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Abstract: A model (consisting of rv-systems), a core programming language (for de-
veloping rv-programs), several specification and analysis techniques appropriate for
modeling, programming and reasoning about interactive computing systems have been
introduced by Stefanescu in 2004 using register machines and space-time duality, see
[Stefanescu 2006, Stefanescu 2006b]. Later on, Dragoi and Stefanescu have introduced
structured programming techniques for programming rv-systems and have presented
a kernel programming language AGAPIA v0.1 for interactive computing systems, see
[Dragoi and Stefanescu 2006a, Dragoi and Stefanescu 2006b].

AGAPIA v0.1 has a restricted format for program construction, using a “3-level” gram-
mar for their definition: the procedure starts with simple while programs, then modules
are defined, and finally AGAPIA v0.1 programs are obtained applying structured rv-
programming statements on top of modules.

In the current paper the above restriction is completely removed. By an appropriate
reshaping interface technique, general programs may be encapsulated into modules,
allowing to reiterate the above “3-level” construction of programs, now starting with
arbitrary AGAPIA programs, not with simple while programs. This way, high-level
interactive programs are obtained. The extended version is called AGAPIA v0.2.

As a case study we consider a cluster of computers, each having a dynamic set of
running processes. We present a protocol for the communication and termination de-
tection in this system and implement the protocol in our AGAPIA v0.2 language. We
also describe the operational semantics of the program using high-level scenarios, i.e.,
scenarios where, recursively, the cells may themselves contain scenarios, at a lower,
refined level.
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1 Introduction

Interactive computation has a long tradition and there are many successful ap-
proaches to deal with the intricate aspects of this type of computation, see,
e.g., [Agha, 1986], [Broy and Olderog 2001], [Gadducci and Montanari 1999],
[Jensen and Milner 2003], [Wadge and Ashcroft 1985], [Wegner 1998], to men-
tion just a few references from a very rich literature. However, a simple, general,
and unifying model for interactive computation to extend the classical, popular
imperative programming paradigm is still to be find.

In an attempt to re-conciliate interactive and imperative computation styles,
a model based on register machines and space-time duality has been recently
proposed in [Stefanescu 2006]. Based on this model, a low level programming lan-
guage, for writing interactive programs with registers and voices (rv-programs),
has been presented [Stefanescu 2006]. One of the key features of the model is the
introduction of high-level temporal data structures. Actually, having high level
temporal data on interaction interfaces is of crucial importance in getting a com-
positional model for interactive systems, a goal not always easy to achieve (recall
the difficulties in getting a compositional semantics for data-flow networks).

In a couple of papers Dragoi and Stefanescu have developed structured pro-
gramming techniques for rv-programs and a kernel programming languages for
structured rv-systems, called AGAPIA v.01 (see the references).

AGAPIA is a kernel language for high-level programming of interactive sys-
tems. The language contains definitions for complex spatial and temporal data,
arithmetic and boolean expressions, modules, and while-programming state-
ments with their temporal, spatial, and spatio-temporal versions. In AGAPIA
v0.1 one can write programs for open processes located at various sites and
having their temporal windows of adequate reaction to the environment.

An example of AGAPIA v0.1 program is program P in Sec. 2 which presents
an implementation for a termination detection protocol. Here, we briefly touch
on the key features of the language, with explicit reference to P.

The starting basic blocks for developing AGAPIA programs are the modules
inherited from rv-programs. Such a module has both a spatial and a temporal
interface. The spatial interface is specified using registers, while the temporal
interface is specified using voices, usually implemented on streams. Complex
spatial and temporal data are built up on top of these primitive types. A module
has explicit listen/read statements to access the temporal/spatial input of the
module and speak/write statements to provide the temporal/spatial output of
the module. The output is computed using a usual sequential program applied
on the input of the module. An example of module is R in program P.

The structured programming operations for AGAPIA v0.1 programs extend
the classical structured programming operations to this context. Composition
has extensions to AGAPIA which exploit the multiple possibilities to compose
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blocks: (1) Temporal (vertical) composition via spatial interfaces; (2) Spatial
(horizontal) composition via temporal interfaces; (3) Spatio-temporal (diagonal)
composition, where both, the spatial and the temporal output data of a block
become the spatial and temporal input data of the next block, respectively.
Temporal, spatial, and diagonal compositions are denoted by ‘%’, ‘#’, and ‘$’,
respectively. The iterated versions are introduced using the temporal, spatial,
and diagonal while statements, denoted by while t, while s, and while st,
respectively. Occurrences of most of these statements may be found in program
P.

If we use only “if” and the vertical composition and while, then we obtain
usual structured programs. Using all types of compositions we obtain a kind of
two dimensional network, whose nodes are modules that communicate vertically
by spatial variables and horizontally by temporal variables.

Notice that AGAPIA v0.1 language has a natural scenario-based opera-
tional semantics, as well as a compositional relational semantics based on spatio-
temporal specifications (see the appendices).

In [Dragoi and Stefanescu 2007b], a typing system of AGAPIA v0.1 programs
is presented . While it is the programmer duty to ensure the correctness of his/her
program, the type checking procedure help him/her by checking the types of the
programs and returning a four-level answer: (1) ok (the program is correct); (2)
war0 (a running time miss-typing is possible); (3) war1 (there is a chance to
have a well running program); and (4) err (each running using that piece of code
fails).

The aim of the present paper is to broaden the class of structured rv-programs
allowing to include arbitrary structured rv-programs into modules. This way
high-level structured rv-programs are obtained. In these programs, recursively,
the modules themselves may contain structured rv-programs. This extension
is formally incorporated into AGAPIA language leading to a richer and more
powerful version of AGAPIA, called AGAPIA v0.2.

As a case study we consider a cluster of computers, each having a dynamic
set of running processes. We present a protocol for the communication and ter-
mination detection in this system and implement the protocol in our AGAPIA
v0.2 language. We describe the operational semantics of the program using high-
level scenarios, i.e., scenarios where, recursively, the cells may themselves contain
scenarios, at a lower, refined level.

2 The AGAPIA v0.1 language

In this section we briefly present AGAPIA v0.1, a kernel programming language
for interactive systems [Dragoi and Stefanescu 2007b].
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2.1 Syntax

The syntax of the AGAPIA v0.1 programming language is presented in Fig. 1. It
is given in a somehow theoretically oriented style. For practical use, the syntax
has to be richer3 and closer to common programming languages notations.

Interfaces
SST ::= nil | sn | sb

| (SST ∪ SST ) | (SST, SST ) | (SST )∗

ST ::= (SST ) | (ST ∪ ST ) | (ST ; ST ) | (ST ; )∗

STT ::= nil | tn | tb
| (STT ∪ STT ) | (STT, STT ) | (STT )∗

TT ::= (STT ) | (TT ∪ TT ) | (TT ;TT ) | (TT ; )∗

Expressions
V ::= x : ST | x : TT | V (k)

| V.k | V.[k] | V @k | V @[k]
E ::= n | V | E + E | E ∗ E | E − E | E/E
B ::= b | V | B&&B | B||B | !B | E < E

Programs
W ::= null | new x : SST | new x : STT

| x := E | if(B){W}else{W}
| W ;W | while(B){W}

M ::= module module name{listen x : STT}{read x : SST}
{ W }{speak x : STT}{write x : SST}

P ::= nil | M | if(B){P}else{P}
| P%P | P#P | P$P
| while t(B){P} | while s(B){P}
| while st(B){P}

Figure 1: The syntax of AGAPIA v0.1 programs

The types for spatial interfaces ST are built up starting with integer and
boolean types sn, sb, applying ∪, ‘,’, ( )∗ to get process interfaces, then applying
∪, ’;’, ( ; )∗ to get system interfaces.4 Similarly, the temporal types TT are intro-
duced. In practical programs, the description of data types will follow a more
conventional approach: The star ∗ defines an array, hence the usual [ ] notation
will be used, with two formats A[ ] and (A; )[ ]. For union types, the “or” keyword
will be used. Finally, the “,” and “;” product types are specified using the record
notation, with items being separated by “,” and “;”, respectively.

Given a spatial or a temporal type X , the notations X(k), X.k, X.[k], X@k,
and X@[k] are used to refer to its components. For instance, in the case of spatial
interfaces, they refer to: X(k) - a component of a choice; X.k - a component of

3 E.g., to include a rich set of useful types and derived statements.
4 They look slightly too complicate. An argument presented in Example 1 in

[Dragoi and Stefanescu 2007b] shows that whenever if and the temporal, spatial,
and spatio-temporal composition and while statements are legitimate programming
language constructs, one has to allow for such types.
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a tuple within a process; X.[k] - a component of an iterated tuple within a
process; X@k - a component of a tuple of processes; and X@[k] - a component
of an iterated tuple of processes.

Next, expressions E, usual while programs W , modules M , and structured
rv-programs P are introduced. This v0.1 version of AGAPIA has a restricted
format for programs: module construction and structured programming state-
ments are separated. More precisely, program construction starts with simple
while programs, then modules are defined, and finally AGAPIA v0.1 programs
are obtained applying structured rv-programming statements on top of module.5

Three basic composition and iterated composition operations are used: a hori-
zontal version # and while s, a vertical version % and while v, and a diagonal
version $ and while st. See the included appendices for an extended presentation
of the structured programming operations and their scenario-based semantics.

2.2 Dual-pass termination detection protocol

We describe a slightly extended6 AGAPIA v0.1 program P that implements a
dual pass termination detection protocol for a network of distributed processes
logically organized into a ring. This is a popular termination detection proto-
col, see, e.g., [Dijkstra 1987]. The AGAPIA v0.1 program below is taken from
[Dragoi and Stefanescu 2006c], where its correctness is proved, as well.

The protocol is used for termination detection of a ring of processes. It can
handle the case when processes may be reactivated after their local termination.
To this end, it uses colored (i.e., black or white) tokens. Processes are also
colored: a black color means global termination may have not occurred.

The algorithm works as follows:

– The root process P0 becomes white when it has terminated and it generates
a white token that is passed to P1.

– The token is passed through the ring from one process Pi to the next when
Pi has terminated. However, the color of the token may be changed. If a
process Pi passes a task to a process Pj with j < i, then it becomes a black
process; otherwise it is a white process. A black process will pass on a black
token, while a white process will pass on the token in its original color. After
Pi has passed on a token, it becomes a white process.

– When P0 receives a black token, it passes on a white token; if it receives a
white token, all processes have terminated.

5 Also, notice that the general “while” statement (presented in Appendix A) is not
included in this version.

6 In this extension, except for simple and common programming conventions, we sup-
pose to have an implementation of sets with their basic operations.
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Suppose there are m processes, denoted 0,...,m-1. Besides the input m, the
program uses the spatial variables id : sn, c : {white, black}, active : sb and
the temporal variables tm, tid : tn, msg : tnSet[ ]. (sn, sb, . . . represent spatial
integers, booleans, etc.; tn, tb, . . . denote the temporal versions.) We suppose
the default initial value of variables of type sn, tn is 0, of those of type sb, tb is
true, and this convention is naturally extended to complex interface types; e.g.,
the default initial value for sets is ∅.

The program P is presented in Fig. 2. It is the diagonal composition P = I $ Q

of an initialization program I and a core program Q. The diagonal composition
ensures the communication of the last process with the first, as well as a correct
continuation of a process execution from its former state. It is worthwhile to
mention that the system here is closed. It is possible to model an open version
where processes may freely join or leave the ring. We describe such an extension
briefly in an Appendix and in more details in our exemple on cluster communi-
cation in Sec. 4.

main [I1# for s(tid=0;tid<tm;tid++){I2}#]
$ [while st(!(token.col==white && token.pos==0)){

for s(tid=0;tid<tm;tid++){R}}]

module I1{listen nil}{read m}{
tm=m; token.col=black; token.pos=0;

}{speak tm,tid,msg[ ],token(col,pos)}{write nil}

module I2{listen tm,tid,msg[ ],token(col,pos)}{read nil}{
id=tid; c=white; active=true; msg[id]=emptyset;

}{speak tm,tid,msg[ ],token(col,pos)}{write id,c,active}

module R{listen tm,tid,msg[ ],token(col,pos)}{read id,c,active}{
if(msg[id]!=emptyset){ //take my jobs

msg[id]=emptyset;
active=true;}

if(active){ //execute code, send jobs, update color
delay(random time);
r=random(tm-1);
for(i=0;i<r;i++){ k=random(tm-1);

if(k!=id){msg[k]=msg[k]∪{id}};
if(k<id){c=black};}

active=random(true,false);}
if(!active && token.pos==id){ //termination

if(id==0)token.col=white;
if(id!=0 && c==black){token.col=black;c=white};
token.pos=token.pos+1[mod tm];}

}{speak tm,tid,msg[ ],token(col,pos)}{write id,c,active}

Figure 2: An AGAPIA v0.1 program for termination detection.

1727Popa A., Sofronia A., Stefanescu G.: High-level Structured Interactive ...



The spatial variables id, c, active represent the process identity, its color,
and its active/passive status. The temporal variables used in this program are:
(i) tm,tid - temporal versions of m,id; (ii) msg[ ] - an array of sets, where msg[k]
contains the id of the source processes for the pending messages sent to process
k; (iii) token.col - an element of {white,black} representing the color of the
token; and (iv) token.pos - the number of the process that has the token.

The program starts with the initialization of the network (program I) by acti-
vating all the processes (and setting the fields id, c, active). Initially, msg[i] = ∅,
for all 0 ≤ i < m, because no jobs were sent and the default color/position of the
token is black/0.

After the initialization part and until the first process receives a white token
back, each process executes its code. If one process has the token and terminates,
it passes the token to the next process (only the first process has the right to
change the color of the token into white once it terminates).

When a process executes the code R, whether active or passive, it checks if
new jobs were assigned to it; if the answer is positive, it collects its jobs from
the jobs lists and stays/becomes active. When it is active, it executes some code,
sends new jobs to other processes, and randomly goes to an active or passive
state. If it has the token, it keeps it until it reaches termination and afterward
it passes it. A white process will pass the token with the same color as it was
received and a black process will pass a black token (after passing the token, the
process becomes white).

P0

P1Pk

P3

P2
...

R R...

...

...I1

R R

I2 I2

Figure 3: Typical scenarios for termination detection.

3 High-level structured rv-programs

The syntax of AGAPIA v0.1 in Fig. 1 is extended to allow for the construction
of high-level structured rv-programs. The extension is done along the following
steps.
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First, modules with general ST, TT interfaces are introduced. They are an
useful technical concept, but should be avoided as they lead to less well-structured
programs.

Next, we particularly identify Scatter/Gather communication modules whose
aim is to make a bridge between simple SST/STT and general ST/TT inter-
faces. They are general modules where either the west-east or the north-south
direction has empty types, while the other has at one side a simple type and
at the other a general type. These modules looks like communication networks
passing data between its interfaces.

Finally, by an appropriate composition with Scatter/Gather modules a gen-
eral program may be encapsulated into a high-level module with simple interface
types. Then, one can reiterate the construction of complex programs using such
high-level modules, obtaining high-level structured interactive programs with reg-
isters and voices.

3.1 General modules

In the first released version of AGAPIA (i.e. v0.1), the module structure was
restricted to have simple spatial and temporal types SST, STT for its interfaces.
This restriction may be dropped, hence modules with general ST, TT types for
their interfaces may be used.

Two main complications come with this extension:7

1. First, a program encapsulated within such a module is “atomic”, namely: (i)
one has to wait for all the input data from its western and northern interfaces
before starting the computation; and (ii) no output to its eastern or southern
interfaces will be released before the end of the module computation.

2. Second, the cell composition in scenarios is more complicated than for sim-
ple modules as those used in AGAPIA v0.1 programs. Indeed, a cell cor-
responding to a general module is to be composed with potentially large
scenarios which meet its interfaces, not with simple cells. Consequently, the
grid structure of scenarios is lost, and an extension to some kind of acyclic
hyper-graphs is to be used.

The first critics is common to many modularization techniques: often, a struc-
tured approach leads to more readable, better organized, but less efficient pro-
grams.

High-level structured programs with registers and voices (or AGAPIA v0.2
programs) are introduced here attempting to alleviate the second of the above
drawbacks, still preserving a useful modular approach to program development.
7 A small extra-price is the increased complication in accessing data from such general

interfaces.
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By a proper encapsulation of programs into modules with simple interface types,
the operational semantics of programs may still be defined using rectangular
grid-like scenarios. However, there is an important extension here: recursively,
within each cell of a scenario, one may find other scenarios defined at a lower,
refined level.

3.1.1 Syntax

The syntax for general modules is similar to that of AGAPIA v0.1 modules, with
two changes:

1. General modules use general ST, TT types for its interfaces;

2. The body of a general module is still a usual while program, but using
variables accessing the components of these general type interfaces.8

3.1.2 Comments, examples

In the example below we have a module with: (1) two incoming processes with
their weights represented by spatial variables X1,Y1; and (2) two transactions
with their priorities represented by variables A1,B1. The module sorts the in-
puts, i.e., the most powerful process is put on left, and the transaction with the
strongest priority is put on top.

Example 1.

900 module Sort {listen A1:tn; B1:tn)}{read X1:sn; Y1:sn}
901 {
902 A2 = max(A1,B1);
903 B2 = min(A1,B1);
904 X2 = max(X1,Y1);
905 Y2 = min(X1,Y1);
906 }
907 {speak A2:tn; B2:tn}{write X2:sn; Y2:sn}

�

One can use different ways to write the module, particularly different ways to
define data on lines 900,907. For instance, the western interface may be defined
as an array {listen A: (tn;)[2]}, its components being A@[1] and A@[2]. Or,
it may be written as {listen tn;tn} and their components may be accessed
using the notation west@1 and west@2, where “west” is the default name for
this interface (if no other name is given); similarly, the default names north,
est, and south are used for the other interfaces.
8 In particular, the @k and @[k] notations are used to access the variables in different

ST, TT components.

1730 Popa A., Sofronia A., Stefanescu G.: High-level Structured Interactive ...



3.2 Encapsulating programs in modules with simple interfaces

To encapsulate a program into a module, we use particular general modules,
called Scatter and Gather. In these modules, either the west-east or the north-
south direction has empty types, while the other has at one side a simple type and
at the other a general type. Moreover, no computation is performed into these
modules, namely each atomic sn, sb variable in the output interface inherits the
value of an appropriate variable in the input interface.9

3.2.1 Syntax

Interfaces

ScatterS ::= module module name{listen nil}{read x : SST }
{ body; }{speak nil}{write x : ST }

where body is a (while-type) program using only x := y

assignments with x variable from the southern interface
and x variable from the northern interface;

— it is used to “scatter” data from the spatial interface of a
process (a simple spatial interface) to the spatial interface of a
collection of processes (a general spatial interface)

ScatterT ::= module module name{listen x : STT }{read nil}
{ body; }{speak x : TT }{write nil}

— similar for temporal interfaces

GatherS ::= module module name{listen nil}{read x : ST }
{ body; }{speak nil}{write x : SST }

— it is used to “gather” data from the spatial interface of a
collection of processes to the spatial interface of a single process

GatherT ::= module module name{listen x : TT }{read nil}
{ body; }{speak x : STT }{write nil}

— similar for temporal interfaces

3.2.2 Comments, examples

The example below describes a particular scatter module used in our cluster
communication protocol in Sec. 4. We have an array of processes P[ ]. Process
P[0] is a “root” process and the relevant information for its root activity is
represented in a structure stemp. The states of these processes are recorded in
an array Pst[]. All this information (stemp,Pst[]) is hold by a unique, master
process. The role of this Scatter module is to scatter this information, sending to
9 It’s somehow similar to a connection network, where data are passed between con-

nection ports, only (no real computation takes place into such a network).
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each process the state for starting the computation and, additionally, to process
P[0] the information for its root activity.

Example 2.

75 module Scatter {listen nil}{read stemp, Pst[]}
76 {
77 south@1.stemp = north.stemp;
78 south@1.Pst = north.Pst[0];
79 for(i=1; i<length(Pst[]); i++)
80 south@2@[i-1] = north.Pst[i];
81 }
82 {speak nil}{write (stemp,Pst); ((Pst;)[])}

�

In this example we use the default north/south name for the corresponding
interfaces and the specified mechanism for accessing its components. E.g., in
line 80, south@2@[i-1], first by @2 it refers to the 2nd process in the south
interface (i.e., (Pst;)[]), then by @[i-1] to the (i-1)-th process in this array
of processes - hence, globally, this is the i-th process in the south interface.

3.3 Functions

The starting point of the discussion on functions is provided by the following
comments on the module instantiation. A module may be used in two, slightly
different, ways.

1. A first, default use, is to simply insert the module name into a specific place
of a program. In such a case, the temporal or spatial input data are implicitly
taken from the context. This is the way programs and the typing procedure
was developed in the previous version of AGAPIA.

2. A second, expanded use, may be to use the module name and actual expres-
sions or parameters for its temporal and spatial input data. The syntax may
be:

module name{listen EAB : TT}{read EAB : ST}
where EAB denotes a generalized expression - such expressions are obtained
by extending expressions from arithmetic or boolean types to general spatial
or temporal types in ST, TT . While this clearly is a powerful and useful
generalization, we do not present the details of the extension here.10

10 Getting a right definition for expressions using and returning values of complex
ST, TT types may require a detailed and careful presentation.
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This observation opens the way to introduce functions and general assign-
ments in AGAPIA. Actually, functions may be seen as particular modules. In-
deed, with the interpretation described in the 2nd item above, if a module is
exporting either a spatial or a temporal data type, but not both, then it may be
thought of as a generalized function and it may be used in generalized expres-
sions. As a byproduct, we get a way to use generalized assignments in program
definition. Generalized assignments are X = Exp, where X is a variable with a
general interface type and Exp is a corresponding generalized expression. No-
tice that assignment statements are not included in the program definition of
AGAPIA v0.1 - they only appear in the while programs used in module definition
and they are usual C-like assignment statements.

3.3.1 Comments, examples

The example below describes a gather module, which is a dual version of the
previous scatter example. It is taken from the communication protocol in Sec. 4,
as well.

Example 3.

84 module Gather {listen nil}{read (stemp,Pst); ((Pst;)[])}
85 {
86 south.stemp = north@1.stemp;
87 south.Pst[0] = north@1.Pst;
88 for(i=0; i<length(north@2); i++)
89 south.Pst[i+1] = north@2.Pst@[i];
90 }
91 {speak nil}{write stemp, Pst[]}

�

This module may be turned into a function, changing in line 84 the keyword
“module” to “function”. The return type may be included in the definition to
be closer to usual practice, e.g., line 84 may be rewritten as:

84 Type function GatherX ...

with the return type Type = (stemp, Pst[]) quite complex, but still a simple
spatial type in SST . Nevertheless, this is redundant as the type of the function
is clearly specified by the module interfaces.

3.4 An extension of Agapia programs

Agapia v0.2 extends the module definition from Agapia v0.1, to include a new
alternative, using the Scatter and Gather general modules defined in sec. 3.2,
to encapsulate general programs into modules with simple interfaces. The full
syntax is presented in Appendix 9.
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3.4.1 Syntax

The syntax for programs is extended using the following new definition of mod-
ules.

Programs

M ::= module module name{listen x : STT }{read x : SST }
{ W }{speak x : STT }{write x : SST }

| module module name{listen x : STT }{read x : SST }
{ ScatterT # (ScatterS % P % GatherS) # GatherT }
{speak x : STT }{write x : SST }

Recall that P in the 2nd part is the metavariable used to denote programs,
hence the definitions for modules and programs are mutually recursive.11

3.4.2 Comments

The comment here is on the expressive power of the programs described with this
extended syntax. The class of computations/scenarios described by well-formed
programs is not actually extended by this syntax. Indeed, the key step of the
extension is the second item in the module definition. The body of the module
definition is a previously defined program. Then, scatter and gather modules
are constants which may be defined using the basic constants and operations
of AGAPIA v0.1. Finally, the listen/read and speak/write parts are super-
fluous, provided the program is well-typed. To conclude, a high-level program
generated by the above syntax is equivalent to a flat program described using
only the AGAPIA v0.1 syntax.

There is nothing unexpected here. Indeed, this is similar to the known fact
that functions or procedures do not add to the expressive power of flat while or
flowchart programs. However, functions and procedures provide a shorter and
more readable presentation of the algorithms, and, more important, they are the
stepping stone towards powerful modularization mechanisms, including those
used in current OO-programming languages. We hope, the present extension
to high-level interactive programs may be a bridge to clarify the connections
between interactive (AGAPIA-like) programming and OO-languages.

3.4.3 Examples

The example below is a simplified version of a key module used in the commu-
nication protocol in Sec. 4.

Example 4.

11 See the full syntax described in Fig. 8.
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47 module R {listen Temp}{read Sp}
48 {
49 Scatter
50 %
51 RootInit1# for_s(ti=1; ti<tm; ti++) {Id1}#
52 %
53 (
54 (RootInit2# for_s(ti=1; ti<tm; ti++) {Id2}#)$
55 for_st(step = 0; C1
56 && C2; step++ )
57 {
.. Act
65 }$
66 RootEnd# for_s(ti=1; ti<tm; ti++) {Id3}#
67 )
68 %
69 Gather
70 }
71 {speak Temp}{write Sp}

�

The program between lines 51–67, denoted by W, is a flat AGAPIA v0.1 pro-
gram with simple temporal interface in STT , but with general spatial interfaces
in ST \ SST . Using appropriate scatter and gather modules (lines 49,69), the
program W is encapsulated into the module R with simple temporal and spatial
interfaces. Note that the Scatter and Gather modules in lines 47,67 are spatial,
and that temporal scatter and gather modules are omitted since W already has
simple temporal interfaces. The scenarios of the program inside this module are
described in the bottom part of Fig. 4.

The scenarios of the full, high-level program for cluster communication is
presented in the top part of Fig. 4. Each R cell in this figure has inside scenarios
at a lower level described in the bottom “Ring” part of the figure. A detailed pre-
sentation of the scenarios is included in figures Fig. 4,5. Notice that the diagonal
composition in Fig. 4,5 is somewhat different from that described in Fig. 7(c).
The change to a non-rectangular format of the cells is merely graphical (in-
cluding some crossing) to simplify the number of graphical cross-overs between
spatial and temporal interfaces in a diagonal composition.

4 Case study: Communication in a cluster of dynamic
processes

In this example we consider the communication structure within a cluster of
computers, each node having a set of running processes. The set of processes in
each node is dynamic allowing new processes to join the set and old processes
to leave it. The protocol considers the nodes and the processes to be logically
organized into rings. We get a kind of “ring of rings” structure, where the outer
ring is fixed, while the inner ones are dynamic. The protocol and its AGAPIA
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R = Ring
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Temp Temp

...

temp

Act
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End

Sp=(stemp,P[0],...,P[last])

Sp=(stemp,P[0],...,P[last])

...

(P[0];...;P[last])

Init1

Init2

P = Pst

Figure 4: Scenarios for cluster termination protocol - I.

v0.2 implementation describe the communication within this network of dynamic
processes, paying more attention to the termination detection by extending a
classical dual-pass ring termination detection protocol.
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(stemp,P[0],...,P[last])

Temp

((stemp,P[0]);...;P[last])

(P[0];...;P[last])

...

...
Temp

Init2

Init1
RootInit1

temp

(P[0];...;P[last])

(stemp,P[0],...,P[last])

RootEnd

...

...

...

temp End

...

temp
...S S ...

(P[0] ; P[1] ;... ; P[last])

L D1 N N

temp

Act

...

...

(P[0];...;P[?];P[?],...,P[last])

... ...S = Stay
L = Leave
N = NewProcs

Figure 5: Scenarios for cluster termination protocol - II.

4.1 Termination in a cluster of sets of dynamic processes

In a previous article [Dragoi and Stefanescu 2007b]12 an AGAPIA v0.1 program
that implements a dual pass termination detection protocol was described. Our
purpose here is to describe an AGAPIA v0.2 program that implements an ex-
tended version of that protocol.

The architecture is similar with the previous one, but in the ring, each process
is replaced by a ring of processes (i.e. we have “a ring of rings”). The number of
rings is known from the beginning and cannot be changed, but in each of those
inner rings processes may freely enter or leave. If it looks too complicated just
imagine a network of computers, and on each computer some running processes.

We have two types of tokens: a small token in each ring (we will call it simply
“token”) and a big token which is passed from ring to ring. In each ring things
act in the same manner as in the first version of the protocol. There is also
a process (called “root process”) that cannot leave the ring. A bunch of new
processes will enter the ring after the last process, and individually each process
decides to leave the ring or not. If a process decides to leave the ring it passes
the token to the next process in the ring and then exits.
12 A brief presentation is included in Sec. 2.
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The big-token and the rings may also be black or white with the same mean-
ing. A process from one ring may send a messages to processes from other rings.

4.1.1 The algorithm

The algorithm works as follows:

– The ring R0 becomes white when all its processes have finished and it gen-
erates a white big-token that is passed to R1. The token from the ring R1

becomes black.

– The big-token is passed from one ring Ri to the next one when all its pro-
cesses have finished. If a process from a ring Ri passes a task to a process
from a ring Rj with j < i, then the ring becomes black; otherwise it is a
white ring. A white ring will pass on a black big-token, while a white ring will
pass on a big-token in its original color. After Ri has passed on a big-token,
it becomes a white ring. When Ri passes a big-token it changes in black the
color of the token from the next ring.

– When R0 receives a black big-token, it passes on a white big-token; if it
receives a white big-token, all processes have terminated.

– In a ring things act almost in the same manner. The difference is that new
processes may enter or leave the ring. The new processes are inserted at the
end. When a process leaves the ring it first passes the token to the next
process in the ring and then exits.

4.1.2 Implementation

We have three variables to store messages. The first one is msg int[] which is
an array of sets; msg int[k] contains pairs (ring, pid), which represents the
ring and the id of the processes that sent a message to process k. This is similar
to msg[] from the previous example.

The second one is msg out, i.e., structures (exp ring,exp pid,dest ring,

dest pid) which contains all the messages that should leave the ring. Here,
exp ring and exp pid represent the ring-id address of the sending process and
dest ring and dest pid represent the ring-id address of the destination process.

The third variable is msg ext. This is a set of structures similar to msg out.
The difference is that msg ext contains messages from all the rings. The first
two variables msg int[], msg out are local (they are visible inside of a ring),
while msg ext is global and it passes through all rings.

Communication with messages works in the following way. Each process has
a set of received messages (kept in msg int[id], where id is the process’ id).
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When a process wants to send a message there are two cases: (i) the process
sends a message inside his ring so it writes the message directly in msg int[]

(just like in the dual-pass termination detection protocol); (ii) the process sends
a message outside his ring so, in this case, it writes the message in msg out.

The process P0 (also called a “root process”) updates msg ext and msg out.
Things act like in a postal system. It checks all the messages from the outside
(i.e., from msg ext) and if a message is for the local ring, it is moved into msg int.
Then msg out is moved into msg ext. After it finishes this job, P0 sends msg ext

to the next ring.
The main program has two parts: an initialization part (line 17) and a com-

putation part (lines 19 - 22). These two parts are composed diagonally, thus
ensuring proper communication of the last ring with the first one, as it may
be seen in the top part of Fig. 4. The initialization part is done by modules I1
and I2. I1 initializes the whole system, while I2 initializes each ring. Suppose
there are trings rings, denoted 0,...,trings-1. This variable is received by
I1 through its spatial interface. After the initialization part, until the first ring
receives a white big-token each ring executes his code.

Module R handles the behavior of a ring. It begins and ends with two special
modules Scatter and Gather described previously in this article, which were
introduced to match the interfaces. After Scatter follows another initialization
part, corresponding to Init1 and Init2 from the bottom part of Fig. 4.

The code from RootInit1 and RootInit2 is executed by process P0. In
RootInit1 the message lists are updated (the update of the message lists works
according to the mechanism described above in this section). After that, P0

decides if it should pass the big-token or not: if it has received a white small
token, it passes the big-token to the next ring, otherwise the big-token stays.
RootInit2 only decides (randomly) how much work the processes from the ring
have to do (i.e., it sets a maximal number of steps for the diagonal composition).
Modules Id1, Id2, Id3 have nothing to do, being used just for matching the
interfaces.

When the initialization is done, the processes may begin their jobs. Processes
work until they finish (line 55), or until the maximum number of steps (decided
by RootInit2) is exceeded (line 56). Now, each process, except P0, may leave
the ring. If it decides to do so, it executes the Leave code, otherwise it executes
the Stay code.

If it chooses to stay in the ring, it first checks to see if it has received messages
from other processes, and, if it has, becomes active (if not already). Next, if it is
an active process, it does something, sends messages to other processes (which
may not be in its ring) and decides if he has more work to do (i.e., to stay active
or not). In the end if it has finished his job (i.e., it is a passive process), it passes
the token to the next process.
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Finally, new processes may enter the ring (line 64). Module D1 decides how
many processes will enter, and NewProcs creates the processes. The id of a pro-
cess is assigned using a variable counter, which has initial value 1 and increases
each time a new process starts.

4.1.3 A short overview of the code: syntax, variables, functions . . .

Variables are organized into several groups (these are just some notations to
make the code easier to read).

4.1.3.1 Temporal groups

– temp:
(i) ti - just a counter, it doesn’t have a special role;
(ii) tm - number of processes from a ring;
(iii) msg int[] - an array of sets, where msg int[k] contains pairs (ring,
pid), which represents the ring and the id of the processes that sent a
message to process k;
(iv) msg out - structures (exp ring, exp pid, dest ring, dest pid)

which contains all the messages that should leave the ring;
(v) token.col - an element of {white,black} representing the color of the
token;
(vi) token.pos - the number of the process that has the token;
(vii) procs[] - an array of sets, where procs[k] contains the id of the
processes that exist in ring k;
(viii) counter - a variable used to assign an id to a newly created process;
(ix) rid - ring id;
(x) rc - an element of {white,black} representing the color of the ring.

– Temp:
(i) trings - number of rings (rings are numbered from 0 to trings - 1);
(ii) trid - temporal ring id;
(iii) procs[] - the same as in temp;
(iv) msg ext - a set of structures similar to msg out that contains messages
from all the rings;
(v) bigtoken.col - an element of {white,black} representing the color of
the big-token;
(vi) bigtoken.pos - the number of the process that has the token.

4.1.3.2 Spatial groups

– stemp: spatial version of temp;
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– Pst: (i) pid - the id of the process; (ii) c - an element of {white,black}
representing the color of a process; (iii) active - a boolean variable set true
iff the process is active.

– Sp = (stemp,Pst[]) - it keeps the relevant information on a ring as a spatial
data of the root process, including the information on process states and a
record of the current temporal communication interface.

4.1.3.3 Other notations

There are several notations in the code, that will be explained further.

– length() function was used for returning the length of an array (for example
in line 79), or cardinal of a set (line 152), depending on the context.

– random() function was also used several times. If it is used with no arguments
it returns a random natural number. If it is used with an integer argument
it returns a natural number between 0 and the argument. We also use this
function to return a random element from a set (lines 60, 186).

– Union operator is used for the union of two sets. Of course, the implementa-
tion of this operator depends of how sets are represented (for example, sets
may be thought as linked lists).

– delay() function is used in line 181, to simulate that the process has some-
thing to do.

– next() is used to pass the token to the next process in the ring (lines 205
and 212). The list of processes is circular, so the next process after the last
one is P0.

– Module I2 writes (stemp,Pst[0]) and it may seem that its interface doesn’t
directly match with the one of module R. But (stemp,Pst[0]) is the same
with (stemp,Pst[]), because at the initialization point we have only one
process P0 (the root process), and (stemp,Pst[]) is denoted Sp.

4.2 The full code of the termination protocol

1 // Notations:
2
3 temp = // temporary ring data passed between processes in a ring
4 (ti, tm, msg_int[], msg_out, token(col,pos),
5 procs[], counter, rid, rc)
6 Temp = //temporary system data passed between rings
7 (trings, trid, procs[], msg_ext, bigtoken(col,ring))
8 stemp = (sti, stm, smsg_int[], smsg_out, stoken(col,pos),
9 sprocs[], scounter, srid, src)
10 Pst = (pid,c,active) // the type of process state is (pid,c,active)
11 Sp = (stemp,Pst[]) // record states and temporal interface
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12
13 // Main program and modules
14
15 main {listen nil}{read rings}
16 {
17 I1# for_s(trid = 0; trid < trings; trid++) {I2}#
18 $
19 while_st(!(bigtoken.col == white && bigtoken.ring == 0))
20 {
21 for_s(trid=0; trid<trings; trid++){R}
22 }
23 }
24 {speak Temp}{write (Sp;)[]}
25
26 module I1 {listen nil}{read rings}
27 {
28 trings = rings; bigtoken.col = black; bigtoken.ring = 0;
29 trid = 0;
30 for(i=0; i < rings; i++)
31 procs[i] = {0};
32 msg_ext = emptyset;
33 }
34 {speak Temp}{write nil}
35
36 module I2 {listen Temp}{read nil}
37 {
38 srid = trid; rc = white;
39 stm = sti = 0; scounter = 1;
40 stoken.col = black; stoken.pos = 0;
41 Pst[0].pid=0; Pst[0].c= white; Pst[0].active = true;
42 src = white;
43 smsg_out = emptyset;
44 }
45 {speak Temp}{write (stemp,Pst[0])}
46
47 module R {listen Temp}{read Sp}
48 {
49 Scatter
50 %
51 RootInit1# for_s(ti=1; ti<tm; ti++) {Id1}#
52 %
53 (
54 (RootInit2# for_s(ti=1; ti<tm; ti++) {Id2}#)$
55 for_st(step = 0; !(token.col == white && token.pos != 0)
56 && step < maxsteps; step++ )
57 {
58 for_s(ti=0; ti<tm; ti++)
59 {
60 if(pid == 0 || random({leave, stay}) == stay)
61 Stay // the process stay in the ring
62 else
63 Leave // the process will leave the ring
64 }# D1# for_s(ti=told; ti<tm; ti++){NewProcs}#
65 }$
66 RootEnd# for_s(ti=1; ti<tm; ti++) {Id3}#
67 )
68 %
69 Gather
70 }
71 {speak Temp}{write Sp}
72
73 // Scatter and Gather modules

1742 Popa A., Sofronia A., Stefanescu G.: High-level Structured Interactive ...



74
75 module Scatter {listen nil}{read stemp, Pst[]}
76 {
77 south@1.stemp = north.stemp;
78 south@1.Pst = north.Pst[0];
79 for(i=1; i<length(Pst[]); i++)
80 south@2@[i-1] = north.Pst[i];
81 }
82 {speak nil}{write (stemp,Pst); ((Pst;)[])}
83
84 module Gather {listen nil}{read (stemp,Pst); ((Pst;)[])}
85 {
86 south.stemp = north@1.stemp;
87 south.Pst[0] = north@1.Pst;
88 for(i=0; i<length(north@2); i++)
89 south.Pst[i+1] = north@2.Pst@[i];
90 }
91 {speak nil}{write stemp, Pst[]}
92
93 module RootInit1 {listen Temp}{read stemp, Pst}
94 {
95 //update process list for this ring
96 Temp.procs[trid]= stemp.sprocs[trid];
97
98 //update process list from other rings
99 stemp.sprocs=Temp.procs; //vector assignment
100
101 // get the messages for this rings and discard them from msg_ext
102 for_each (exp_ring,exp_pid,dest_ring,dest_pid) from msg_ext
103 {
104 if(dest_ring == trid) // a message is for a process in this ring
105 {
106 if(dest_pid In sprocs[trid])
107 smsg_int[dest_pid] = smsg_int[dest_pid] Union {(exp_ring,exp_pid)};
108 msg_ext = msg_ext Minus {(exp_ring,exp_pid)};
109 }
110 }
111
112 // put the messages sent to other rings
113 msg_ext = msg_ext Union smsg_out;
114
115 // keep big-token, if necessary
116 if(bigtoken.ring == trid)
117 {
118 if(stoken.col == white && stoken.pos == 0)
119 {
120 if (trid == 0)
121 bigtoken.col = white;
122 if (trid != 0 && src == black)
123 {
124 bigtoken.col = black;
125 src = white;
126 }
127 bigtoken.ring = bigtoken.ring + 1 [mod trings];
128 }
129 }
130 ti = sti;
131 tm = stm;
132 }
133 {speak Temp, ti, tm}{write stemp, Pst}
134
135 module RootInit2 {listen nil}{read stemp, Pst}
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136 {
137 temp = stemp; // vector assignment
138 // choose a random number of communication rounds in the ring
139 step = 0;
140 maxsteps = random () + 1;
141 }
142 {speak temp, step, maxsteps}{write Pst}
143
144 module RootEnd {listen temp}{read Pst}
145 {
146 stemp = temp; // vector assignment
147 }
148 {speak nil}{write stemp, Pst}
149
150 module D1 {listen temp}{read nil}
151 {
152 told = length(procs[trid]); // the number of current processes
153 tnew = random(); // choose how many new proccesses to add
154 tm = told + tnew; // update tm
155 }
156 {speak temp, told}{write nil}
157
158 module Id1 {listen Temp}{read Pst}{ null; }{speak Temp}{write Pst}
159 module Id2 {listen temp}{read Pst}{ null; }{speak temp}{write Pst}
160 module Id3 {listen nil}{read Pst}{ null; }{speak nil}{write Pst}
161
162 module NewProcs {listen temp}{read Pst}
163 {
164 pid = counter; // pick the next free id from the list
165 counter ++; // increase the counter
166 procs[trid] = procs[trid] Union {pid};
167 c = white;
168 active = true;
169 }
170 {speak temp}{write Pst}
171
172 module Stay {listen temp}{read Pst}
173 {
174 if(msg_int[pid] != emptyset) // take my jobs
175 {
176 msg_int[pid] = emptyset;
177 active = true;
178 }
179 if(active)
180 {
181 delay(random_time); // execute
182 r = random(tm - 1); // choose how many messages to send
183 for(i=0; i<r; i++)
184 {
185 q = random(trings - 1); // choose the ring
186 w = random in procs[q]; // choose the process
187 if(q != rid) // for a process in another ring
188 msg_out = msg_out Union {(rid,pid,q,w)};
189 elseif (w != pid) // for a process in the same ring
190 msg_int[w] = msg_int[w] Union {(q,w)};
191 if(q < rid) // color the ring in black
192 rc = black;
193 if(q == rid && w < pid) // color the process in black
194 c = black;
195 }
196 active = random(true,false);
197 }

1744 Popa A., Sofronia A., Stefanescu G.: High-level Structured Interactive ...



198 if(!active && token.pos == pid) // termination
199 {
200 if(pid == 0) token.col = white;
201 if(pid != 0 && c == black)
202 {
203 token.col = black; c = white;
204 }
205 token.pos = next(procs[rid],token.pos); // pass the token
206 }
207 }
208 {speak temp}{write Pst}
209
210 module Leave {listen temp}{read Pst}
211 {
212 token.pos = next(procs[rid],token.pos); // pass the token
213 procs[rid] = procs[rid] - pid; // update process list
214 }
215 {speak temp}{write nil}

5 Conclusions and future work

In this paper we have introduced high-level structured interactive programs with
registers and voices. They are incorporated into the new version v0.2 of AGAPIA
programming language. As a case study we have developed an implementation
for an intriguing problem related to the communication and termination detec-
tion in a cluster of dynamic processes. Many problems are still open, both, for
the flat and for the high-level structured rv-programs.

A first line of research is to develop the mathematics and the logics behind
(structured) rv-systems. If one makes abstraction of both spatial and tempo-
ral data, one gets a mechanism equivalent to tile systems, existential monadic
second order logics, etc. used for recognizable two-dimensional languages. There
are many interesting and deep results dealing with two-dimensional (or picture)
languages and the lifting of some of them to the level of rv-system may be worth-
while attempt. Particularly useful may be to find language preserving transfor-
mations which may be useful for developing efficient compilers for structured
rv-systems.

A more practical topics is to develop efficient and fully flagged compilers for
AGAPIA-like programs. Our current approach uses the following route: we trans-
late structured rv-programs to rv-programs, then we use the running machine
for rv-programs to get the program output. Currently, we have an automatic
procedure for the translation, but it is not fully implemented as we still look for
optimizations to improve the compiler.

Finally, an important point to focus on is to develop applications. There are
many area of great impact for interactive computation where such an approach
may be valuable. A few areas to consider may be: cluster/grid computing, web
services, developing games, modeling biological systems, etc.
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A Appendix: Scenarios

A.1 Spatio-temporal data

To handle spatial data, common data structures and their natural representa-
tions in memory are used. For the temporal data, we use streams: a stream is a
sequence of data ordered in time. Most of the usual data structures have nat-
ural temporal representations implemented on streams, see [Stefanescu 2006].
Examples: timed booleans, timed integers, timed arrays of timed integers, etc.

A.2 Grids and scenarios

A grid is a rectangular two-dimensional area filled in with letters of a given al-
phabet. An example of a grid is presented in Fig. 6(1). In our standard interpre-
tation, the columns correspond to processes, the top-to-bottom order describing
their progress in time. The left-to-right order corresponds to process interaction
in a nonblocking message passing discipline: a process sends a message to the
right, then it resumes its execution.

A scenario is a grid enriched with data around each letter. The data may
be given in an abstract form as in Fig. 6(2), or in a more detailed form as in
Fig. 6(3).

aabbabb
abbcdbb
bbabbca
ccccaaa

1 1 1
AaBbBbB
2 1 1
AcAaBbB
2 2 1
AcAcAaB
2 2 2

1:
x=4

A:
X

1:

B:
tx=4 Y

1:

C:
tx=4 Z

D

3:
x=2

A:
U
3:

x=1

2:
y=4

B:
tx=2 V

2:
y=4

2:
z=4

C:
tx=2W

D

2:
z=2

(1) (2) (3)

Figure 6: A grid (1), an abstract scenario (2), and a concrete scenario (3).
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The type of a scenario interface is represented as t1; t2; . . . ; tk, where each
tk is a tuple of simple types used in the scenario cells. An empty tuple is also
written 0 or nil and can be freely inserted to or omitted from such descriptions.
The type of a scenario f is specified by the notation f : 〈w|n〉 → 〈e|s〉. For
the example in Fig. 6(c), the type is 〈nil; nil|sn; nil; nil〉 → 〈nil; nil|sn; sn; sn〉,
where sn denotes the spatial integer type.

A.3 Operations with scenarios

We say two scenario interfaces t = t1; t2; . . . ; tk and t′ = t′1; t
′
2; . . . ; t

′
k′ are equal if

k = k′ and the types and the values of each pair ti, t
′
i are equal. Two interfaces

are equal up to the insertion of nil elements, written t =n t′, if there exists a
way to insert nil elements in these interfaces such that the resulting interfaces
are equal.

X

Y

X Y

X

Y

(d)
(f) (g)

(e)

(a) (b) (c)

Figure 7: Operations on scenarios.

A.3.1 Constants

A few examples from Fig. 7: An identity Id (the center cell in (c)), a recorder
R (2nd cell in the 1st row of (c)), a speaker S (1st cell in the 2nd row of (c)),
empty cell Λ (last cell in the 1st row of (c)), a transformed recorder TR (e), and
a transformed speaker TS (g).

A.3.2 Horizontal composition

Suppose we start with two scenarios fi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2. Their hor-
izontal composition f1 � f2 is defined only if e1 =n w2. For each inserted nil

element in an interface, a dummy row is inserted in the corresponding scenario,
resulting a scenario fi. After these transformations, the result is obtained putting
f1 on left of f2, see Fig. 7(b).
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A.3.3 Vertical composition

The definition of vertical composition f1 · f2 is similar, but now s1 =n n2. For
each inserted nil element, a dummy column is inserted in the corresponding
scenario, resulting a scenario fi. The result is obtained putting f1 on top of f2.
See Fig. 7(a).

A.3.4 Diagonal composition

The diagonal composition f1 • f2 is a derived operation. It is defined only if
e1 =n w2 and s1 =n n2 and the result is

f1 • f2 = (f1 � R1 � Λ1) · (S2 � Id � R2) · (Λ2 � S1 � f2).

for appropriate constants R, S, Id, Λ. See Fig. 7(c).

B Appendix: Structured rv-programs

B.1 The syntax of structured rv-programs

The syntax is given by the BNF grammar

P ::= X | if(C)then{P}else{P} | P%P | P#P | P$P

| while t(C){P} | while s(C){P} | while st(C){P}
X ::= module name{listen t vars}{read s vars}

{ code; }{speak t vars}{write s vars}
Structured rv-programs use modules X as their basic blocks. On top of them,

larger programs are built up by “if” and both composition and iterative composi-
tion constructs for the vertical, the horizontal, and the diagonal directions. These
statements aim to capture at the program level the corresponding operations on
scenarios.

B.2 On the choice of the composition/iteration operators

The number of composition and iteration operators used in the previous sections
is pretty high. Our choice was driven by a practical approach, i.e., to have a set
of easy to understand and use operators. In this appendix we show that all
composition and iteration operators can be obtained from a unique composition
and a unique iteration, albeit less structured and not so easy to handle.
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B.2.1 General composition

The general composition � is defined on two programs E : 〈a|b〉 → 〈c; p|d; q〉
and E′ : 〈a′; p|b′; q〉 → 〈c′|d′〉. The result is a program E � E′ : 〈a; a′|b; b′〉 →
〈c; c′|d; d′〉.

a
b

c

d

p

qa’
c’

b’

d’

q

p

From this general composition we get the following particular cases: (1) Case
d = b′ = I0 and p = −0 (vertical composition); (2) Case c = a′ = −0 and
q = I0 (horizontal composition); (3) Case d = b′ = I0 and c = a′ = −0 (diagonal
composition). On the opposite direction, general composition may be specified
using vertical and horizontal composition and appropriate constants.

B.2.2 General iteration

The general iteration operator ↑(p,q) is a kind of 2-dimensional feedback: When
it is applied to a program E : 〈a; p|b; q〉 → 〈c; p|d; q〉 it produces a program
E ↑(p,q): 〈a|b〉 → 〈c|d〉.

a
b

p p

d

c
q

q

As above, this general iteration operator cover the following particular cases:
(1) Case p = −0 (temporal while); (2) Case q = I0 (spatial while); (3) Case
a = c = −0 and b = d = I0 (spatio-temporal while). The proof is based on the
representation of “while” by “feedback”, see [Stefanescu 2000].

B.2.3 Programming constructs and examples

As previously stated, the three composition and iterated composition statements
used in AGAPIA are instances of a unique pair of more general, but less “struc-
tured” statements:

P1 comp{tv}{sv} P2 and while{tv}{sv}{C}{P}
In this case, at an identification border, only a part of the connecting interfaces
are to be matched, namely the tv part at a temporal interface and the sv part at
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a spatial interface. Then, the horizontal form corresponds to the choice tv = all,
ts = ∅, the vertical form to tv = ∅, ts = all, and the diagonal form to tv = all,
ts = all. Currently, we do not know whether the general while may be simulated
using the particular forms in {while t, while s, while st}.
Example 5. The structured rv-program for a termination detection protocol, pre-
sented in a previous section, has the following format

P :: [I1# for s(tid=0;tid<tn;tid++){I2}#] $

[while st(!(token.col==white && token.pos==0)){
for s(tid=0;tid<tn;tid++){R}

}]
The dynamic case where processes may freely join or leave the ring is an

easy extension using the general while. By replacing in the above code while st

with while{all \ k}{all}(. . .) we get a program where k is a temporal variable
coming from the external temporal interface, not from R. This variable specifies
the number of new processes that have to be inserted into the ring, a procedure
that is handled by the new module R similarly as in I2; moreover, the counter
for the numeber of processes is increased by k. Modeling the leaving of the ring
is much easier: in the R code of the process which leaves the ring, the write part
is replaced by write nil and the counter of the process number is decreased by
1. �

C Appendix: Operational semantics

The operational semantics

| | : Structured rv-programs → Scenarios

associates to each program the set of its possible running scenarios.
The type of a program P , denoted P : 〈w(P )|n(P )〉 → 〈e(P )|s(P )〉, indicates

the types of its west, north, east, and south scenarios borders. Each of these types
may be quite complex (see AGAPIA interface types in Sec. 2) Two interface
types match if they have a nonempty intersection.

C.1 Modules

The modules are the starting blocks for building structured rv-programs. The
listen (read) instruction is used to get the temporal (spatial) input and the
speak (write) instruction to return the temporal (spatial) output. The code

consists in simple instructions as in the C code. No distinction between temporal
and spatial variables is made within a module.

A scenario for a module consists of a unique cell, with concrete data on
the borders, and such that the output data are obtained from the input data
applying the module code.
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C.2 Composition

Due to their two dimensional structure, programs may be composed horizontally
and vertically, as long as their types on the connecting interfaces agree. They can
also be composed diagonally by mixing the horizontal and vertical compositions.
Suppose two programs Pi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2 are given. We define the
following composition operators.

C.2.1 Horizontal composition

P1#P2 is defined if the interfaces e1 and w2 match. The type of the composite
is 〈w1|n1; n2〉 → 〈e2|s1; s2〉. A scenario for P1#P2 is a horizontal composition of
a scenario in P1 and a scenario in P2.

C.2.2 Vertical composition

P1%P2 is similar.

C.2.3 Diagonal composition

P1$P2 connects the east border of P1 to the west border of P2 and the south
border of P1 to the north border of P2. It is defined if each pair of interfaces
e1, w2 and s1, n2 matches. The type of the composite is 〈w1|n1〉 → 〈e2|s2〉. A
scenario for P1$P2 is a diagonal composition of a scenario in P1 and a scenario
in P2.

C.3 If

Given two programs Pi : 〈wi|ni〉 → 〈ei|si〉, i = 1, 2, a new program Q =
if (C) then P1 else P2 is constructed, for a condition C involving both, the
temporal variables in w1 ∩ w2 and the spatial variables in n1 ∩ n2. The type of
the result is Q : 〈w1 ∪ w2|n1 ∪ n2〉 → 〈e1 ∪ e2|s1 ∪ s2〉.

A scenario for Q is a scenario of P1 if the data on west and north borders of
the scenario satisfy condition C, otherwise is a scenario of P2.

C.4 While

Given a program P : 〈w|n〉 → 〈e|s〉, we have introduced three while statements,
each corresponding to the iteration of a composition operation.

1752 Popa A., Sofronia A., Stefanescu G.: High-level Structured Interactive ...



C.4.1 Temporal while

The statement while t (C){P} is defined if the interfaces n and s match and
C is a condition on the spatial variables in n ∩ s. The type of the result is
〈(w; )∗|n∪s〉 → 〈(e; )∗|n∪s〉. A scenario for while t (C){P} is either an identity,
or a repeated vertical composition f1 · f2 · . . . · fk of scenarios for P , such that
the north border of each fi satisfies C, while the south border of fk does not
satisfy C.

C.4.2 Spatial while

The spatial while “while s (C){P}” is similar to the temporal one.

C.4.3 Spatio-temporal while

The statement while st (C){P} is defined if each pair of interfaces w, e and
n, s match and C is a condition on the temporal variables in w ∩ e and the
spatial variables in n∩ s. The type of the result is 〈w ∪ e|n∪ s〉 → 〈w ∪ e|n∪ s〉.
A scenario for while st (C){P} is either an identity, or a repeated diagonal
composition f1 • f2 • . . . • fk of scenarios for P , such that the west and north
border of each fi satisfies C, while the east and south border of fk does not
satisfy C.

Notice that when the body program P of a temporal while has a dummy
temporal interface, the temporal while coincides with the while from imperative
programming languages. Similarly, for the spatial while it is easier to understand
the case when the body P : 〈w|n〉 → 〈e|s〉 has dummy spatial interface, i.e.,
n = s = nil.
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D Appendix: The syntax for AGAPIA v0.2 programs

The extended syntax introduced in the present paper provides the basis for a
new version of AGAPIA, called AGAPIA v0.2. It is presented in Fig. 8.

Interfaces
SST ::= nil | sn | sb

| (SST ∪ SST ) | (SST, SST ) | (SST )∗

ST ::= (SST ) | (ST ∪ ST ) | (ST ; ST ) | (ST ; )∗

STT ::= nil | tn | tb
| (STT ∪ STT ) | (STT, STT ) | (STT )∗

TT ::= (STT ) | (TT ∪ TT ) | (TT ;TT ) | (TT ; )∗

Expressions
V ::= x : ST | x : TT | V (k)

| V.k | V.[k] | V @k | V @[k]
E ::= n | V | E + E | E ∗ E | E − E | E/E
B ::= b | V | B&&B | B||B | !B | E < E

Programs
W ::= nil | new x : SST | new x : STT

| x := E | if(B){W}else{W}
| W ;W | while(B){W}

M ::= module module name{listen x : STT}{read x : SST}
{ W }{speak x : STT}{write x : SST}

| module module name{listen x : STT}{read x : SST}
{ ScatterT # (ScatterS % P % GatherS) # GatherT }
{speak x : STT}{write x : SST}

P ::= nil | M | if(B){P}else{P}
| P%P | P#P | P$P
| while t(B){P} | while s(B){P}
| while st(B){P}

ScatterS ::= module module name{listen nil}{read x : SST}
{ body; }{speak nil}{write x : ST}

ScatterT ::= module module name{listen x : STT}{read nil}
{ body; }{speak x : TT}{write nil}

GatherS ::= module module name{listen nil}{read x : ST}
{ body; }{speak nil}{write x : SST}

GatherT ::= module module name{listen x : TT}{read nil}
{ body; }{speak x : STT}{write nil}

(The body part in these Statter/Gather modules
use only x := y assignments, i.e.,
no real computation, only copy/delete data.)

Figure 8: The syntax for AGAPIA v0.2 programs
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