C, then according to Theorem 3 and Hall’s
marriage theorem we get:

|D| < |NG(D)| ≤ |NH(NG(D))| = |NG∗H(D)| ,

i.e., G ∗ H is bistable, by virtue of the same Theorem 3.
The assertion (iii) is a consequence of (ii).

Corollary 26. Let X, Y be (0, 1)-matrices of order n. If per(X) > 0 and Y is
fully indecomposable, then X × Y is fully indecomposable.

Proof. Let G = (A, B, E) be a bipartite graph with a perfect matching and
H = (B, C, F ) be a balanced bipartite graph. Let X and Y be the reduced
adjacency matrices of G and H , respectively. Lemma 23 implies that X • Y is
the reduced adjacency matrix of the graph G ∗ H .

By Theorem 2 G is α+-stable, while by Proposition 9, H is bistable bipar-
tite. According to Proposition 25(ii), G ∗ H is also bistable bipartite. Hence,
Proposition 9 ensures that X • Y is fully indecomposable. Therefore, X × Y is
fully indecomposable, as well.

Actually, Corollary 26 is a strengthening of Theorem 27.

Theorem 27. [Lewin 1971] The product of any finite number of fully indecom-
posable matrices is a fully indecomposable matrix.

Corollary 28. [Marcus and Minc 1963] If X is a fully indecomposable (0, 1)-
matrix, then X × Xt is fully indecomposable.
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5 Kronecker product of matrices

Let G = (A, B, E) and H = (C, D, F ) be two balanced bipartite graphs on 2n

vertices. The Kronecker product of graphs G and H is the graph

G ⊗ H = (A × C, B × D, U),

where (a, c)(b, d) ∈ U if and only if ab ∈ E and cd ∈ F . In these notations we
have the following result.

Lemma29. If X and Y are the reduced adjacency matrices of the balanced
bipartite graphs G and H, respectively, then the Kronecker matrix product X⊗Y

is the reduced adjacency matrix of the graph G ⊗ H.

Proof. If X = (xij), Y = (yij) and X ⊗ Y = (zij), then we have:

zij = z(k−1)m+p,(r−1)m+q = xkrypq = 1 ⇔
xkr = 1 and ypq = 1 ⇔

akbr ∈ E and cpdq ∈ F ⇔ (ak, cp)(br, dq) ∈ U,

i.e., X ⊗ Y is the reduced adjacency matrix of G ⊗ H .

Proposition30. If G = (A, B, E) and H = (C, D, F ) are α+-stable, then their
Kronecker product G ⊗ H is also α+-stable.

Proof. Let {(ai, bi) : 1 ≤ i ≤ n} and {(cj, bj) : 1 ≤ j ≤ m} be perfect matchings
in G, H respectively, which exist by virtue of Theorem 2. Hence, according to
the same theorem, G ⊗ H is also α+-stable, since

{(ai, cj)(bi, dj) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a perfect matching in G ⊗ H .

Corollary 31. Let X, Y be two (0, 1)-matrices of order n, m, respectively. Then

ρ(X ⊗ Y ) ≥ ρ(X)ρ(Y ),

and if ρ(X) = n, ρ(Y ) = m, then ρ(X ⊗ Y ) = ρ(X)ρ(Y ).

Proof. Let G = (A, B, E) and H = (C, D, F ) be bipartite graphs having X, Y

as reduced adjacency matrices, respectively. If the edge sets

{aibi : 1 ≤ i ≤ ρ(X)} and {cjbj : 1 ≤ j ≤ ρ(Y )}

are maximum matchings in G and H , respectively, then

M = {(ai, cj)(bi, dj) : 1 ≤ i ≤ ρ(X), 1 ≤ j ≤ ρ(Y )}
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is a matching in G ⊗ H , and consequently, we have

ρ(X ⊗ Y ) ≥ |M | ≥ ρ(X)ρ(Y ).

If ρ(X) = n and ρ(Y ) = m, i.e., both G and H have perfect matchings, then M

is a perfect matching in G ⊗ H , and this ensures that ρ(X ⊗ Y ) = ρ(X)ρ(Y ).

Proposition32. If G = (A, B, E) is α-stable and H = (C, D, F ) is α+-stable,
then their Kronecker product G ⊗ H is α-stable.

Proof. Let X, Y, Z be the corresponding reduced adjacency matrices of G, H and
K. By Proposition 22, for every non-zero entry

zij = z(k−1)m+p,(r−1)m+q = xkrypq

of Z, there is a non-zero diagonal {x1i1 , x2i2 , ..., xnin} of X that does not contain
xkr , and clearly, the blocks

{x1i1Y, x2i2Y, ..., xninY }

contain one non-zero diagonal of Z, since Y has at least one non-zero diagonal.
According to Proposition 22, G ⊗ H is α-stable.

Corollary 33. The Kronecker product of any two α-stable bipartite graphs is
α-stable.

Theorem 34. [Brualdi 1967] The Kronecker product of two fully indecompos-
able matrices is a fully indecomposable matrix.

As a consequence, we get the following result.

Corollary 35. The Kronecker product of two bistable bipartite graphs is a bistable
bipartite graph.

6 Conclusions

In this paper we have investigated the intimate relationship between the struc-
tures of α-stable bipartite graphs and their corresponding reduced matrices.

The mutual transfer of the results was done via the following bridge:

bistable bipartite graphs vis − a − vis fully indecomposable matrices.

On the base of this correspondence, we have obtained new proofs and exten-
sions of several well-known theorems on matrices.
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