
Accepting Networks of Evolutionary Processors with

Filtered Connections1,2

Cezara Drăgoi
(LIAFA, Universite Paris Diderot - Paris 7
Case 7014, 75205 Paris Cedex 13, France

and
Faculty of Mathematics and Computer Science, University of Bucharest

Str. Academiei 14, 010014, Bucharest, Romania
E-mail: dragoi.cezara@gmail.com)

Florin Manea3

(Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 010014, Bucharest, Romania

E-mail: flmanea@gmail.com)

Victor Mitrana
(Faculty of Mathematics and Computer Science, University of Bucharest

Str. Academiei 14, 010014, Bucharest, Romania
and

Research Group in Mathematical Linguistics, Rovira i Virgili University
Pça. Imperial Tarraco 1, 43005, Tarragona, Spain

E-mail: mitrana@fmi.unibuc.ro)

Abstract: In this paper we simplify a recent model of computation considered in
[Margenstern et al. 2005], namely accepting network of evolutionary processors, by
moving the filters from the nodes to the edges. Each edge is viewed as a two-way
channel such that input and output filters, respectively, of the two nodes connected by
the edge coincide. Thus, the possibility of controlling the computation in such networks
seems to be diminished. In spite of this observation these simplified networks have the
same computational power as accepting networks of evolutionary processors, that is
they are computationally complete. As a consequence, we propose characterizations of
two complexity classes, namely NP and PSPACE, in terms of accepting networks of
evolutionary processors with filtered connections.

Key Words: Evolutionary processor, network of evolutionary processors, Turing ma-
chine, complexity class.

Category: F.1.1, F.1.3, F.4.3

1 C. S. Calude, G. Stefanescu, and M. Zimand (eds.). Combinatorics and Related
Areas. A Collection of Papers in Honour of the 65th Birthday of Ioan Tomescu.

2 The authors acknowledge partial support from the Romanian Ministry of Education
and Research (PN-II Program, Project GlobalComp - Models, semantics, logics and
technologies for global computing).

3 The work of this author was also partially supported by the Research Grant no.
ET75/2005 of the Romanian National Authority for Scientific Research.

Journal of Universal Computer Science, vol. 13, no. 11 (2007), 1598-1614
submitted: 10/9/07, accepted: 19/11/07, appeared: 28/11/07 © J.UCS

1 Introduction

The origin of networks of evolutionary processors (NEP for short) is a basic ar-
chitecture for parallel and distributed symbolic processing, related to the Con-
nection Machine [Hillis 1985] as well as the Logic Flow paradigm presented in
[Errico and Jesshope 1994], which consists of several processors, each of them be-
ing placed in a node of a virtual complete graph, which are able to handle data
associated with the respective node. All the nodes send simultaneously their
data and the receiving nodes handle also simultaneously all the arriving mes-
sages, according to some strategies, see, e.g., [Fahlman et.al. 1983, Hillis 1985].

In a series of papers (see [Mart́ın-Vide and Mitrana 2005] for a survey) one
considers that each node may be viewed as a cell having genetic information
encoded in DNA sequences which may evolve by local evolutionary events, that
is point mutations. Each node is specialized just for one of these evolutionary
operations. Furthermore, the data in each node is organized in the form of mul-
tisets of words (each word appears in an arbitrarily large number of copies),
and all the copies are processed in parallel such that all the possible events that
can take place do actually take place. Obviously, the computational process just
described is not exactly an evolutionary process in the Darwinian sense. But the
rewriting operations we have considered might be interpreted as mutations and
the filtering process might be viewed as a selection process. Recombination is
missing but it was asserted that evolutionary and functional relationships be-
tween genes can be captured by taking only local mutations into consideration
[Sankoff et al. 1992].

We want to stress from the very beginning that the evolutionary processor
we discuss here is a mathematical object only and the biological hints presented
above are intended to explain in an informal way how some biological phenomena
are sources of inspiration for our mathematical computing model.

In [Margenstern et al. 2005] one presents a characterization of the complex-
ity class NP based on accepting networks of evolutionary processors (ANEP for
short). In [Margenstern et al. 2005] (and a series of subsequent papers), these
ANEPs are actually called accepting hybrid networks of evolutionary proces-
sors). The work [Manea et al. 2007] discusses how ANEPs can be considered as
problem solvers. In [Manea and Mitrana 2007], one shows that every recursively
enumerable language can be accepted by an ANEP with 24 nodes. More pre-
cisely, one proposes a method for constructing, for every NP-language, an ANEP
of size 24 deciding that language in polynomial time. While the number of nodes
of this ANEP does not depend on the language, the other parameters of the
network (rules, symbols, filters) depend on it. Since each ANEP may be viewed
as a problem solver as shown in [Margenstern et al. 2005], the later result may
be interpreted as a method for solving every NP-problem in polynomial time
by ANEPs of constant size.

1599Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

It is clear that filters associated with each node allow a strong control of the
computation. Indeed, every node has an input and output filter; two nodes can
exchange data if it passes the output filter of the sender and the input filter
of the receiver. Moreover, if some data is sent out by some node and not able
to enter any node, then it is lost. In this paper we simplify the ANEP model
considered in [Margenstern et al. 2005] by moving the filters from the nodes to
the edges. Each edge is viewed as a two-way channel such that the input and
output filters, respectively, of the two nodes connected by the edge coincide.
Clearly, the possibility of controlling the computation in such networks seems
to be diminished. For instance, there is no possibility to loose data during the
communication steps. In spite of this fact we prove here that these new devices
are still computationally complete. This means that moving the filters from the
nodes to the edges do not decrease the computational power of the model. Al-
though the two variants are equivalent from the computational power point of
view, we do not know a direct proof for this equivalence. As a consequence, fol-
lowing ideas from [Margenstern et al. 2005] we propose characterizations of two
complexity classes, namely NP and PSPACE, in terms of accepting networks
of evolutionary processors with filtered connections.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any finite sequence of symbols from an alphabet V is called word over
V . The set of all words over V is denoted by V ∗ and the empty word is denoted
by ε. The length of a word x is denoted by |x| while alph(x) denotes the minimal
alphabet W such that x ∈ W ∗.

A nondeterministic Turing machine (see, e.g., [Hartmanis 1968]) is a con-
struct M = (Q, V, U, δ, q0, B, F), where Q is a finite set of states, V is the
input alphabet, U is the tape alphabet, V ⊂ U , q0 is the initial state, B ∈ U \V

is the “blank” symbol, F ⊆ Q is the set of final states, and δ is the transition
mapping, δ : (Q \F)×U → 2Q×(U\{B})×{R,L}. The variant of a Turing machine
we use in this paper can be described intuitively as follows: it has a semi-infinite
tape (bounded to the left) divided into cells (each cell may store exactly one
symbol from U). The machine has a central unit storing a state from a finite
set of states, and a reading/writing tape head which scans the tape cells; the
head cannot write blank symbols. The input is a word over V stored on the
tape starting with the leftmost cell while all the other tape cells initially contain
the symbol B. When M starts a computation, the tape head scans the leftmost
cell and the central unit is in the state q0. The machine performs moves that
depend on the content of the cell currently scanned by the tape head and the

1600 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

current state stored in the central unit. A move consists of: change the state,
write a symbol from U on the current cell and move the tape head one cell either
to the left (provided that the cell scanned was not the leftmost one) or to the
right. An input word is accepted iff after a finite number of moves the Turing
machine enters a final state. An instantaneous description (ID for short) of a
Turing machine M as above is a word over (U \ {B})∗Q(U \ {B})∗. Given an
ID αqβ, this means that the tape contents is αβ followed by an infinite number
of cells containing the blank symbol B, the current state is q, and the symbol
currently scanned by the tape head is the first symbol of β provided that β �= ε,
or B, otherwise.

We say that a rule a → b, with a, b ∈ V ∪ {ε}, a �= b, is a substitution rule if
both a and b are not ε; it is a deletion rule if a �= ε and b = ε; it is an insertion
rule if a = ε and b �= ε. The set of all substitution, deletion, and insertion rules
over an alphabet V are denoted by SubV , DelV , and InsV , respectively.

Given a rule as above σ and a word w ∈ V ∗, we define the following actions
of σ on w:

– If σ ≡ a → b ∈ SubV , then

σ∗(w) = σr(w) = σl(w) =
{{ubv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

– If σ ≡ a → ε ∈ DelV , then σ∗(w) =
{{uv : ∃u, v ∈ V ∗ (w = uav)},
{w}, otherwise

σr(w) =
{{u : w = ua},
{w}, otherwise

σl(w) =
{{v : w = av},
{w}, otherwise

– If σ ≡ ε → a ∈ InsV , then
σ∗(w) = {uav : ∃u, v ∈ V ∗ (w = uv)}, σr(w) = {wa}, σl(w) = {aw}.

α ∈ {∗, l, r} expresses the way of applying a deletion or insertion rule to a word,
namely at any position (α = ∗), in the left (α = l), or in the right (α = r) end
of the word, respectively. For every rule σ, action α ∈ {∗, l, r}, and L ⊆ V ∗, we
define the α-action of σ on L by σα(L) =

⋃
w∈L σα(w). Given a finite set of

rules M , we define the α-action of M on the word w and the language L by:

Mα(w) =
⋃

σ∈M

σα(w) and Mα(L) =
⋃

w∈L

Mα(w),

respectively. In what follows, we shall refer to the rewriting operations defined
above as evolutionary operations since they may be viewed as linguistic formu-
lations of local gene mutations.

1601Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

For two disjoint subsets P and F of an alphabet V and a word x over V , we
define the predicates

ϕs(x; P, F) ≡ P ⊆ alph(x) ∧ F ∩ alph(x) = ∅
ϕw(x; P, F) ≡ alph(x) ∩ P �= ∅ ∧ F ∩ alph(x) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the former condition requires (s stands for strong)
that all permitting symbols are and no forbidding symbol is present in x, while
the latter (w stands for weak) is a weaker variant such that at least one permit-
ting symbol appears in x but still no forbidding symbol is present in x.

For every language L ⊆ V ∗, P , F as above, and β ∈ {s, w}, we define:

ϕβ(L, P, F) = {x ∈ L | ϕβ(x; P, F)}.

An accepting network of evolutionary processors with filtered connections
(ANEPFC for short) is a 8-tuple

Γ = (V, U, G,R,N , α, β, xI , xO),

where:

– V and U are the input and network alphabet, respectively, such that V ⊆ U .

– G = (XG, EG) is an undirected graph without loops with the set of nodes
XG and the set of edges EG. Each edge is given in the form of a binary set.
G is called the underlying graph of the network.

– R : XG −→ 2SubU ∪ 2DelU ∪ 2InsU is a mapping which associates with each
node the set of evolutionary rules that can be applied in that node. Note that
each node is associated only with one type of evolutionary rules, namely for
every x ∈ XG either R(x) ⊂ SubU or R(x) ⊂ DelU or R(x) ⊂ InsU holds.

– α : XG −→ {∗, l, r}; α(x) gives the action mode of the rules of node x on
the words existing in that node.

– N : EG −→ 2U × 2U is a mapping which associates with each edge e ∈ EG

the disjoint sets N (e) = (Pe, Fe).

– β : EG −→ {s, w} defines the filter type of an edge.

– xI , xO ∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . Generally, the ANEPs considered in
the literature have complete underlying graphs, namely graphs without loops in

1602 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

which every two nodes are connected. Starting from the observation that every
ANEPFC can be immediately transformed into an equivalent ANEPFC with a
complete underlying graph (the edges that are to be added are associated with
filters which make them useless), for the sake of simplicity we discuss in what
follows ANEPFCs with underlying graphs having useful edges only. Note that
this is not always possible for ANEPs.

A configuration of an ANEPFC Γ as above is a mapping C : XG −→ 2V ∗

which associates a set of words with every node of the graph. A configuration
may be understood as the sets of words which are present in any node at a given
moment. Given a word w ∈ V ∗, the initial configuration of Γ on w is defined by
C

(w)
0 (xI) = {w} and C

(w)
0 (x) = ∅ for all x ∈ XG \ {xI}.

A configuration can change either by an evolutionary step or by a commu-
nication step. When changing by an evolutionary step, each component C(x)
of the configuration C is changed in accordance with the set of evolutionary
rules R(x) associated with the node x and the way of applying these rules α(x).
Formally, we say that the configuration C′ is obtained in one evolutionary step
from the configuration C, written as C =⇒ C′, iff

C′(x) = (R(x))α(x)(C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has to every node processor y connected to x, provided
they can pass the filter of the edge between x and y. It keeps no copy of these
words but receives all the words sent by any node processor z connected with x

providing that they can pass the filter of the edge between x and z.
Formally, we say that the configuration C′ is obtained in one communication

step from configuration C, written as C � C′, iff

C′(x) = (C(x) \ (
⋃

{x,y}∈EG

ϕβ({x,y})(C(x),N ({x, y}))))

∪(
⋃

{x,y}∈EG

ϕβ({x,y})(C(y),N ({x, y})))

for all x ∈ XG.

Let Γ be an ANEPFC, the computation of Γ on the input word z ∈ V ∗ is a
sequence of configurations C

(z)
0 , C

(z)
1 , C

(z)
2 , . . ., where C

(z)
0 is the initial configu-

ration of Γ on z, C
(z)
2i =⇒ C

(z)
2i+1 and C

(z)
2i+1 � C

(z)
2i+2, for all i ≥ 0. By the previous

definitions, each configuration C
(z)
i is uniquely determined by the configuration

C
(z)
i−1. In other words, each computation in an ANEPFC is deterministic. A com-

putation halts (and it is said to be finite) if one of the following two conditions
holds:

(i) There exists a configuration in which the set of words existing in the

1603Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

output node xO is non-empty. In this case, the computation is said to be an
accepting computation.

(ii) There exist two identical configurations obtained either in consecutive
evolutionary steps or in consecutive communication steps.

The language accepted by Γ is

La(Γ) = {z ∈ V ∗ | the computation of Γ on z is an accepting one.}
We say that an ANEPFC Γ decides the language L ⊆ V ∗, and write L(Γ) = L

iff La(Γ) = L and the computation of Γ on every z ∈ V ∗ halts.
In a similar way to Turing machine, we define two computational complexity

measures using ANEPFC as the computing model. To this aim we consider an
ANEPFC Γ with the input alphabet V that halts on every input. The time
complexity of the finite computation C

(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of Γ on x ∈ V ∗

is denoted by T imeΓ (x) and equals m. The time complexity of Γ is the partial
function from N to N,

T imeΓ (n) = max{T imeΓ (x) | x ∈ V ∗, |x| = n}.
We say that Γ decides L in time O(f(n)) if T imeΓ (n) ∈ O(f(n)).

For a function f : N −→ N we define:

TimeANEPFCp(f(n))={L |there exists an ANEPFC Γ, of size p, deciding L,

and n0 such that T imeΓ (n) ≤ f(n) for all n ≥ n0}
Moreover, we write PTimeANEPFCp =

⋃
k≥0

TimeANEPFCp(nk) for all p ≥ 1 as

well as PTimeANEPFC =
⋃
p≥1

PTimeANEPFCp .

The length complexity of the finite computation C
(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m of

Γ on x ∈ L is denoted by LengthΓ (x) and equals

max{|w| : w ∈ C
(x)
i (z), i ∈ {1, . . . , m}, z ∈ XG}.

The length complexity of Γ is the partial function from N to N,

LengthΓ (n) = max{LengthΓ (x) | x ∈ V ∗, |x| = n}.
For a function f : N −→ N we define

LengthANEPFCp
(f(n))={L |there exists an ANEPFCΓ, of size p, decidingL

and n0 such that LengthΓ (n) ≤ f(n) for all n ≥ n0}
We write PLengthANEPFCp

=
⋃
k≥0

LengthANEPFCp
(nk), for all p ≥ 1, and

PLengthANEPFC =
⋃
p≥1

PLengthANEPFCp
.

1604 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

3 An example

We briefly present an example, in order to exhibit the way ANEPFCs are used
to solve difficult problems. The reader interested in all technical definitions con-
cerning ANEPFC as problem solvers following the same definitions for ANEPs
is referred to [Manea et al. 2007].

We consider the Vertex-Cover problem ([Garey and Johnson 1979]). Let G =
(V, E) be an undirected graph with the set of vertices V and the set of edges
E. A vertex-cover of G is a set A ⊆ V such that each edge (u, v) ∈ E has at
least one of u and v in A. The Vertex-Cover problem is: given a graph G and an
integer k, does G have a vertex-cover of cardinality k or less?

In the following we assume that we are given an instance (G, k) of the Vertex-
Cover problem, where the graph G = (V, E) has V = {1, 2, . . . , n} and E =
{e1, e2, . . . , em} for some n, m ≥ 1. This instance is encoded by the word w =
e1 . . . em#k, where # is a new symbol. Note that an edge ei of the graph is also
considered as a symbol and the fact that the number of nodes is not explicitly
encoded in w. We present an ANEPFC Γ that can be constructed in (Turing)
polynomial time and space and decides w if and only if G has a vertex-cover of
cardinality k or less. The computation takes (ANEPFC) polynomial time.

For sake of clarity, we use the notation [i, j] instead of {i, j} for the edges of
the graph (remember that the graph is undirected). Clearly, the input alphabet
of the network is U = {[i, j]|1 ≤ i, j ≤ n} ∪ {#}. We use W = {i|1 ≤ i ≤ n} ∪U

as the working alphabet for Γ . Formally,

Γ = (U, W, H,R,N , α, β, In, Out),

where H is the graph with n + 2 vertices {In, Out, N1, . . . , Nn} and edges that
are listed below.

The parameters of these nodes are defined as follows:

− The input node In :
−R(In) = {# → i, 1 ≤ i ≤ n}
−α(In) = ∗

− The nodes Ni, 1 ≤ i ≤ n :
−R(Ni) = {[i, j] → ε, [j, i] → ε|1 ≤ j ≤ n}
−α(Ni) = ∗

− The output node Out :
−R(Out) = ∅
−α(Out) = ∗

The parameters of the edges are defines as follows:

1605Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

− The edges {In, Ni}, 1 ≤ i ≤ n: − The edges {Ni, Out)} 1 ≤ i ≤ n:
−P{In,Ni} = {i} −P{Ni,Out}=∅,
−F{In,Ni} = {#} −F{Ni,Out}={[i, k], [k, i]|1≤k≤n}
−β({In, Ni}) = w −β({Ni, Out}) = w

− The edges {Ni,Nj}, 1 ≤ i, j ≤ n:
−P({Ni,Nj}) = {i, j}
−F({Ni,Nj}) = ∅
−β({Ni, Nj}) = s

Note that H is almost a complete graph excepting the edge {In, Out} that
doesn’t allow any communication. This ANEPFC implements a very simple
strategy: it replaces in k evolutionary steps all symbols # by integers between
1 and n. Note that two different occurrences of # may be replaced by the same
number. The set of all these numbers, considered now as vertices of G, is further
checked to see whether or not it is a vertex-cover of G. Thus, all such sets will
be checked in parallel. If {i1, . . . , it}, 1 ≤ t ≤ k, is a vertex cover of G, then a
word e1 . . . emx, where x contains at least one occurrence of each ij , 1 ≤ j ≤ t, is
sent out by xI and enters simultaneously all nodes Nij , 1 ≤ j ≤ t. In every visit
of each node Nij , a symbol encoding an edge that connects ij in G is deleted.
All these strings are exchanged among all pairs of nodes Np and Nq, provided
that p, q ∈ {i1, . . . , it}, until all symbols encoding edges that connect either p or
q are deleted. Now strings that do not contain any symbol from {e1, e2, . . . , em}
can enter Out and the computation halts successfully.

Note that all the parameters of the network are bounded by a polynomial
in n, and that the computation of the network on every input word encoding
a graph with m edges for which one searches a vertex cover of cardinality at
most k halts in at most 2(m + k + 1) steps. On the other hand, if G has no
vertex cover of cardinality k or less, the input word, encoding G, is rejected after
2(m + k + 1) steps. Note that the network remains unchanged for all instances
encoding graphs of size n which means that the solution presented above is
uniform (see [Manea et al. 2007]).

4 Completeness of ANEPFCs

We start this section showing that ANEPFCs are computationally complete.

Theorem 1. For any language L, accepted (decided) by a Turing Machine M ,
there exists an ANEPFC Γ , accepting (deciding) L. Moreover, Γ can be con-
structed such that:

1. if L ∈ NTIME(f(n)) then T imeΓ (n) ∈ O(f(n)).
2. if L ∈ NSPACE(f(n)) then LengthΓ (n) ∈ O(f(n)).

1606 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

Proof. Let M = (Q, V, U, R, q0, B, Qf) be a Turing machine, without loss of
generality we may assume that M never halts in the initial state q0. We construct
an ANEPFC that simulates, in parallel, all the computations of M on an input
word. Let Γ = (V, U ′, G,R,N , α, β, xI , xO), where

U ′ = U ∪ {a′, a�, a•, a†, a◦, a⊕, ā◦, ā�, ā⊕, a‡, a♠, a♣ | a ∈ U \ {B}} ∪ {B′} ∪
{[q] | q ∈ Q} ∪ {[q1, a, q2, b, X] | q1, q2 ∈ Q, a, b ∈ U, X ∈ {L, R},
and δ(q1, a) � (q2, b, X)}

and G is the graph illustrated in Figure 1 whose nodes are listed below together
with their associated sets of evolutionary rules.

Nodes of the graph in Figure 1 and their associated sets of evolutionary rules:
– xI :

M(xI) = {λ → B}, α(xI) = r

– x′
I :

M(x′
I) = {λ → B}, α(x′

I) = l

– x1:
M(x1) = {λ → [q0]}, α(x1) = r

– x2:
M(x2) = {[q1] → [q1, a, q2, b, X] | q1, q2 ∈ Q, a, b ∈ U, X ∈ {L, R},
where δ(q1, a) � (q2, b, X)}, α(x2) = ∗

– x3:
M(x3) = {a → a′ | a ∈ U}, α(x3) = ∗

– x1,a, with a ∈ U \ {B}:
M(x1,a) = {a′ → λ}, α(x1,a) = l

– x1,B:
M(x1,B) = {B′ → λ}, α(x1,B) = l

– x4:
M(x4) = {λ → a◦ | a ∈ U \ {B}}, α(x4) = r

– x′
4:

M(x′
4) = {a◦ −→ ā◦ | a ∈ U \ {B}}, α(x′

4) = ∗
– x2,a, with a ∈ U \ {B}:

M(x2,a) = {ā◦ → a†, ā� → a♣, ā⊕ → a‡, a• → a♠}, α(x2,a) = ∗
– x5:

M(x5) = {λ → a⊕ | a ∈ U \ {B}}, α(x5) = l

– x′
5:

M(x′
5) = {a⊕ → ā⊕ | a ∈ U \ {B}}, α(x′

5) = ∗
– x6:

M(x6) = {λ → a� | a ∈ U \ {B}}, α(x6) = l

– x′
6:

M(x′
6) = {a� → ā� | a ∈ U \ {B}}, α(x′

6) = ∗

1607Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

���������������

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

������� �������
�

�
�

�
�

�
�

��

xI

x1

x2

x3x1,B x1,a

x4x′
I

x5

x′
5

x2,a x′
4

x6

x′
6

x7

x8 x9

xO

(Note that nodes x1,a and x2,a has to be understood as generic nodes for all
a ∈ U \ {B}.)

Figure 1: The graph of the ANEPFC used in the proof of Theorem 1.

– x7:
M(x7) = {a → a• | a ∈ U \ {B}}, α(x7) = ∗

– x8:
M(x8) = {a♠ → λ | a ∈ U \ {B}}, α(x8) = r

– x9:
M(x9) = {[q1, c, q2, a, X] → [q2] | q1, q2 ∈ Q, c, a ∈ U, X ∈ {L, R} where
δ(q1, c) � (q2, a, X)} ∪ {a† → a, a‡ → a, a♣ → a | a ∈ U \ {B}} , α(x9) = ∗.

The edges of the graph together and their filters are defined as follows:

– N ({xI , x1}) = ({B}, {[q0]}), β({xI , x1}) = s;

1608 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

– N ({x1, x2}) = ({[q0]}, ∅), β({x1, x2}) = w;

– N ({x2, x3}) = ({[q1, a, q2, b, X] | q1, q2 ∈ Q, a, b ∈ U, X ∈ {L, R}, where
δ(q1, a) � (q2, b, X)}, {a′ | a ∈ U}), β({x2, x3}) = w;

– N ({x3, x1,a}) = ({a′}, {[q1, c, q2, b, X] | q1, q2 ∈ Q, c, b ∈ U, X ∈ {L, R}
where δ(q1, c) � (q2, b, X) and c �= a}), β({x3, x1,a}) = s, for all a ∈ U \{B};

– N ({x3, x1,B}) = ({B′}, {[q1, c, q2, b, X] | q1, q2 ∈ Q, c, b ∈ U, X ∈ {L, R}
where δ(q1, c) � (q2, b, X) and c �= B}), β({x3, x1,a}) = s;

– N ({x′
I , x1,B}) = ({[q1, B, q2, a, X] | q1, q2 ∈ Q, a ∈ U, X ∈ {L, R} where

δ(q1, B) � (q2, a, X)},{B’}), β({x′
I , x1,B}) = w;

– N ({x′
I , x4}) = ({[q1, a, q2, b, R] | q1, q2 ∈ Q, a, b ∈ U where δ(q1, a) �

(q2, b, R)}, {a◦}), β({x′
I , x4}) = w;

– N ({x1,a, x4}) = ({[q1, a, q2, b, R] | q1, q2 ∈ Q, b ∈ U where δ(q1, a) �
(q2, b, R)}, {c◦ | c ∈ U \ {B}}), β({x1,4, x4}) = w, for all a ∈ U \ {B};

– N ({x′
I , x5}) = ({[q1, a, q2, b, L] | q1, q2 ∈ Q, a, b ∈ U where δ(q1, a) �

(q2, b, L)}, {a◦}), β({x′
I , x4}) = w;

– N ({x1,a, x5}) = ({[q1, a, q2, b, L] | q1, q2 ∈ Q, b ∈ U where δ(q1, a) �
(q2, b, L)}, {c⊕ | c ∈ U \ {B}}), β({x1,4, x5}) = w, for all a ∈ U \ {B};

– N ({x4, x
′
4}) = ({a◦ | a ∈ U \ {B}}, {ā◦ | a ∈ U \ {B}}), β({x4, x

′
4}) = w;

– N ({x5, x
′
5}) = ({a⊕ | a ∈ U \ {B}}, {ā⊕ | a ∈ U \ {B}}), β({x5, x

′
5}) = w;

– N ({x′
4, x2,a}) = ({ā◦}, {[q1, c, q2, b, R] | q1, q2 ∈ Q, c, b ∈ U , where δ(q1, c) �

(q2, b, R) and b �= a}), β({x′
4, x2,a}) = s, for all a ∈ U \ {B};

– N ({x′
5, x2,a}) = ({ā⊕}, {[q1, c, q2, b, L] | q1, q2 ∈ Q, c, b ∈ U , where δ(q1, c) �

(q2, b, L) and b �= a}), β({x′
5, x2,a}) = s, for all a ∈ U \ {B};

– N ({x6, x2,a}) = ({a‡ | a ∈ U \ {B}}, {a� | a ∈ U \ {B}}), β({x6, x2,a}) = w,
for all a ∈ U \ {B};

– N ({x6, x
′
6}) = ({a� | a ∈ U \ {B}}, {ā� | a ∈ U \ {B}}), β({x6, x

′
6}) = w;

– N ({x7, x
′
6}) = ({ā� | a ∈ U \ {B}}, {a• | a ∈ U \ {B}}), β({x7, x

′
6}) = w;

– N ({x7, x2,a}) = ({a•}, {b♣ | b ∈ U \ {B} ∪ b̄� | b ∈ U \ {B, a}}),
β({x7, x2,a}) = s, for all a ∈ U \ {B};

– N ({x8, x2,a}) = ({a♠}, {c̄� | c ∈ U \ {B}}), β({x8, x2,a}) = s, for all a ∈
U \ {B};

1609Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

– N ({x9, x2,a}) = ({a†}, {a•, a♣}), β({x9, x2,a}) = w, for all a ∈ U \ {B};
– N ({x8, x9}) = ({a♣ | a ∈ U \ {B}}, {a• | a ∈ U \ {B}}), β({x9, x2,a}) = w;

– N ({x9, x2}) = ({[q] | q ∈ Q \ Qf}, ∅), β({x9, x2}) = w;

– N ({x9, xO}) = ({[q] | q ∈ Qf}, ∅), β({x9, xO}) = w;

In the sequel we argue that the ANEPFC constructed above accepts/decides
the same language as M does. To this aim, we assume that the input word of
Γ is w ∈ V ∗. The computation of Γ on w is structured in three phases, as we
describe below.

The first phase of the computation is a pre-processing phase. In the beginning
of the computation of Γ on w, every node is empty, except for xI which contains
w. This word will be transformed into wB in an evolutionary step; then it verifies
the conditions imposed by the filters of the edge {xI , x1}, hence it is sent out
by xI and enters x1; no other communication is possible. In this node, wB is
transformed into wB[q0] and the pre-processing phase is finished.

After this first phase, the computation enters the simulation phase. At the
beginning of each iteration of this phase, we assume that in the last evolutionary
step a word of the form w1B[q]w2 was produced either by the node x1 or by the
node x9; note that this condition holds after the pre-processing phase, when the
word wB[q0] was obtained in x1. The node x9 can communicate such a word to
either x2 or xO only. When the word enters the output node xO, provided that
q ∈ F , the computation enters the accepting phase, namely the computation
halts and w is accepted. Otherwise, the word enters node x2. Here one starts to
simulate the transition δ(q1, a) � (q2, b, X) applied to the ID w2qw1 of M . In
x2 the word w1B[q]w2 becomes w1B[q1, a, q2, b, X]w2 and is communicated to
x3, where an occurrence of a symbol c ∈ U is replaced by c′. Now, the current
word can be communicated to x1,a only, provided that a = c. Here a′ is deleted
provided that a′ is the first symbol of w1; otherwise the computation halts.

We now distinguish two cases: a ∈ U \ {B} and a = B. For each of these two
cases we consider two more cases: X = R and X = L. We start analyzing the rest
of the computation for a ∈ U \ {B} and X = R. The current word simply enters
x4 where it receives c◦ in its right-hand end. Further, it enters x′

4 where c◦ is
replaced by c̄◦. In this way, we prevent from having a false infinite computation.
There is only one possibility to continue the computation with this word in Γ ,
namely it enters the node x2,b providing c = b. The new word enters now x9 where
b† (obtained in x2,b) and [q1, a, q2, b, R] are replaced by b and q2, respectively.
Now the simulation of the transition δ(q1, a) � (q2, b, R), a ∈ U \ {B}, on w2qw1

in M is completed in Γ . We now consider the case a = B and X = R. The
situation is just a bit different. First, the word [q1, a, q2, b, X]w2 enters x′

I , where
B is added as the first symbol, then it follows the same itinerary, namely x4, x′

4,

1610 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

x2,b, x9, as in the previous case. Now, the simulation can be resumed with the
node x2.

The situation is a bit more intricate for the other two cases. We start ana-
lyzing the case a ∈ U \ {B} and X = L, mentioning that the last case can be
treated analogously to the case a = B and X = R. The current word is sent
out by x1,a and is received by x5. Here c⊕ is added to its left-hand end, then it
enters x′

5 where c̄⊕ is substituted for c⊕. Now the only way to continue the com-
putation is that x2,b to receive the current word. This is possible only if c = b.
In x2,b, b̄⊕ is substituted by b‡ and the new word enters x6. The continuation is
as follows: in x6 the current word receives c� in its left-hand end which is then
transformed into c̄� in x′

6, and an occurrence of d is replaced by d• in x7. The
new word is sent back to a node of the form x2,t, but this communication is not
successful unless c = d = t. When entering x2,c the current word is of the form
c̄�b‡w′

1[q1, a, q2, b, L]w′
2c

•w′′
2 . We take w1 = aw′

1 and w2 = w′
1cw

′′
2 . Here c̄� and

c• are replaced by c♣ and c♠, respectively. The new word enters x8 where c♠ is
deleted provided that it is the rightmost symbol; otherwise, the computation is
blocked. After leaving the node x8, the current word enters x9 where it becomes
cbw′

1B[q2]w3, where w2 = w3c. Now the simulation can be resumed by sending
the current word to x2.

From the above considerations, one can easily state the following fact: the
word w1B[q]w2 can be transformed in one iteration of the simulation phase into
x1B[q′]x2 iff the ID w2qw1 of the Turing machine M moves in one step to the
ID x2q

′x1. In conclusion, the languages accepted/decided by Γ and M are the
same.

The next remarks conclude our proof. An iteration of the simulation phase
requires at most 13 evolutionary steps and 13 communication steps. Therefore,
the number of both evolutionary and communication steps required to simulate
one step of the Turing machine M is at most 26. Therefore, the number of
steps made by Γ in simulating the computation of M on some input word w

is O(f(|w|)), where f(|w|) is the number of steps that M makes on the same
input. Also, the words that may appear in the network during the simulation
of a step of the Turing machine M have the length bounded by the length of
the configurations of the Turing machine, that appear in the simulated step,
plus a constant. Thus, if M uses f(|w|) space on the input word w, Γ will use
O(f(|w|)). �

Since NP is defined as the class of languages decided by nondeterministic
Turing machines in polynomial time PSPACE is defined as the class of lan-
guages decided by nondeterministic Turing machines using polynomial space, we
obtain as a consequence of Theorem 1:

1611Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

Corollary 2.
1. NP ⊆ PTimeANEPFC .
2. PSPACE ⊆ PLengthANEPFC .

The reversal of Theorem 1 holds as well.

Theorem 3. For any ANEPFC Γ accepting the language L, there exists a Tur-
ing machine M accepting L. Moreover, M can be constructed such that:

1. M accepts in O((T imeΓ (n))2) computational time an input word of length
n from L, and

2. M accepts in O(LengthΓ (n)) space for an input word of length n from L.

Proof. We construct a nondeterministic Turing machine M as follows:
(1) M has a finite set of states associated with the evolutionary rules of each

node of Γ . M has also a finite set of states associated with each edge in the
underlying graph which is divided into two disjoint subsets each associated with
one of the two ways in which that edge can be traversed (the state encodes the
sending node and the destination node); each of these subsets is divided, in its
turn, into two other disjoint sets, each associated with the two filters on that
edge. In each state we encode also the way rules or, respectively, filters are to be
applied.

(2) The input word of Γ is initially on the tape of M . The Turing machine
simulates nondeterministically its itinerary through the underlying network of
Γ . Let us suppose that the contents of the tape of M is α; M works according
to the following strategy:

(i) When M enters a state associated to a rule a → b (where a, b ∈ V ∪{λ}, a �=
b) from the node x, it applies this rule to an occurrence of a in α, if any,
chosen according to the way this rule should be applied: the leftmost symbol
of α, the rightmost symbol of α, or a symbol chosen nondeterministically
from α. The word obtained after applying this rule becomes the current
word, and the state is changed to a state corresponding to a filter placed
on an edge {x, z} for some node z (x is the sending node, while z is the
destination node). Otherwise, if α does not contain any occurrence of a that
verifies the way the rule should be applied, M blocks the computation.

(ii) When M enters a state from the subset of states associated to a filter,
it checks whether α can pass that filter. If α passes the filter, M enters a
state associated with a rule from the destination node nondeterministically
chosen. Otherwise, if α does not pass it, M blocks the computation.

(iii) As soon as M has checked the filter conditions from a node to the output
node of Γ , it accepts its input word.

1612 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

It is rather plain that M accepts L. The following complexity related ob-
servations can be made. If Γ needs at most f(n) steps to accept an word of
length n, then the Turing machine M needs at most O(f2(n)) steps to accept
the same word. This is due to the fact that in the simulation of each of the f(n)
steps of the computation of Γ , M needs to search for the occurrences of some
symbols in the word on its tape and, in the case when an evolutionary step is
simulated, to replace these symbol with other ones; the number of steps needed
to complete these operations is O(f(n)), for each simulated step. Also, O(f(n))
operations are necessary to simulate a communication step. On the other hand,
if Γ produces words of length at most f(n) during a computation on a word of
length n, then the Turing machine M will have words of length at most f(n) on
its tape. �

Considering that NP equals the class of languages accepted by nondeter-
ministic Turing machines in polynomial time and PSPACE equals the class of
languages accepted by nondeterministic Turing machines using polynomial space,
we can state as a direct consequence of this theorem the following result:

Corollary 4.
1. PTimeANEPFC ⊆ NP.
2. PLengthANEPFC ⊆ PSPACE.

Consequently, we have proved that:

Theorem 5.
1. NP = PTimeANEPFC .
2. PSPACE = PLengthANEPFC .

5 Conclusion

We proposed here new characterizations of NP and PSPACE using a complete
computation model inspired from the evolution of communities of cells, in bi-
ology. In our view, further investigations in this area should aim descriptional
complexity measures regarding ANEPFC.

References

[Errico and Jesshope 1994] Errico, L., Jesshope, C.: “Towards a new architecture for
symbolic processing”; Artificial Intelligence and Information-Control Systems of
Robots 94, World Scientific, Singapore (1994) 31-40.

[Fahlman et.al. 1983] Fahlman, S., Hinton, G., Seijnowski, T.: “Massively parallel ar-
chitectures for AI: NETL, THISTLE and Boltzmann Machines”; Proc. AAAI Na-
tional Conf. on AI, William Kaufman, Los Altos (1983) 109-113.

1613Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

[Garey and Johnson 1979] Garey, M., Johnson, D.: “Computers and Intractability. A
Guide to the Theory of NP-completeness”; Freeman, San Francisco, CA (1979).

[Hartmanis 1968] Hartmanis, J.: “Computational complexity of one-tape Turing ma-
chine computations”; Journal of the Association for Computing Machinery 15
(1968), 325-339.

[Hillis 1985] Hillis, W.: “The Connection Machine”; MIT Press, Cambridge (1985).
[Manea and Mitrana 2007] Manea, F., Mitrana, V.: “All NP-problems can be solved

in polynomial time by accepting hybrid networks of evolutionary processors of
constant size”; Information Processing Letters 103 (2007), 112-118.

[Manea et al. 2007] Manea, F., Martin-Vide, C., Mitrana,,V.: “On the size complexity
of universal accepting hybrid networks of evolutionary processors”; Mathematical
Structures in Computer Science 17 (2007), 753-771.

[Margenstern et al. 2005] Margenstern, M., Mitrana, V., Perez-Jimenez, M.: “Accept-
ing hybrid networks of evolutionary systems”; DNA Based Computers 10, LNCS
3384, Springer-Verlag, Berlin (2005) 235-246.

[Mart́ın-Vide and Mitrana 2005] Mart́ın-Vide, C., Mitrana, V.: “Networks of evolu-
tionary processors: results and perspectives”; Molecular Computational Models:
Unconventional Approaches, Idea Group Publishing, Hershey (2005) 78-114.

[Păun et al. 1998] Păun, G., Rozenberg, G., Salomaa, A.: “DNA Computing. New
Computing Paradigms”; Springer-Verlag, Berlin (1998).

[Sankoff et al. 1992] Sankoff, D., et al.: “Gene order comparisons for phylogenetic in-
ference: evolution of the mitochondrial genome”; Proc. Natl. Acad. Sci. USA 89
(1992), 6575-6579.

1614 Dragoi C., Manea F., Mitrana V.: Accepting Networks ...

