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Abstract: Indexing video content is one of the most important problems in video databases. In 
this paper we present linear time and space algorithms for handling video metadata that 
represent objects or events present in various frames of the video sequence. To accomplish this, 
we make a straightforward reduction of this problem to the intersection problem in 
Computational Geometry. Our first result is an improvement over the one of V. S. 
Subrahmanian [Subramanian, 1998] by a logarithmic factor in storage. This is achieved by 
using different basic data structures. Then, we present two other interesting time-efficient 
approaches. Finally a reduction to a special geometric problem is considered according to 
which we can achieve two optimal in time and space solutions in main and external memory 
model of computation respectively. We also present an extended experimental evaluation. 
 
Keywords: video databases, data structures, computational geometry 
Category: E.1, E.5, H.3.1, H.3.3 

1 Introduction 

As large-sized video information becomes available through numerous channels, 
including the Internet, the need for managing it efficiently becomes even more urgent. 
In a first level of abstraction, managing video means searching and retrieving. But in 
order to achieve this, the appropriate mechanisms for analysing, representing and 
indexing video objects need to be available and most of all, efficient. Video 
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management is a large and fascinating research domain, where an interdisciplinary 
endeavours from communities such as information retrieval, artificial intelligence, 
signal processing and knowledge management flourish [Nack, 2005].   

Research in searching in video databases, a highly demanding task is in general 
following three routes: the one of pure content search where queries by content are 
used, metadata searching where annotated content is searched and mixed where 
content is analysed and metadata are produced, form searchable indexes [Dimitrova, 
2002].  

In turn, searching tasks rely on indexing mechanisms to achieve faster responses 
to user queries. Both content and metadata can be indexed. In fact, metadata 
management is gaining importance as more and more automatic, semi-automatic 
annotation and video analysis mechanisms become available [Madhwacharyula, 2006; 
Nack, 2000]. 

Indexes are used for facilitating searches in large data corpora so why indexing 
metadata? The size of video metadata depends on the method used to analyse the 
video sequence. In this work we make the assumption that a video is analysed and the 
objects and activities which appear at certain (or all) frame ranges are extracted. An 
object may be an item, a person or generally something tangible. An activity is an 
action or a relation between certain objects. There is no difference in the way we 
handle objects and activities and so we will refer only to objects. We expect that the 
size of the metadata extracted is quite large. We attack the problem of searching large 
metadata index corpora produced by such a video analysis algorithm. The indexed 
produced could serve as a standalone or complementary index for searching very 
large video sequences in demanding applications. Its practical value lays in the fact 
that it performs well independently of the level of detail of the metadata produced; 
indexing may involve only important or user-marked objects, all objects in a frame or 
all objects in the video sequence. This is a kind of video metadata abstraction in the 
sense that the maximum information about the target video sequence can be stored in 
an index. Furthermore, the metadata produced are rather low-level and will largely 
remain unchanged throughout the video lifecycle. On the other hand, high level 
metadata may change more often in size, type or semantic value [Kosch, 2005]. 

We would like our video database to be able to answer efficiently queries of the 
form: Find and report all objects that appear in a given range of frames. In order to 
accomplish this we must store the range sequences, where each object appears, in a 
data structure, associate each of these frames to its respective object and query this 
structure. The query segment is used to extract all the frame sequences intersecting it. 
Having found these segments it is straightforward to find the objects appearing in this 
query frame segment. Thus, our query is a simple intersection query of segments on 
the line, where the query is also a segment. The intersection problem defined above is 
static because in a video there is a predefined set of objects and respective frame 
segments.  

Previous main memory solution ware based on a well-known data structure used 
extensively in the domain of Computational Geometry, the segment tree [Bentley, 
1977],[Mark de Berg, 1997],[Mehlhorn, 1984],[Preparata, 1985]. This is a very 
simple and elegant data structure but exhibits certain deficiencies in specific 
geometric problems. If we assume that each object is appearing in a sequence of 
frame segments, then we store each of these segments in ( )nO log  nodes of the 
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segment tree, where n is the number of distinct endpoints of the frame segments 
stored in the segment tree. This is a sheer waste of space if we imagine that each 
video may have many objects associated to many frame segments. In addition, the 
solution described in [Subramanian, 1998] may report each of these ranges ( )nO log  
times, which in many cases may be undesirable. To remedy these problems we resort 
to a more suitable data structure, the interval tree [Mark de Berg, 1997],[Mehlhorn, 
1984],[Preparata, 1985]. The interval tree uses linear space because it stores each 
range only once, as we show in the following sections. Furthermore, to optimize the 
query performance we can also resort to more efficient methods including fusion trees 
[Willard, 1992] and duality geometric transformations.  

In previous external memory solutions the problem we study is known as 
timeslice or timestamp queries. These queries retrieve all objects that intersect a 
window at a specific timestamp. Interval queries include several (usually consecutive) 
timestamps. Dealing with the temporal dimension, one of the first spatiotemporal data 
structures was the RT-tree [Xu, 1990], which stores both spatial and temporal 
information in the nodes of an R-tree [Guttmann, 1984] (i.e., in addition to its spatial 
extent, each node contains the time interval during which the corresponding object is 
alive). Historical  R-trees  (HR-trees)  [Nascimento, 1998] applied  the  concept  of  
overlapping  B-trees  [Manolopoulos, 1990]  to  R-trees.  The main idea was to 
construct an R-tree for each timestamp in history. 3DR-trees [Vazirgiannis, 1998] 
were based on 3-dimensional R-trees where the third dimension corresponds to time. 
MV3R-trees [Tao, 2001] include a small auxiliary 3D R-tree  on  the  leaf  nodes  (not  
on  the  actual  objects)  and they  usually  outperform traditional 3D R-trees on 
interval queries. Finally, the SEST-Index [Gutierrez, 2005] combines snapshots and 
events. By using an R-tree structure for storing snapshots and a log data structure for 
storing events, which occur between consecutive snapshots, it outperforms HR-trees. 

In section 2 we are going to give a thorough review of the previous solution while 
in section 3 certain preliminary data structures are going to be described synoptically. 
In section 4 the data structure is presented and the result is given respectively. In 
section 5 a reduction to another geometric problem is considered while in section 6, 
fusion tree methods are applied. In section 7 a reduction to the quadrant-range 
searching is considered according to which we present two optimal solutions in main 
memory model of computation. In section 8 we externalize the previous optimal 
solution. In section 9 we present an experimental evaluation. In section 10 we 
conclude. 

2 Previous work 

2.1 Main Memory Solution 

Assume that initially we are given a table of n objects io  and the associated frame 
segments of a given video v with total number of frames equal to ( )vframenum . We 
want to organize this metadata in order to answer efficiently video content queries.  

Assume that [ ) [ )ww eses ,,,, 11 K  are all the intervals in this table. Let nqq ,,1 K  be 
an enumeration, in ascending order, of all members of{ }wies ii ≤≤1|, , with 
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duplicates eliminated. If n is not an exponent of 2, then do as follows: let r be the 
smallest integer such that nr >2  and ( )vframenumr >2 . Add a number of new 
elements rqqn 21 ,,K+  such that ( ) 12 += vframenumq r  and jqq njn +=+  (for 

0>j  such that rjn 2<+ ). Now we may proceed under the assumption that n is an 
exponent of 2. The next step is to construct the indexing data structure that is called 
the frame segment tree. This is a full binary tree. 

Each node in the frame segment tree represents a frame sequence [ )yx, , starting at 
frame x and including all frames up to, but not including, frame y. All leaves are at 
level r, where obviously ( )nOr log= . The leftmost leaf denotes the interval [ )21,qq , 
the 2nd from the left represents the interval [ )32 ,qq  and so on. If u is a node with 
two children representing the intervals [ ) [ )3221 ,,, pppp , then u represents the 
interval [ )31, pp . Thus, the root of the frame segment tree represents the interval 
[ )nqq ,1  if nq  is an exponent of 2, otherwise it represents the interval [ )+∞,1q . 

Without proof we give below some elementary results on segment trees. 
1. The segment tree uses ( )nnO log  space  
2. Each segment is stored in ( )nO log  nodes. 

The second property of the segment tree is a cause of problems because of two 
reasons: 
1. There is a sheer waste of space. 
2. In the reporting procedure one particular segment may be reported ( )nO log  

times. 
The reporting procedure given by Subrahmanian is given below. By R we represent 

the subtree rooted by the current node. In the first call of the procedure, R is the whole 
tree. The parameters s and e define the endpoints of the query segment. The variable S 
is the output of the procedure. In each node of the frame segment tree we store a 
linked list of the objects. These objects have frame segments associated to the frame 
sequence of the specific node. In this way, if a node’s frame sequence intersects the 
query frame segment then the linked list of this node is appended to variable S. The 
frame sequence of a node v is represented by [ )RBvLBv .,. . The right and left child of 
the node v is represented by RLINKv.  and LLINKv.  respectively. 
 

( );,, esRFindOInV  
{ 

;NILS =  
if ( )NILR =  then ( ){ };;HaltSReturn  
else 
{ 

if [ ) [ )( )esUBRLBR ,.,. ⊆   
then ( )( )RpreorderSappendS ,=  

else 
{ 
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if [ ) [ )( )( )∅≠∩ esUBRLBR ,.,.  then 
{ 

( );., objRSappendS =  
( )( );,,., esLLINKRFindOInVSappendS =  
( )( );,,., esRLINKRFindOInVSappendS =  

} 
} 

} 
( ) ;;endSReturn  

} 
 

The running time of the algorithm is proportional to the total number of nodes 
visited, which may be at most ( )nO . 

2.2 External Memory Solutions 

Figure 1 shows an example of the evolution of a set of multimedia or spatio-temporal 
objects of a video database in different instants of time. For simplicity, an example in 
a two-dimensional space is considered. In Figure 1, the axes x and y represent the 
two- dimensional space while t corresponds to the temporal dimension. In instant of 
time t1, objects O1 is inserted. In instant of time t2, object O1 moves. In instant of 
time t3, object O2 appears. In instant of time t4 objects O1 and O2 disappear while a 
new object O3 appears. A time slice query Q is also shown in Figure 1.  This query is 
expressed in the following way:  “find objects that appear in the rectangle Q at time 
interval [t2,t3]. 
 

O1

O1
O2

O1

O3

t1 t2 t3 t4

Q

Y

X X X X

Y Y Y

Q

 

Figure 1: The evolution of a set of multimedia objects of a video database in different 
instants of time 

Dealing with the temporal dimension the most famous previous access methods 
are the following: 
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RT-trees [Xu, 1990]: RT-tree stores both spatial and temporal information in the 
nodes of an R-tree [Guttmann, 1984]. In addition to its spatial extent, each node 
contains the time interval during which the corresponding object is alive. The 
insertion and split strategies, however, can hardly favour the spatial and temporal 
attributes at the same time. One  of  the  methods  proposed  in  [Xu, 1990]  is  to  
split  nodes according to spatial information only; thus the  temporal field plays a 
complementary role. This makes RT-tree inefficient when handling time-related 
queries, as it is likely that all the objects satisfying the spatial predicate are retrieved 
before being filtered according to the temporal predicate.  
HR-trees [Nascimento, 1998]: Historical  R-trees  (HR-trees)  apply  the  concept  of  
overlapping  B-trees  [Manolopoulos, 1990]  to  R-trees.  The main idea is to 
construct an R-tree for each timestamp in history. However, since consecutive R-trees 
can make use of common  paths  if  objects  do  not  change  their  positions,  new  
branches  are  created only for objects that have moved.  HR-trees  are very  efficient  
for  timestamp  queries,  as  search  degenerates  into  a  static  spatial  window query  
for which R-trees are very efficient. Their disadvantage is extensive duplication of 
objects (even if they do not move) which leads to huge space requirements for most 
typical applications. As a side effect of this fact, their performance on interval queries 
is very poor.  
3DR-trees [Vazirgiannis, 1998]: Another technique is based on 3-dimensional R-
trees where the third dimension corresponds to time. An object which does not change 
its position during a certain period of time is modelled as a cube, bounding both its 
spatial and temporal attributes. A moving object can be modelled by multiple cubes, 
each corresponding to a different version. The strength of 3DR-trees is that the 
temporal attribute is integrated tightly with the spatial attributes, so that interval 
queries can be answered efficiently. Another advantage is its economical space usage 
as redundant duplication is avoided.  The  most  serious  problem  of  this  structure  is  
its  poor  performance on timestamp queries. The query time no longer depends on the 
live entries at the query timestamp, but on the total number of entries in history.  
Since  all  objects  are  indexed  by  a  single  tree,  the  size  and  height  of  the  tree  
is expected to be larger than that of the corresponding HR-tree at the query 
timestamp.  
MV3R-trees [Tao, 2001]: MV3R-trees include a small auxiliary 3DR-tree on the  
leaf  nodes  (not  on  the  actual  objects)  and,  as it was demonstrated,  they  usually  
outperform traditional 3DR-trees on interval queries while their performance does not 
deteriorate significantly when time evolves (as is the case with regular 3D R-trees).  
SEST-trees [Gutierrez, 2005]: SEST-Index, which  combines  snapshots  and  
events,  uses  an  R-tree  structure  for  storing snapshots  and  a  log  data  structure  
for  storing  events  that occur between consecutive snapshots.  Experimental results 
that compare SEST-Index and HR-tree showed that SEST-Index outperforms HR-tree 
for interval queries. In addition, as SEST-Index is an event-oriented structure, event 
queries are efficiently answered.  

Obviously, for time interval queries, the best access method is the MV3R-tree. Of 
course the initial query that we investigate thoroughly at this paper “Find and report 
all objects that appear in a given range of frames” derives from the general interval 
query “find objects that appear in the rectangle q at time slice [ti,ti+k]”, if we resize the  
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rectangle q on it’s maximum size. The latter means that we report all the objects 
appear on the xy-plane between ti and ti+k time-instants.  

3 Preliminary data structures 

This section is devoted to the interval tree. It allows us to store a set of n intervals in 
linear space such that intersection queries can be answered in logarithmic time. 

Let [ ] niyxS ii ≤≤= 1,,  be a set of n closed intervals on the real line. Let 

nqqQ ,,1 K=  be an enumeration, in ascending order, of all members of 
{ }niyx ii ≤≤1|, , with duplicates eliminated. An interval tree T for S is a leaf-
oriented search tree for Q where each node of the tree is augmented by additional 
information.  

We define ( )vxrange , where v is a node of the interval tree, as the interval 
[ ]rightleft qq ,  such that: leftq  is the leftmost leaf of the subtree rooted at v while rightq  
is the rightmost one. 

The node list ( )vNL  of node v is the set of intervals in S containing the split value 
of v but of no ancestor of v: 

( ) [ ] ( ) [ ] ( ){ }vxrangeyxvsplitSyxvNL ⊆∈∈= ,;,  
We store the node list of node v as two sorted sequences: the ordered list of left 

endpoints and the ordered list of right endpoints. Both sequences are stored in 
balanced search trees; furthermore, we provide pointers to the maximal (minimal) 
element of the sequence of right (left) endpoints. 

The main power of interval trees stems from the node lists. The following lemma 
shows that interval trees use linear space, can be constructed efficiently, support 
insertions and deletions of intervals and answers intersection queries efficiently. 

 
Lemma 1: Let S be a set of n intervals. 
a) An interval tree for S uses space ( )nO . 
b) An interval tree for S of depth ( )nO log  can be constructed in time ( )nnO log . 
c) Intervals can be inserted into an interval tree of depth ( )nO log  in time 
( )nO log . The same holds for deletion. 
d) Let S be a set of intervals and let [ ]00 , yxI =  be a query interval. Let 

[ ] [ ] [ ]{ }∅≠∩∈= 00 ,,;, yxyxSyxt  be the set of intervals in S intersecting I. Then, 
given an interval tree of height ( )nO log  for S, one can compute the intersection 
query t in time ( )tnO +log . 

 
Proof. See [Mehlhorn, 1984].  
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4 The new algorithm 

We store each frame segment associated to an object in the interval tree. We must 
note that it is not imperative to extend the tree to a full binary one since this leads to 
waste of space.  

Each frame segment is inserted in the interval tree. It is stored only in one node and 
thus we obtain a logarithmic save in space. This frame segment is associated with an 
object. Namely, the object appears in the frame sequence defined by this frame 
segment. In this way, each segment is related to only one object and is stored only 
once. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
In each node of the interval tree there may be many segments stored to its node list. 

These segments are stored sorted in each of these node lists. Attached to each such 
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Figure 3: The frame interval tree with intervals associated with nodes and each 

interval associated with an object 

Figure 2: Example of the contents of a video 

1418 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...



segment is the object to which the specific segment belongs. The attachment is 
expressed by a pointer to a list of objects corresponding to the specific node. In this 
way, when we find a segment, which intersects the query segment I, we immediately 
report the respective object.  

The search for all the segments intersecting the query segment is described below. 
We start from the root and search for the two endpoints of the query segment. The 
two paths from the root to the two leaves of the interval tree comprise the set P. These 
two paths coincide until they reach a node, called split node. The leftmost and 
rightmost leaves of its subtree are the endpoints of the query segment I. Let LeftP  and 

rightP  be the two paths from split node to the left and right endpoints of I respectively. 

Similarly, the set C is defined as the set of nodes v, where ( ) Ivxrange ⊆ .  
Intuitively, the nodes that belong to the set C are defined by the right (left) subtrees 

of the nodes in set LeftP  ( RightP ). Thus, when we are reporting the answer 
corresponding to a query segment we may just append the list of objects associated to 
a node, belonging to set C, to the answer. In nodes of set P we are obliged to search 
inside the node lists. These node lists, as mentioned in the preceding section, are 
organised as binary trees whose leaves are connected in a linked list and whose root 
has pointers to the smallest and to the largest element (endpoint). In each node list of 
a node in a set P some segments may intersect I and some others may not. Because of 
the fact that the segments in the node lists are stored sorted we are able to report the 
answer in these in constant time per object. 

The largest or smallest element is accessed in constant time through the respective 
root pointers. We then traverse the linked list of leaves until we reach a segment that 
does not intersect the query segment. If the node under consideration lies on the path 
to the left endpoint we begin the traversal of the linked list from the largest element 
(rightmost leaf). If the node lies on the right we begin from the smallest element 
(leftmost leaf). If the node lies on both of them, that is, on the path from root to the 
split node of the two paths, we compare the endpoints of the query segment to the 
largest and smallest elements and we proceed analogously. 
For better comprehension of the above method we give a simple example. Assume 
that we have a video and we are interested for only 5 objects. Each object appears in 
the video in a sequence of series of frames defining frame segments. Figure 2 depicts 
objects and their location in a video consisting of 5000 frames. Figure 3 depicts the 
frame interval tree. 

5 Reduction to Dominance  

In the preceding sections we associated the problem of querying video content with 
that of finding segments that intersect a specific segment.  
In this section we outline a different approach to this problem. Specifically, we show 
how to reduce the problem of querying video content to the dominance problem.  
The dominance problem is a pure geometrical problem. 
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The d-dimensional dominance problem is defined as follows: given a set Q of d-
dimensional points and a query point p, report all points Qp ∈′  such that p′  is 
dominated by p. A point ( )dpppp ′′′=′ ,,, 21 K  is dominated by ( )dpppp ,,, 21 K=  
if and only if ipp ii ∀≤′ , . Here we consider the 2-dimensional dominance problem. 

Let [ ]21, fff =  be a given frame segment. A query segment [ ]21,qqq =  
intersects f if and only if one of the following conditions holds: 
(i)  f contains q, that is 2211 fqqf ≤≤≤  (see figure 4(a)). 
(ii) f partially intersects q, that is 211 fqf ≤≤  (f intersects q on the left) or 

221 fqf ≤≤  (f intersects q on the right) (see figure 4(b) for the first case). 
(iii) f is contained in q that is 2211 qffq ≤≤≤  (see figure 4(c)). 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
From the above cases it is trivial to see that it suffices to store the frame segments 

in a two-dimensional dominance-searching problem. This structure stores each frame 
segment [ ]21, fff =  as a two-dimensional point ( )21, ff . Then, given a query 
segment [ ]21,qqq =  we find all segments intersecting q by querying the structure 
with ( )21, qq −  (case (i)), ( )11, qq −  (case (ii) left partial intersection), ( )22 , qq −   
(case (ii) right partial intersection) and ( )21,qq−  (case (iii)). 

 
The two-dimensional dominance-searching problem has an optimal RAM dynamic 

solution using linear space, exhibiting query time ( )knnO +logloglog  and update 
time ( )nnO logloglog , where k is the size of the output (number of reported 
objects in our case) ([Willard, 1992]).  

The static counterpart of this problem has an optimal RAM solution of linear space, 
and ( )( )knnO +21logloglog  query time (simple combination of persistence and 
the search structure of [Beam, 1999]). 
Finally, in secondary memory an optimal dynamic structure has been proposed 
recently ([Arge, 1999]) that occupies ( )BnO  disk pages (B is the size of a page), 

 
 

f1 f2q1 q2

q

f

(a)

f1 f2q1 q2

q

f

(b)

f1 f2q1 q2

q

f
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Figure 4: Query segment q compared to a frame segment f, (a) q is contained in f,  

(b) q’s left endpoint is contained in f and (c) q contains f. 
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supports insertions and deletions in ( )nO Blog  I/Os and answers queries in 
( )BknO B +log  I/O’s. 

6 The fusion tree solution 

First, we will briefly review the data structures used in this solution. 

6.1 The fusion tree 

Let S be an ordered set of n w-bit keys. The fusion tree [Willard, 1992] is a dynamic 
data structure that supports ( )nnO logloglog  amortized time queries in linear 
space. This structure is a two-level data structure where the upper level consists of an 
ordinary B-tree while the lower level consists of weighted-balanced trees. The 
amortized cost of searches and updates is ( )bbnO logloglog +  for any 

( )61wOb = . The first term corresponds to the number of B-tree levels and the second 
to the height of the weighted-balanced trees. 

The main advantage of the fusion technique is that we can decide in constant time 
in which subtree to continue the search by compressing the b-keys of every B-tree 
node using w-bit words. 

6.2 The exponential search tree 

The exponential search tree [Anderson, 1996] answers queries in one-dimensional 
space. It is a multi-way tree where the degrees of the internal nodes decrease 
exponentially as we traverse the levels of the tree starting from the root. Auxiliary 
information is stored in each node to support efficient search queries. The exponential 
search tree has the following properties: 
1. Its root has degree ( )51nΘ . 
2. The keys of the root are stored in a local data structure. During a search procedure, 

the local data structure is used to determine in which subtree of a node the search is 
to be continued. 

3. The subtrees are exponential search trees of size ( )54nΘ . 
4. The local data structure of each node of the tree is a combination of van Emde Boas 

trees and perfect hashing. As a result we achieve ( )nwO logloglog  worst-case 
time cost for a search query. 
Anderson, by using an exponential search tree in the place of B-trees in the fusion 

tree structure, avoids the need for weight-balanced trees at the bottom while at the 
same time improves the complexity for large word sizes. This structure is a significant 
improvement on linear space deterministic sorting and searching. On a unit-cost RAM 
with word size w, an ordered set of n w-bit keys (viewed as binary strings or integers) 
can be maintained in { }( )nwnwnnO logloglog,loglogloglog,logmin +  time per 
operation, including insert, delete, member search and neighbour search. The cost for 
searching is worst–case while the cost of updates is amortized. For range queries there 
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is an additional cost of reporting the found keys. As an application, n keys can be 
sorted in linear space at a worst-case time cost of ( )nnO log . The best previous 
method for deterministic sorting and searching in linear space has been the fusion 
tree, which supports search queries in ( )nnO logloglog  amortized time and sorting 
in ( )nnnO logloglog  worst–case time. 

6.3 The fusion interval tree 

Let T be a B-ary tree, that is a tree for which each node has B sons. We set the 
branching factor ( )nOB log= . Each node v in ordinary interval trees such that 

( )21, xxncav =  (nca=nearest common ancestor), stores the 
value ( ) [ ]21, xxvrange = . Thus, in each node v such that ( )21, xxncav =  we store 
the following B slabs: 

( ] ( ] ( ]21212111 ,,,,,, xkslkkslkxsl BB −=== K  
We define the structure of each node list ( )vNL  as follows: ( )vNL ={s∈S; s spans 

a slab of v and s is included in a slab of parent(v)}. 
If ( )vNLs ∈ , then s spans a continuous set of slabs kii slsl +,,K  and s cuts the two 

bound-slabs 11, ++− kii slsl . In the slabs kii slsl +,,K , s is stored in an unordered list but 
in 11, ++− kii slsl  s is stored in an ordered list (see figure 5) of endpoints that is 
organized as an exponential search tree [Anderson, 1996].  Thus, the total required 
space for the node lists is ( )nBO .  

v

x1 x2

xrange(v)=[x1,x2]
node v

K1 K2 Ki-2 Ki-1 Ki+k Ki+k+1 KB-1

sli-1 sli+k+1

s

B slabs
 

Figure 5: Depiction of the xrange of a node, of the slabs and their order inside 
ordered lists. 
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Lemma 2: Let ℜ⊆U  be an ordered finite universe and let S be a set of n intervals 
with left endpoints in U. To simplify our applications we assume that nUS == . 

a) The fusion interval tree T for S requires ( )nBO  space. 
b) The fusion interval tree T for S can be constructed in time ( )nBO . 
c) Intervals (with left endpoint in U) can be inserted into T in time ( )BO . Deletions 

are completely symmetric. 
d) The intersection query t can be solved in ( )tnnO +logloglog  time. 
 
Proof:  
a) A B-tree for U clearly uses linear space ( ) ( )nOUO = . Furthermore, the total 

space required for the node lists is ( )nBO  since every interval in S is stored in the B 
slabs. The space complexity follows. 

b) A B-tree can be built in time ( ) ( )nOUO =  and has depth: 

( ) ( ) ( )nnOBnOUO B loglogloglogloglog == It remains to construct the node 

lists. We show how to insert an interval [ ]21, xxs =  in ( )BO  time. Let v be the 
nearest common ancestor of the endpoints of s. This node can be computed in 
constant time [Schieber, 1988]. It remains to insert the interval s in the B slabs of 
node v. Assuming that s spans a continuous set of slabs kii slsl +,,K  and cuts the two 
bound-slabs 11, ++− kii slsl  we can insert the interval s in the slabs kii slsl +,,K , in an 
unordered list with ( )BO  cost. However, we have to insert interval s in the ordered 

lists of 11, ++− kii slsl . This incurs ( )nO log  cost since the ordered list of each slab is 
organized as an exponential search tree [Anderson, 1996]. Thus, the sequence of 
insertions of n intervals require ( )nBO  time and as a result the total construction time 
is ( ) ( )nBOnBnO =+ . 

c) It is obvious from the construction above, that we can insert an interval 
[ ]21, xxs =  in ( )BO  time. The same holds for deletions. 

d) We define sets P and C in the same way as in section 4. P consists of the nodes 
on the search paths to x and y and C is the set of nodes between these paths. Let t the 
output of intersection query I. Since [ ] ( )vNLyx ∈,  and [ ] ∅≠∩ Iyx,  implies 

( ) ∅≠∩ Ivxrange , t is defined as follows: 

( ) ( ) ( ) [ ]{ }∑ ∑
∈ ∈

∅≠∩∈∪=
Cv Pv

IyxvNLyxvNLt ,;, . In addition, the fact that Cv∈  

clearly implies that ( ) tvNL ⊆ . Now consider nodes v such that Pv∈ . Recall that 
we organized ( )vNL  as two ordered lists, the list of left endpoints and the list of right 
endpoints. Let kxxx ≤≤≤ K21  be the former list and let kyyy ≤≤≤ K21  be the 
latter list. We have to discuss three cases, two of which are symmetric. Suppose first 
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that ( ) Ivxrange ⊆ . Then ( ) AvNL ⊆ , since we know that ( ) [ ]yxvxrange ,⊆  for 
all [ ] ( )vNLyx ∈, . 

Suppose that ( ) [ ] Ixxvxrange ⊄⊆ 21,  and 01 xx ≤  (the other case is symmetric). 
Then, interval [ ] ( )vNLyx ii ∈,  intersects I if jyx ≤0 . We can thus find all such 

intervals by inspecting K,, 1−kk yy  in turn as long as they are at least as large as 0x . 

Hence we can determine ( ) tvNL ∩  in time proportional to ( ) tvNL ∩ . 

Thus, the time required for the computation of t is ( )tCPO ++ . For the case of a 
"small" universe U, which means that U contains only endpoints of intervals in S,  it 
holds that ( )tOC =  since all leaves in C are endpoints of intervals in t. Since 

hP 2≤ , where ( )nnOh logloglog= , the time bound follows.  
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Figure 6: The 2-D transformation of the four possible cases 
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7 Reduction to Quadrant Range-Searching Problem 

In this section we will show how we can transform the video content query to a static 
quadrant range-searching problem giving two optimal linear space solutions in main 
memory with O(k) query time, where k  the size of the answer. 

Considering the intersection between a video object (arbitrary interval [x,y]) and 
a frame interval query (reference interval [a,b]) there are four possible cases as they 
are depicted on the left side of the figure 6 above.  

We can view each of the intersections above (between [x,y] and [a,b] intervals) as 
the relation of a point (x,y)  instead of  an interval [x,y] with respect to a window 
query  [a,b] × [a,b] instead of  reference interval [a,b]. According to this 2-D 
transformation it’s obvious that the interval intersection query can be transformed to 
the quadrant range query  (-∝, b] × [a, +∝) as the result of the geometric union of the 
2-d transformations (right side of figure 6) of the four possible cases depicted in the 
figure above.  We answer the quadrant range query (or 2-sided range query) in 
optimal O(k) time using either the Cartesian Tree ([Gabow, 1984]) or the Modified 
Priority Search Tree (MPST) ( [Kitsios, 2000] ). As we will prove theoretically the 
solution presented in [Kitsios, 2000] is better.  The theoretical comparison between 
the Cartesian Tree and the Modified Priority Search Tree assumes that the dominant 
operation is a table lookup. This is a valid assumption since both solutions given in 
[Gabow, 1984] and [Kitsios, 2000] make heavy use of table lookups. 

7.1 1st Solution (Cartesian Tree) 

Lemma 3: The Cartesian tree is an optimal quadrant (and three-sided) searching data 
structure and requires T(k)=2+2ktlca table lookups, where k the size of the answer and 
tlca is the number of table lookups in order to perform a lowest common ancestor 
computation. 
Proof: Let S={(x1,y1), (x2,y2), …,(xN,yN)} be the set of stored points , with 
x1≤x2≤…≤xN. A Cartesian tree T for S is a binary tree of N nodes with each node being 
labeled by a point in S.  The tree T is defined recursively as follows: the root is 
labeled with (xm,ym), where ym=min{yi|i=1,…,N}. Its left subtree is a Cartesian Tree 
for {(xi,yi)|i=1,…,m-1} and its right subtree is a Cartesian Tree for 
{(xi,yi)|i=m+1,…,N}. Let p(v) be the point labeling the node v of T, px(v) be its x-
coordinate and py(v) be its y-coordinate. The structure makes also use of an array A of 
size M (M denotes the universe size), which stores pointers to the nodes of T. 
Specifically A[i] contains a pointer to the node of T which is labeled with the point in 
S having  maximum x-coordinate smaller or equal to i. The crucial property of the 
above construction is that given two nodes u,w of T with px(u)=xi, px(w)=xj, i<j, then 
py(nca(u,w))=min{yt      |i ≤t≤j}.  

So given a query range of the form (-∝, b] × [a, +∝) we firstly use the array A to 
locate the two nodes u,w of T  with A[-∝]=u (that means the leftmost leaf) and 
A[b]=w. As a consequence we need 2 table lookups. Let  z=lca(u,w) with p(z)=(xi,yi). 
If yi>c then the query algorithm halts, otherwise we report the point (xi,yi) and we 
continue recursively the same way, by probing lca(u,u1) and lca(u2,w) consuming 
other two table lookups, where u1 is the predecessor (in symmetric order) of z in T 
(that is the point that is stored in u1 is p(u1)=(xi-1,yi-1)) and u2 is the successor (in 
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symmetric order) of z in T (that is the point that is stored in u2 is p(u2)=(xi+1,yi+1)). 
Thus, the time complexity of the procedure above (in terms of table lookups) is 
2+2ktlca. In order to compute the lowest common ancestor of two nodes in T, we will 
use the algorithm described by Schieber and Vishkin ([Gusfield, 1994],[Schieber, 
1988]) (this algorithm simplifies the approach described in Harel and Tarjan ([Harel, 
1984])). 

7.2 2nd Solution ([Kitsios, 2000]) 

Let’s remember the most basic components of the Modified Priority Search Tree 
(MPST) (see fig.7) presented in [Kitsios, 2000]. We used an array A of size M, which 
stores pointers to the leaves of a classic priority search tree of McCreight  T.  
Specifically A[i] contains a pointer to the leaf of T with maximum x-coordinate 
smaller or equal to i. With this array we can determine in O(1) time the leaf of any 
search path Pi for i (in our case the search path Pb for b). In each leaf u of the tree 
with x-coordinate i we store the following lists L(u), PL(u): The list L(u) stores the 
points of the nodes of Li  (Left children of nodes belonging on Pi ). The list PL(u) 
stores the points of the nodes of Pi which have x-coordinate smaller or equal to i. Both 
lists also contain pointers to the nodes of T that contain these points. Lists L(u) and 
PL(u), stores its nodes in increasing  y-coordinate of their points. 

 

 

Figure 7: The Modified Priority Search Tree 

To answer a query with a range ( −∞ , b] x ( −∞ , c] we find in O(1) time the leaf 
u of the search path Pb for b. Then we traverse the list PL(u) and report its points until 
we find a point with y-coordinate greater than c. We traverse the list L(u) in the same 
manner and find the nodes of Lb whose points have y-coordinate less than or equal to 
c. For each such node we report its point and then we continue searching further in its 
subtree as long as we find points inside the range. The size of each list is O(IogN) and 
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the space of T is O(NlogN). The space of the whole structure is O(M+NlogN) because 
of the size of the array A but making the lists partially persistent (for details see 
[Kitsios, 2000]) the space becomes linear O(M+N). 
 
Lemma 4: The MPST structure answers quadrant range queries of the form (-∝, b] × 
[a, +∝) consuming T(k)=3+k table lookups. 
 
Proof: Our query algorithm firstly locates the leaf u that corresponds to the value b (1 
table lookup) and then traverses the persistent lists PL(u) (1 table lookup) and L(u) (1 
table lookup) in order to extract a number of k1  nodes whose points have y-coordinate 
less than or equal to c and for each such node continues searching further in its 
subtree as long as it finds k2  points inside the range,where k1+k2=k the size of the 
answer. The theorem follows. 

8 The External Modified Priority Search Tree (EMPST) 

In this subsection we explain how we can convert the 2nd main memory solution 
presented in previous section (fig.7) in external memory model of computation 
(fig.8).  

 Each point of S is stored in a leaf of T and the points are in sorted x-order from 
left to right. The x-ordered points are organized in a block fashion. 
 Each internal node v of T has O(B) fan-out, where B is the block size, and stores 
a point p(v) of  S. The point p(v) is the point with the minimum y-coordinate 
amongst the points stored in the leaves of Tv. 
 Each node v is equipped with a secondary list S(v). S(v) contains the points 
stored in the leaves of Tv in increasing y-coordinate and in a block fashion. 
In a similar and straight forward way of that presented in figure 7, we enhance the 

base virtual tree T with the Array A, the List L(u) and the list PL(u). Due to external 
memory model of computation we have to organize the array A [0,..M-1] and the 
corresponding lists for the leaf_block u, L(u) [0,..,O(logN)] and PL(u) [0,..,O(logN)] 
respectively, with consecutive blocks of size B. Thus, the length of the array A 
becomes M/B and the lengths of the lists become O(logN/B).  Due to the fact that we 
have O(N/B) leaf blocks, the space of the whole structure becomes 
O((N/B)logBN+M/B). The O(N/B logBN)  term in the space bound is due to the size of 
the lists PL(u) and L(u). Note that the height of T is O(logBN). We can reduce the total 
space of these lists to O(N/B) by making them partially persistent. We show how to 
implement the lists PL(u) using a partially persistent list. Let u be a leaf_block in T 
and let w be its predecessor (the leaf_block on the left of block_u). We denote by xu 
the left-most x-coordinate of block u and by xw, the left-most x-coordinate of  block w. 
The two root-to-leaf paths Pxu, Pxw, share the nodes from the root of T to the nearest 
common ancestor of blocks u and w. So we can create PL(u) by updating PL(w) in the 
following way: First we delete from list PL(w) the points that don't lie on Pxu. Then 
we insert the points of Pxu which have x-coordinate smaller or equal to xu. In this way 
we can construct all lists as versions of a persistent list: we begin from the leftmost 
leaf and construct the list PL(u) of each leaf u by updating the one of its predecessor 
(see Fig.9). The total number of insertions and deletions is O(N/B) because each point 
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is inserted and deleted only once. Therefore the space of all the lists is O(N/B). In the 
same way we can construct the lists L(u) for all leaves in O(N/B) space.  
 

Block u

Pb

EMPST

|Α |/B
1 b

|L(u)|/B

|PL (u)|/B

rLb Pb

EMPST

|Α |/B
1 b

|L(u)|/B

|PL (u)|/B

rLb

T
vi

vi+1

vk

S(vi)

S(vi+1)

S(vk)

 

Figure 8: The External Modified Priority Search Tree equipped with the appropriate 
external arrays and lists  

 

 

Figure 9: We implement the lists PL(u) and L(u)  as partially persistent lists by 
performing a sweep from left to right 

The query algorithm finds the k1 points of nodes of Pb that lie inside the query-
range in O(k1 /B) time and the k2 points of nodes v of Lb that lie inside the query-range 
in O(k2 /B) time by simple traversals of the blocks of the y-ordered lists PL(u) and 
L(u) respectively. The search in the corresponding subtrees Tv’s of Lb takes O(k3 /B) 
additional time for reporting k=k1+k2+k3 points in total, by simple traversals of the 
blocks of the secondary lists S(v)’s. Therefore the query algorithm takes O(k/B) time 
and more precisely 3+k/B block transfers according to Lemma 4. 
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9 Experimental Evaluation 

We have conducted an experimental study making the customary assumption that the 
page size is 4096 bytes, the length of each key is 8 bytes, and the length of each 
pointer is 4 bytes. Consequently, each block contains B=341 elements. We considered 
data sets of size N∈ [103,105], where N the number of multimedia objects. We 
generated synthetic occurrences of multimedia objects. In particular, for each object 
the time occurrences (the ends of intervals in time axis) draw a Gaussian distribution. 
In a pre-processing step we transformed each occurrence of a multimedia object (time 
interval) to a 2-dimensional point. Then we associated each point with the respective 
multimedia object. We conducted a variety of video function queries FindOinV (v, Fi 
,Fj), where the parameters Fi and, Fj draw a Gaussian distribution too. The specific 
variety of the parameters above generated queries where the mean value of its 
respective answer K varies between 1000 and 10000 objects. 
 

Performance Comparison for K=1000
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Figure 10: Performance comparison between MV3R-tree and EMPST-tree for 
K=1000 

We compared the implementation of our solution (EMPST) with that of the best 
current solution MV3R-tree on the same data sets. The implementation of EMPST 
was carried out in C++ including particular libraries from LEDA v4.1. The source 
code of MV3R-tree was found in the following URL: 
http://www.rtreeportal.org/code.html. 

Our main concern was to measure the performance, simulated block transfers 
(I/Os), of video function queries. Our solution outperforms the best current solution, 
since EMPST requires a constant number of 3 I/Os for locating the appropriate array 
and list positions instead of a logarithmic number of block transfers required for 
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locating the appropriate node paths of MV3R-tree. Both solutions require additionally 
(K/B) I/Os for the total answer selection process. 
 

Performance Comparison for K=5000
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Figure 11: Performance comparison between MV3R-tree and EMPST-tree for 
K=5000 

Performance Comparison for K=7000
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Figure 12: Performance comparison between MV3R-tree and EMPST-tree for 
K=7000 
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Figures 10, 11 and 12 depict that EMPST access method requires a constant number 
of block transfers (6, 17 and 23 I/O’s respectively) while the performance of MV3R-
tree is increased logarithmically. Figure 13 depicts the number of required Block 
Transfers as a function of answer size (K). In particular, we conducted a big variety of 
video function queries where the parameter K varies between 1000 and 10000. As a 
conclusion, concerning time interval queries our method outperforms the best 
previous access method.  
 

Block Transfers as a function of K
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Figure 13: Block Transfers as a function of answer size K 

9 Conclusion 

We have discussed in this paper a way to store video metadata in order to perform 
efficiently time interval queries. Metadata specifies either objects or activities in the 
video. The solutions we suggest refer to both main and secondary memory model of 
computation and perform efficiently special video functions involving time interval 
queries. About external memory solution, an experimental evaluation is also included 
that shows the performance, scalability and efficiency of our method. 
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