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Abstract: We give a tight analysis of an old and popular sweep-line heuristic for
constructing a spanning tree of a set of n points in the plane. The algorithm sweeps a
vertical line across the input points from left to right, and each point is connected by a
straight line segment to the closest point left of (or on) the sweep-line. If W denotes the
weight the Euclidean minimum spanning tree (EMST), the spanning tree constructed
by the sweep-line algorithm has weight O(W log n), and this bound is asymptotically
tight. We then analyze a sweep-line heuristic for constructing a Steiner tree, in which
a vertical line is swept across the input points from left to right, and each point is
connected by a straight line segment to the closest point on edges or vertices of the
current tree (on the left of the sweep line). We show that this algorithm achieves an
approximation ratio of O(log n), and describe a class of instances where this ratio is
Ω(log n/ log log n). Our results give almost complete answers to two old open questions
from the 1970s.
Key Words: Minimum spanning tree, minimum Steiner tree, sweep-line, heuristic,
approximation ratio

Category: F.2.2, G.2.2

1 Introduction

Let S be a finite set of points in the plane. A Euclidean Steiner tree (EST) for S

is a planar straight line graph spanning S. The Euclidean Steiner tree problem
asks for the shortest such graph (where the edge lengths are measured in L2

metric). The solutions take form of a tree, that includes all the points in S, called
terminals, or sites, along with possibly some extra vertices, called Steiner points.
It is known that in an optimal solution each Steiner point has degree 3, and any
two consecutive incident edges form an 120◦ angle [Gilbert and Pollak 1968]. A
Euclidean minimum spanning tree (EMST) for a point set can always serve as
a suboptimal Euclidean Steiner tree.

The rectilinear Steiner tree problem asks for the shortest EST using the recti-
linear metric (i.e., L1 metric), in which the distance between two points u(xu, yu)
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and v(xv, yv) is d(u, v) = |xu−xv|+|yu−yv|. The solution can be drawn as a recti-
linear Steiner tree (RST), composed solely of horizontal and vertical edges (where
the L1 and L2 lengths are the same). The RST problem was first suggested by
Hanan [Hanan 1966], who also proved the following result on the structure of
optimal solutions. Let G(S) be the grid induced by the point set S by drawing
a horizontal and a vertical line through each point of S and retaining only the
finite segments between intersection points of these lines (in the axis-aligned
bounding box of S). Hanan proved that there exists a shortest RST for S which
uses only segments in G(S) [Hanan 1966] (see also [Richards 1989, Servit 1981]).
In particular, this implies for n not too large that exact solutions can be found
using an exhaustive search (in exponential time) [Hanan 1966].

It is well known that a minimum spanning tree in a weighted graph can
easily be computed in polynomial time [Kruskal 1956, Prim 1957]. Furthermore,
O(n log n)-time algorithms have been developed for graphs embedded in the
plane with Euclidean and rectilinear distances, see the papers [Hwang 1976] and
[Shamos and Hoey 1975]. This is unlikely to be the case for Steiner trees: in-
deed, it has been shown that the Euclidean Steiner tree problem is NP-hard
[Garey et al. 1997], and the rectilinear Steiner tree problem is NP-complete
[Garey and Johnson 1977]. Many heuristics and approximation algorithms have
been proposed over time to deal with the Steiner tree problem, particularly
with the rectilinear variant. We only mention a few references [Bern 1988],
[Fößmeier and Kaufmann 1997], [Hanan 1965], [Hanan 1966], [Hwang 1979],
[Richards 1989], [Servit 1981], [Wee et al. 1994], [Zelikowsky 1993]. The rectilin-
ear variant has been motivated by a fundamental problem in circuit design: how
to connect n given points on a board to make them electrically common using
the least amount of wire [Richards 1989]. For a variety of technical and engi-
neering reasons, the segments of such connections are horizontal and vertical;
also the orientation of the board (the underlying coordinate system) is part of
the input for a given problem [Hanan 1966], [Richards 1989], so one is allowed
to rotate the point set only by multiples of 90◦.

In 1976, Hwang [Hwang 1976] proved that the rectilinear Steiner ratio (the
supremum ratio of the weights of a minimum rectilinear spanning tree and the
minimum rectilinear Steiner tree over all finite point sets in the plane) is 3/2. The
analogous result for Euclidean Steiner ratio has been obtained only in 1990, when
Du and Hwang [Du and Hwang 1992] showed that the ratio is 2/

√
3 ≈ 1.15.

Optimal solutions to the rectilinear Steiner tree problem (with exponential
running time) have been devised in several papers; Fößmeier and M. Kaufmann
[Fößmeier and Kaufmann 1997] give an account of earlier and more up to date
approaches. The earliest heuristic proposed for finding good approximations is
a sweep-line algorithm attributed to Hanan [Hanan 1965], see also [Servit 1981],
[Richards 1989]. Hanan’s algorithm (cf. [Richards 1989]) processes the sites one
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at a time in increasing order of their x-coordinates. Initially, the first site is
made a singleton tree. Each new site processed is connected to a closest point
(in L1 metric) of the current tree. To remove bias due to the left-to-right sweep
direction, the procedure is repeated three times after rotating the point set by
90◦, and each time a new tree is constructed. Finally the best of the four trees
is output by the algorithm. Richards showed that the algorithm can be im-
plemented to run in O(n log n)-time [Richards 1989]. Servit [Servit 1981] and
Richards [Richards 1989] note that no tight or good bound were known on the
approximation ratio of Hanan’s sweep-line algorithm for approximating the min-
imum RST. We note there were no tight analysis for Hanan’s heuristics under
any other metric either.

In this paper we address this issue, and analyze the performance of two sweep-
line algorithms proposed in the 1960s and 1970s for constructing an approximate
minimum spanning tree and an approximate minimum Steiner tree, respectively.
Although their performance on various instances was usually found satisfactory,
bounds on their approximation ratio (the worst case ratio of the weights of the
output tree and the optimum tree over all finite point sets in the plane) have
been missing. The outlines of the two algorithms are as follows:

(A) Process the points one at a time in left to right order. Connect each point
p to a closest point p′ to the left of p, by a straight line segment.

(B) Process the points one at a time in left to right order. Connect each point
p to a closest point (on vertices and edges) of the current tree on the left.

The trees generated by the two algorithms on a set of 8 points are depicted
in Figure 1. It is easy to check that both (A) and (B) output planar straight line
graphs under any metric Lq, q ≥ 1. The second variant (B) has been primarily
designed for constructing a rectilinear Steiner tree of the point set. It uses short-
cut connections to the current tree on the left (and introduces Steiner points)
with the intent of finding a lighter tree than the one obtained by algorithm (A).

2 The sweep-line algorithm for spanning tree construction

The sweep-line algorithm (A) processes the input points in left-to-right order
and connects each point p to a closest point p′ to the left of p by a straight line
segment (i.e., p′ is also an input point).

Theorem 1. The approximation ratio achieved by the sweep-line algorithm (A)
for spanning tree construction is O(log n). This ratio is asymptotically tight. The
result holds under any metric Lq, q ≥ 1.

1617Dumitrescu A., Toth C.D.: Analysis of two Sweep-line Algorithms ...



(b) (c)(a)

Figure 1: Three examples on a same point set. (a) A Euclidean spanning tree con-
structed by the sweep-line algorithm (using L2 metric). (b) A Euclidean Steiner tree
constructed by the sweep-line algorithm (using L2 metric). (c) A rectilinear Steiner
tree constructed by the sweep-line algorithm (using L1 metric and L-shaped edges).

The upper bound easily follows from earlier results. In fact, we give two
independent proofs: one is a reduction to the competitive ratio of an on-line
greedy algorithm (placing the sweep-line algorithm into a broader class of al-
gorithms), and the other one is a reduction to the gap theorem (with a more
geometric flavor). See the details below. Even though the analyses of both the
competitive ratio of on-line greedy algorithms and the gap theorem are tight,
their lower bounds do not apply to the (more specialized) sweep-line heuristics.
Here we present specific point sets for which algorithm (A) outputs a spanning
tree which is Ω(log n) times heavier than the EMST.

Remark 1. Since we are only interested in presenting asymptotic results, rather
than exact constants of proportionality, we make use of the fact that any two
metrics Lq, q ≥ 1, are within constant factors from each other.

2.1 Upper bound via the gap theorem.

Chandra et al. [Chandra et al. 1995] (see also [Narasimhan and Smid 2007], pp.
108–119) introduced the gap property, which guarantees that a directed plane
graph connecting n points in the plane is at most O(log n) times heavier than
the EMST. For a directed segment edge (p, q), p is called the source, and q is
called the sink. A set of directed edges satisfies the gap property, if the sources
of any two distinct edges are “far” apart—relative to the length of the shorter
of the two edges. Formally, for a real number w ≥ 0, a set E of directed edges
in the plane satisfies the gap property if and only if for any two distinct edges
(p, q) and (r, s) in E, we have

|pr| > w · min (|pq|, |rs|).
By the Gap Theorem of Chandra et al. [Chandra et al. 1995], if S is a set of
points in the plane, and E ⊆ S × S is a set of directed edges that satisfies the
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gap property for some w > 0, then the total weight wt(E) of edges in E is
bounded as

wt(E) <

(
1 +

2
w

)
· W · log n,

where W is the weight of the EMST of S.

Claim 1 The sweep-line algorithm (A) computes a tree that satisfies the gap
property with appropriately chosen edge directions and w = 1.

Proof. Assume for simplicity that no two points have the same x-coordinate, so
there is at most one point on the the sweep-line � at any time. To apply the
Gap Theorem, let E be the set of edges in the tree constructed by the sweep-
line algorithm (A), where each edge (p, p′) is oriented to the left. The algorithm
connects each point p (on the sweep line �) to the closest site p′ left of �. Let
(p, q) and (r, s) be two edges in E, where r is to the right of p. By the rule of the
algorithm the interior of the left half-disk of radius |rs| centered at r is empty of
sites. Therefore |pr| ≥ |rs| ≥ min (|pq|, |rs|). Hence E satisfies the gap property
with w = 1. ��

By the Gap Theorem, we have wt(E) < 3·W ·log n, as required. The O(log n)
ratio holds for any Lq metric, q ≥ 1, by the same Gap Theorem combined with
Remark 1.

2.2 Upper bound via on-line greedy algorithms.

The following is the on-line Steiner tree problem in the plane (according to
[Alon and Azar 1993]): Suppose n points, p1, . . . , pn are presented one-by-one,
and the objective is to construct, on-line, a connected graph that connects all
of them, trying to minimize the total edge length. The points appear one at a
time, pi arriving at step i. In step 1, p1 is a singleton graph T1. In step i ≥ 2,
the on-line algorithm must augment Ti−1 to a connected graph Ti that spans
p1, p2, . . . , pi. If A(p1, . . . , pn) denotes the weight of Tn constructed by an on-line
algorithm A, and OPT (p1, . . . , pn) denotes the length of an optimal (Euclidean)
Steiner tree for this set of points, then the competitive ratio of the algorithm A

is the supremum over all finite sequences p1, . . . , pn, of the ratio

A(p1, . . . , pn)
OPT (p1, . . . , pn)

.

A simple algorithm for the on-line Steiner tree problem is the Steiner greedy
algorithm: At step i, it connects pi to a closest point on vertices and edges of
Ti−1. Consider now the vertex greedy algorithm: At step i, it connects pi to the
closest element in the set {p1, . . . , pi−1}. Obviously, the vertex greedy algorithm
constructs a spanning tree of the given points, in particular a Steiner tree for
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this set of points. Moreover, the Steiner greedy algorithm performs at least as
well as the vertex greedy algorithm (since it uses shortcuts). It was shown by
Imase and Waxman [Imase and Waxman 1991] that the competitive ratio of the
vertex greedy algorithm is O(log n) in any metric space; a short proof of this
result was also given by Alon and Azar [Alon and Azar 1993].

The sweep-line algorithm (A) applies the vertex greedy algorithm assuming
that the input points are presented in left-to-right order. Hence it outputs a
spanning tree which is at most O(log n) times heavier than the EMST.

2.3 Lower bound construction.

We now prove that the O(log n) factor is tight for every integer n, by constructing
a suitable bad instance S. We first consider the L2 (Euclidean) metric. Let L = 2k

for some integer k. Points of S are on k+1 parallel almost vertical lines of (large)
negative slope. For simplicity we first set these lines as vertical and slightly rotate
the entire point set counterclockwise at the end. Figure 2 shows an example with
n = 53 points on 5 vertical lines. The x-coordinate of the ith line �i is xi = iε,
for a small ε ≤ 1/n and i = 0, 1, . . . , k. We construct the point set recursively.
Place two points on line 0, with y-coordinates 0 and 2k. Assume the points on
the lines �0 through �i−1 have been placed, and we now place the points on line
�i. First copy the points on line �i−1 onto line i at the same y-coordinate. For
any two consecutive points on �i−1 with y-coordinates y and y +2a, place points
on �i at y-coordinates y + 2b, for all b = 0, 1, . . . , a − 1. Note that the distance
between two consecutive points along any of the lines is always a power of 2;
this invariant is maintained inductively.

Claim 2 Algorithm (A) outputs a tree of length Ω(W log n) for the points set
S described above, where W denotes the weight of the EMST of S.

Proof. Points are swept in the order �0, �1, . . . , �k, and for each line �i from top
to bottom. Each point on �i except the topmost, is connected to the one above it
on �i, unless there is a corresponding point with same y-coordinate on �i−1 (this
holds by construction). In case there is a corresponding point, this connection is
made by the algorithm for the current point on �i.

The EMST (of weight W ) consists of a segment along �k of length L and
horizontal connections with all other points made from �k. Observe that L ≤
W ≤ L + nε ≤ L + 1, so W ≤ 2k + 1. Let T ′ be the tree constructed by the
sweep-line algorithm, and let E, and W ′ denote its edge set and total weight.
Next we establish a lower bound on W ′.

For brevity, we refer to the almost vertical lines �i, i = 0, 1, . . . , k, as vertical.
For i ≥ 0, denote by T (2i) the total cost of vertical edges in E “generated” by
a vertical segment in E of length 2i which connects two consecutive points with
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Figure 2: An example with |S| = n = 53 points. Left: a minimum spanning tree
(EMST) of S of weight 16+o(1). Right: the spanning tree of weight 48+o(1) constructed
by the sweep-line algorithm.

y-coordinates y and y+2i (at distance 2i) on some line �j; this total cost includes
the lengths of vertical segments on �j, �j+1, . . . , �k whose both endpoints have
y-coordinates in [y, y + 2i]. Clearly W ′ ≥ T (2k). By construction, T (2i) satisfies
the following recurrence

T (2i) = 2i +
i−1∑
j=0

T (2j).

Some initial values are easy to compute (and the reader can verify T (24) on the
figure):

T (20) = 1, T (21) = 2+1 = 3, T (22) = 4+3+1 = 8, T (23) = 8+7+3+1+1 = 20,

T (24) = 16 + 15 + 11 + 5 + 1 = 48, T (25) = 32 + 48 + 20 + 8 + 3 + 1 = 112.

Introduce a new variable
U(i) = eT (2i).
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The recurrence now becomes

U(i) = e2i
i−1∏
j=0

U(i),

with initial condition U(0) = e. This can be further rewritten as

U(i + 1) = e2i

[U(i)]2.

Put now U(i) = eV (i), which yields the recurrence in V (i)

V (i + 1) = 2V (i) + 2i,

and whose corresponding initial condition is V (0) = 1. Solving for V (i) yields

V (i) = 2i−1(i + 2),

and consequently
U(i) = e2i−1(i+2).

Going further back, we recover

T (2i) = 2i−1(i + 2).

Of course, we are only interested in T (2k) = 2k−1(k + 2). Clearly, the number
of points in the constructed set S is at most |S| ≤ (k + 1)(2k + 1), but in fact
|S| ≤ k2k is also easy to derive. This implies that log n ≤ k + log k, hence
k ≥ log n − log log n ≥ log n

2 . The weight W ′ of the tree constructed by the
sweep-line algorithm is

W ′ ≥ T (2k) = 2k−1(k + 2) ≥ L

2
· log n

2
= Ω(W log n),

as claimed.
By Remark 1, the lower bound holds for any metric Lq, q ≥ 1. ��

Remark 2. Our Ω(log n) lower bound on the approximation ratio holds also for
the optimized version of the sweep-line algorithm, in which the best of the four
trees (for each axis-aligned sweep direction) is output by the algorithm: The
construction can be repeated along each of the four sides of a square of side
length L = 2k. Then W is about 4L, while W ′ is still Ω(W log n), as desired.

Remark 3. Our lower bound construction does not seem to extend for the more
powerful algorithm that first chooses an orthogonal coordinate system in the
plane and then performs the sweep-line algorithm (A). It is an open problem
whether for any point set, there is a coordinate system in which algorithm (A)
computes a spanning tree only o(log n) times heavier than the EMST.

1622 Dumitrescu A., Toth C.D.: Analysis of two Sweep-line Algorithms ...



3 The sweep-line algorithm for Steiner tree construction

The sweep-line algorithm (B) processes the input points in left-to-right order and
constructs a Steiner tree by connecting each point p to the closest point (on ver-
tices and edges) of the current tree. Two examples of the trees constructed using
L2 and L1 distances are shown in Figure 1(b) and 1(c), respectively. The recti-
linear variant is known as Hanan’s heuristic for the minimum rectilinear Steiner
tree problem [Hanan 1965]: each edge is drawn as an L-shape with the horizon-
tal segment of the L-shape on the left of the vertical segment (i.e., the L-shape
overlaps with the vertical line through the current point). Richards provided an
implementation of this algorithm that runs in O(n log n) time [Richards 1989].

Since the weights of a minimum spanning tree and a minimum Steiner tree
are all within constant factors of each other under any metric Lq, q ≥ 1, it
is clear that the approximation ratio achieved by algorithm (B) is bounded by
that of algorithm (A), hence it is also O(log n). We analyze both variants of
algorithm (B), when connections are done by a segment, or by a an axis-aligned
L-shape. We show that neither of these yields a constant ratio approximation
algorithm for Steiner tree construction. The reader will observe that our lower
bound construction precludes the algorithm in performing any point to tree
(edge) connection, except the standard point to point connections from variant
(A).

Theorem 2. The worst case approximation ratio achieved by the sweep-line al-
gorithm for Steiner tree construction is Ω(log n/ log log n). The result holds in
every metric Lq, q ≥ 1.

Our lower bound construction is reminiscent of the point configuration pro-
posed by Alon and Azar [Alon and Azar 1993] for the on-line Steiner tree prob-
lem of n points in the plane, that yields a Ω(log n/ log log n) lower bound on
the competitive ratio of any on-line algorithm for that problem. The sites are
revealed to the algorithm in increasing y-coordinates (similarly to the sweep-line
algorithms), but an on-line algorithm is allowed to augment the graph with ar-
bitrary new edges and Steiner points at each step, as opposed to the sweep-line
algorithm (B) which is bound to do one direct connection to the tree. Hence
Theorem 2 follows from the construction in [Alon and Azar 1993]. While the ar-
gument in [Alon and Azar 1993] is more elaborate and uses an adversary who
selects the positions of the layers (lines) revealed to the on-line algorithm at var-
ious moments, our argument proceeds with a direct calculation of the resulting
weight (and is simplified in the sense that the layers are at fixed positions, and
the points on each layer are conveniently ordered).

Proof. Let L = 2k, where k = 22a

for some positive integer a ≥ 1. Let

f(k) = log k − log log k = 2a − a,
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Figure 3: An example with L = 24 = 16, and |S| = n = 34 points. Left: a minimum
spanning tree (EMST) of S of weight 47. Right: the Steiner tree of weight 55 constructed
by the sweep-line algorithm (B).

and write z = f(k). Clearly z ≥ 1. Note that

2z =
k

log k
, hence z · 2z =

(log k − log log k) · k
log k

≥ k

2
.

The n points of S are placed on vertical lines �0, . . . , �s, numbered from right
to left, with mi + 1 equidistant points on line �i having y-coordinates between
0 and L (see Figure 3). Thus mi denotes the number of segments (between
consecutive points) on �i and let yi = L/mi be the common length of these
segments. Denote by xi the horizontal distance between �i−1 and �i. The values
of these parameters are

mi = 2k−iz , xi = 2(i−1)z, (i ≥ 0)

The index s of the leftmost line �s is the largest i for which mi ≥ 2 holds. We
thus have

k

log k
≤ s ≤ 2k

log k
.

Observe that s ≤ k. The relation between n and k will be established in the final
part of the proof.

To transform the point set so that no two points have the same x-coordinates
(and the sweep-line encounters the points in a unique order), we slightly enlarge
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the horizontal distance between consecutive vertical lines by ε and then slightly
rotate each line counter-clockwise about its lowest point by an angle of ε2 for
a sufficiently small ε > 0. We will however omit these slight adjustments for
simplicity and without loss of generality when analyzing the algorithm.

The sweep-line algorithm connects the top point on vertical line �i (for i =
0, . . . , s − 1) to the top point of �i+1, and then in descending order, connects
each point on �i to the next point above it on the same line. Then it moves
to the next vertical line to the right. Consequently, the weight W ′ of the tree
constructed by the sweep-line algorithm includes a weight of L on each of the
lines �0, . . . , �k, hence

W ′ ≥ (s + 1)L ≥ k

log k
· L.

The weight W of the EMST of S is (without really needing a justification, since
we only need an upper bound on W ):

W = m0y0 +
s∑

i=1

(mi + 1)xi = L +
s∑

i=1

mixi +
s∑

i=1

xi.

For i ≥ 1, we have
mixi = 2k−iz · 2(i−1)z = 2k−z.

The sum
∑s

i=1 mixi is then bounded from above as follows

s∑
i=1

mixi = s · 2k−z ≤ 2k

log k
· L

2z
= L · 2k

log k
· log k

k
= 2L.

Now since mi ≥ 2 for each i = 1, . . . , s, this also implies that

s∑
i=1

xi ≤ 1
2

s∑
i=1

mixi ≤ L.

Overall,
W ≤ L + 2L + L = 4L.

The relation between the number of points n and k is: 2k ≤ n ≤ s2k. We derive
that 2k ≤ n ≤ k2k ≤ 22k, or equivalently,

log n

2
≤ k ≤ log n.

We conclude that the ratio between the two weights is

W ′

W
≥ k

log k
· L

4L
= Ω

(
k

log k

)
= Ω

(
log n

log log n

)
,

as required.
Again, the lower bound holds under any metric Lq, q ≥ 1, by Remark 1. ��
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Remark 4. With the same modification of the construction described in Section
2, our Ω(log n/ log log n) lower bound on the approximation ratio holds also for
the optimized version of the sweep-line algorithm (B), in which the best of the
four trees (for each axis-aligned sweep direction) is output by the algorithm.

Remark 5. A construction similar to ours in Theorem 2 yields a Ω(log n/loglog n)
lower bound on the approximation ratio of the insertion method for constructing
TSP tours of n points (i.e., in the Euclidean traveling salesman problem). The
insertion method [Rosenkrantz et al. 1977] adds the points of S one by one in
some order to the current tour until a complete tour is obtained. The new point
is inserted between two consecutive points of the current tour, which yields the
minimum increase in the cost of the tour. Conform to results obtained by Bafna
et al. [Bafna et al. 1994] and Azar [Azar 1994], some insertion orders produce
tours of length Ω(log n/ log log n) times the optimal. These are in fact generated
by processing the points in a sweep-line order; see also [Bern and Eppstein 1997].
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