
Efficient Access Methods for Temporal Interval
Queries of Video Metadata1

Spyros Sioutas

(Department of Informatics, Ionian University, Corfu, Greece
sioutas@ionio.gr)

Kostas Tsichlas

(Department of Informatics, Aristotle University of Thessaloniki, Greece
tsichlas@csd.auth.gr)

Bill Vassiliadis

(Hellenic Open University, Computer Science, Digital Systems & Media Computing Lab
Patras, Greece

bb@eap.gr)

Dimitrios Tsolis
(Computer Engineering and Informatics Department, University of Patras, Greece

dkt@hpclab.ceid.upatras.gr)

Abstract: Indexing video content is one of the most important problems in video databases. In
this paper we present linear time and space algorithms for handling video metadata that
represent objects or events present in various frames of the video sequence. To accomplish this,
we make a straightforward reduction of this problem to the intersection problem in
Computational Geometry. Our first result is an improvement over the one of V. S.
Subrahmanian [Subramanian, 1998] by a logarithmic factor in storage. This is achieved by
using different basic data structures. Then, we present two other interesting time-efficient
approaches. Finally a reduction to a special geometric problem is considered according to
which we can achieve two optimal in time and space solutions in main and external memory
model of computation respectively. We also present an extended experimental evaluation.

Keywords: video databases, data structures, computational geometry
Category: E.1, E.5, H.3.1, H.3.3

1 Introduction

As large-sized video information becomes available through numerous channels,
including the Internet, the need for managing it efficiently becomes even more urgent.
In a first level of abstraction, managing video means searching and retrieving. But in
order to achieve this, the appropriate mechanisms for analysing, representing and
indexing video objects need to be available and most of all, efficient. Video

1 Preliminary parts of this work were presented in MDDE 2001 and VLDB/MDDE 2003 workshops

Journal of Universal Computer Science, vol. 13, no. 10 (2007), 1411-1433
submitted: 12/10/06, accepted: 19/10/07, appeared: 28/10/07 © J.UCS

management is a large and fascinating research domain, where an interdisciplinary
endeavours from communities such as information retrieval, artificial intelligence,
signal processing and knowledge management flourish [Nack, 2005].

Research in searching in video databases, a highly demanding task is in general
following three routes: the one of pure content search where queries by content are
used, metadata searching where annotated content is searched and mixed where
content is analysed and metadata are produced, form searchable indexes [Dimitrova,
2002].

In turn, searching tasks rely on indexing mechanisms to achieve faster responses
to user queries. Both content and metadata can be indexed. In fact, metadata
management is gaining importance as more and more automatic, semi-automatic
annotation and video analysis mechanisms become available [Madhwacharyula, 2006;
Nack, 2000].

Indexes are used for facilitating searches in large data corpora so why indexing
metadata? The size of video metadata depends on the method used to analyse the
video sequence. In this work we make the assumption that a video is analysed and the
objects and activities which appear at certain (or all) frame ranges are extracted. An
object may be an item, a person or generally something tangible. An activity is an
action or a relation between certain objects. There is no difference in the way we
handle objects and activities and so we will refer only to objects. We expect that the
size of the metadata extracted is quite large. We attack the problem of searching large
metadata index corpora produced by such a video analysis algorithm. The indexed
produced could serve as a standalone or complementary index for searching very
large video sequences in demanding applications. Its practical value lays in the fact
that it performs well independently of the level of detail of the metadata produced;
indexing may involve only important or user-marked objects, all objects in a frame or
all objects in the video sequence. This is a kind of video metadata abstraction in the
sense that the maximum information about the target video sequence can be stored in
an index. Furthermore, the metadata produced are rather low-level and will largely
remain unchanged throughout the video lifecycle. On the other hand, high level
metadata may change more often in size, type or semantic value [Kosch, 2005].

We would like our video database to be able to answer efficiently queries of the
form: Find and report all objects that appear in a given range of frames. In order to
accomplish this we must store the range sequences, where each object appears, in a
data structure, associate each of these frames to its respective object and query this
structure. The query segment is used to extract all the frame sequences intersecting it.
Having found these segments it is straightforward to find the objects appearing in this
query frame segment. Thus, our query is a simple intersection query of segments on
the line, where the query is also a segment. The intersection problem defined above is
static because in a video there is a predefined set of objects and respective frame
segments.

Previous main memory solution ware based on a well-known data structure used
extensively in the domain of Computational Geometry, the segment tree [Bentley,
1977],[Mark de Berg, 1997],[Mehlhorn, 1984],[Preparata, 1985]. This is a very
simple and elegant data structure but exhibits certain deficiencies in specific
geometric problems. If we assume that each object is appearing in a sequence of
frame segments, then we store each of these segments in ()nO log nodes of the

1412 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

segment tree, where n is the number of distinct endpoints of the frame segments
stored in the segment tree. This is a sheer waste of space if we imagine that each
video may have many objects associated to many frame segments. In addition, the
solution described in [Subramanian, 1998] may report each of these ranges ()nO log
times, which in many cases may be undesirable. To remedy these problems we resort
to a more suitable data structure, the interval tree [Mark de Berg, 1997],[Mehlhorn,
1984],[Preparata, 1985]. The interval tree uses linear space because it stores each
range only once, as we show in the following sections. Furthermore, to optimize the
query performance we can also resort to more efficient methods including fusion trees
[Willard, 1992] and duality geometric transformations.

In previous external memory solutions the problem we study is known as
timeslice or timestamp queries. These queries retrieve all objects that intersect a
window at a specific timestamp. Interval queries include several (usually consecutive)
timestamps. Dealing with the temporal dimension, one of the first spatiotemporal data
structures was the RT-tree [Xu, 1990], which stores both spatial and temporal
information in the nodes of an R-tree [Guttmann, 1984] (i.e., in addition to its spatial
extent, each node contains the time interval during which the corresponding object is
alive). Historical R-trees (HR-trees) [Nascimento, 1998] applied the concept of
overlapping B-trees [Manolopoulos, 1990] to R-trees. The main idea was to
construct an R-tree for each timestamp in history. 3DR-trees [Vazirgiannis, 1998]
were based on 3-dimensional R-trees where the third dimension corresponds to time.
MV3R-trees [Tao, 2001] include a small auxiliary 3D R-tree on the leaf nodes (not
on the actual objects) and they usually outperform traditional 3D R-trees on
interval queries. Finally, the SEST-Index [Gutierrez, 2005] combines snapshots and
events. By using an R-tree structure for storing snapshots and a log data structure for
storing events, which occur between consecutive snapshots, it outperforms HR-trees.

In section 2 we are going to give a thorough review of the previous solution while
in section 3 certain preliminary data structures are going to be described synoptically.
In section 4 the data structure is presented and the result is given respectively. In
section 5 a reduction to another geometric problem is considered while in section 6,
fusion tree methods are applied. In section 7 a reduction to the quadrant-range
searching is considered according to which we present two optimal solutions in main
memory model of computation. In section 8 we externalize the previous optimal
solution. In section 9 we present an experimental evaluation. In section 10 we
conclude.

2 Previous work

2.1 Main Memory Solution

Assume that initially we are given a table of n objects io and the associated frame
segments of a given video v with total number of frames equal to ()vframenum . We
want to organize this metadata in order to answer efficiently video content queries.

Assume that [) [)ww eses ,,,, 11 K are all the intervals in this table. Let nqq ,,1 K be
an enumeration, in ascending order, of all members of{ }wies ii ≤≤1|, , with

1413Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

duplicates eliminated. If n is not an exponent of 2, then do as follows: let r be the
smallest integer such that nr >2 and ()vframenumr >2 . Add a number of new
elements rqqn 21 ,,K+ such that () 12 += vframenumq r and jqq njn +=+ (for

0>j such that rjn 2<+). Now we may proceed under the assumption that n is an
exponent of 2. The next step is to construct the indexing data structure that is called
the frame segment tree. This is a full binary tree.

Each node in the frame segment tree represents a frame sequence [)yx, , starting at
frame x and including all frames up to, but not including, frame y. All leaves are at
level r, where obviously ()nOr log= . The leftmost leaf denotes the interval [)21,qq ,
the 2nd from the left represents the interval [)32 ,qq and so on. If u is a node with
two children representing the intervals [) [)3221 ,,, pppp , then u represents the
interval [)31, pp . Thus, the root of the frame segment tree represents the interval
[)nqq ,1 if nq is an exponent of 2, otherwise it represents the interval [)+∞,1q .

Without proof we give below some elementary results on segment trees.
1. The segment tree uses ()nnO log space
2. Each segment is stored in ()nO log nodes.

The second property of the segment tree is a cause of problems because of two
reasons:
1. There is a sheer waste of space.
2. In the reporting procedure one particular segment may be reported ()nO log

times.
The reporting procedure given by Subrahmanian is given below. By R we represent

the subtree rooted by the current node. In the first call of the procedure, R is the whole
tree. The parameters s and e define the endpoints of the query segment. The variable S
is the output of the procedure. In each node of the frame segment tree we store a
linked list of the objects. These objects have frame segments associated to the frame
sequence of the specific node. In this way, if a node’s frame sequence intersects the
query frame segment then the linked list of this node is appended to variable S. The
frame sequence of a node v is represented by [)RBvLBv .,. . The right and left child of
the node v is represented by RLINKv. and LLINKv. respectively.

();,, esRFindOInV
{

;NILS =
if ()NILR = then (){ };;HaltSReturn
else
{

if [) [)()esUBRLBR ,.,. ⊆
then ()()RpreorderSappendS ,=

else
{

1414 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

if [) [)()()∅≠∩ esUBRLBR ,.,. then
{

();., objRSappendS =
()();,,., esLLINKRFindOInVSappendS =
()();,,., esRLINKRFindOInVSappendS =

}
}

}
() ;;endSReturn

}

The running time of the algorithm is proportional to the total number of nodes
visited, which may be at most ()nO .

2.2 External Memory Solutions

Figure 1 shows an example of the evolution of a set of multimedia or spatio-temporal
objects of a video database in different instants of time. For simplicity, an example in
a two-dimensional space is considered. In Figure 1, the axes x and y represent the
two- dimensional space while t corresponds to the temporal dimension. In instant of
time t1, objects O1 is inserted. In instant of time t2, object O1 moves. In instant of
time t3, object O2 appears. In instant of time t4 objects O1 and O2 disappear while a
new object O3 appears. A time slice query Q is also shown in Figure 1. This query is
expressed in the following way: “find objects that appear in the rectangle Q at time
interval [t2,t3].

O1

O1
O2

O1

O3

t1 t2 t3 t4

Q

Y

X X X X

Y Y Y

Q

Figure 1: The evolution of a set of multimedia objects of a video database in different
instants of time

Dealing with the temporal dimension the most famous previous access methods
are the following:

1415Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

RT-trees [Xu, 1990]: RT-tree stores both spatial and temporal information in the
nodes of an R-tree [Guttmann, 1984]. In addition to its spatial extent, each node
contains the time interval during which the corresponding object is alive. The
insertion and split strategies, however, can hardly favour the spatial and temporal
attributes at the same time. One of the methods proposed in [Xu, 1990] is to
split nodes according to spatial information only; thus the temporal field plays a
complementary role. This makes RT-tree inefficient when handling time-related
queries, as it is likely that all the objects satisfying the spatial predicate are retrieved
before being filtered according to the temporal predicate.
HR-trees [Nascimento, 1998]: Historical R-trees (HR-trees) apply the concept of
overlapping B-trees [Manolopoulos, 1990] to R-trees. The main idea is to
construct an R-tree for each timestamp in history. However, since consecutive R-trees
can make use of common paths if objects do not change their positions, new
branches are created only for objects that have moved. HR-trees are very efficient
for timestamp queries, as search degenerates into a static spatial window query
for which R-trees are very efficient. Their disadvantage is extensive duplication of
objects (even if they do not move) which leads to huge space requirements for most
typical applications. As a side effect of this fact, their performance on interval queries
is very poor.
3DR-trees [Vazirgiannis, 1998]: Another technique is based on 3-dimensional R-
trees where the third dimension corresponds to time. An object which does not change
its position during a certain period of time is modelled as a cube, bounding both its
spatial and temporal attributes. A moving object can be modelled by multiple cubes,
each corresponding to a different version. The strength of 3DR-trees is that the
temporal attribute is integrated tightly with the spatial attributes, so that interval
queries can be answered efficiently. Another advantage is its economical space usage
as redundant duplication is avoided. The most serious problem of this structure is
its poor performance on timestamp queries. The query time no longer depends on the
live entries at the query timestamp, but on the total number of entries in history.
Since all objects are indexed by a single tree, the size and height of the tree
is expected to be larger than that of the corresponding HR-tree at the query
timestamp.
MV3R-trees [Tao, 2001]: MV3R-trees include a small auxiliary 3DR-tree on the
leaf nodes (not on the actual objects) and, as it was demonstrated, they usually
outperform traditional 3DR-trees on interval queries while their performance does not
deteriorate significantly when time evolves (as is the case with regular 3D R-trees).
SEST-trees [Gutierrez, 2005]: SEST-Index, which combines snapshots and
events, uses an R-tree structure for storing snapshots and a log data structure
for storing events that occur between consecutive snapshots. Experimental results
that compare SEST-Index and HR-tree showed that SEST-Index outperforms HR-tree
for interval queries. In addition, as SEST-Index is an event-oriented structure, event
queries are efficiently answered.

Obviously, for time interval queries, the best access method is the MV3R-tree. Of
course the initial query that we investigate thoroughly at this paper “Find and report
all objects that appear in a given range of frames” derives from the general interval
query “find objects that appear in the rectangle q at time slice [ti,ti+k]”, if we resize the

1416 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

rectangle q on it’s maximum size. The latter means that we report all the objects
appear on the xy-plane between ti and ti+k time-instants.

3 Preliminary data structures

This section is devoted to the interval tree. It allows us to store a set of n intervals in
linear space such that intersection queries can be answered in logarithmic time.

Let [] niyxS ii ≤≤= 1,, be a set of n closed intervals on the real line. Let

nqqQ ,,1 K= be an enumeration, in ascending order, of all members of
{ }niyx ii ≤≤1|, , with duplicates eliminated. An interval tree T for S is a leaf-
oriented search tree for Q where each node of the tree is augmented by additional
information.

We define ()vxrange , where v is a node of the interval tree, as the interval
[]rightleft qq , such that: leftq is the leftmost leaf of the subtree rooted at v while rightq
is the rightmost one.

The node list ()vNL of node v is the set of intervals in S containing the split value
of v but of no ancestor of v:

() [] () [] (){ }vxrangeyxvsplitSyxvNL ⊆∈∈= ,;,
We store the node list of node v as two sorted sequences: the ordered list of left

endpoints and the ordered list of right endpoints. Both sequences are stored in
balanced search trees; furthermore, we provide pointers to the maximal (minimal)
element of the sequence of right (left) endpoints.

The main power of interval trees stems from the node lists. The following lemma
shows that interval trees use linear space, can be constructed efficiently, support
insertions and deletions of intervals and answers intersection queries efficiently.

Lemma 1: Let S be a set of n intervals.
a) An interval tree for S uses space ()nO .
b) An interval tree for S of depth ()nO log can be constructed in time ()nnO log .
c) Intervals can be inserted into an interval tree of depth ()nO log in time
()nO log . The same holds for deletion.
d) Let S be a set of intervals and let []00 , yxI = be a query interval. Let

[] [] []{ }∅≠∩∈= 00 ,,;, yxyxSyxt be the set of intervals in S intersecting I. Then,
given an interval tree of height ()nO log for S, one can compute the intersection
query t in time ()tnO +log .

Proof. See [Mehlhorn, 1984].

1417Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

4 The new algorithm

We store each frame segment associated to an object in the interval tree. We must
note that it is not imperative to extend the tree to a full binary one since this leads to
waste of space.

Each frame segment is inserted in the interval tree. It is stored only in one node and
thus we obtain a logarithmic save in space. This frame segment is associated with an
object. Namely, the object appears in the frame sequence defined by this frame
segment. In this way, each segment is related to only one object and is stored only
once.

In each node of the interval tree there may be many segments stored to its node list.

These segments are stored sorted in each of these node lists. Attached to each such

50004000300020001000

Object 1

Object 2

Object 3

Object 5

Object 4

I1 I2

I3 I4

I10I6 I7 I8 I9

I5

I11 I12

I13 I14 I15 I16

500 750 1000 1250 1500 1750 2250 2500 2750 3250 3500 3750 4500 5000

125 625 1125 1625 2375 3000 3625 4750

375 1375 2625 4125

875 3375

2000 I2,I11,I14

I3 I10

I1,I13 I8 I9

I6 I7 I4 I5 I15 I12,I16

I1 O1
I2 O1
I3 O2
I4 O2
I5 O2
I6 O3

I7 O3
I8 O3
I9 O3
I10 O3
I11 O4
I12 O4
I13 O5
I14 O5
I15 O5
I16 O5

0 250

Figure 3: The frame interval tree with intervals associated with nodes and each

interval associated with an object

Figure 2: Example of the contents of a video

1418 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

segment is the object to which the specific segment belongs. The attachment is
expressed by a pointer to a list of objects corresponding to the specific node. In this
way, when we find a segment, which intersects the query segment I, we immediately
report the respective object.

The search for all the segments intersecting the query segment is described below.
We start from the root and search for the two endpoints of the query segment. The
two paths from the root to the two leaves of the interval tree comprise the set P. These
two paths coincide until they reach a node, called split node. The leftmost and
rightmost leaves of its subtree are the endpoints of the query segment I. Let LeftP and

rightP be the two paths from split node to the left and right endpoints of I respectively.

Similarly, the set C is defined as the set of nodes v, where () Ivxrange ⊆ .
Intuitively, the nodes that belong to the set C are defined by the right (left) subtrees

of the nodes in set LeftP (RightP). Thus, when we are reporting the answer
corresponding to a query segment we may just append the list of objects associated to
a node, belonging to set C, to the answer. In nodes of set P we are obliged to search
inside the node lists. These node lists, as mentioned in the preceding section, are
organised as binary trees whose leaves are connected in a linked list and whose root
has pointers to the smallest and to the largest element (endpoint). In each node list of
a node in a set P some segments may intersect I and some others may not. Because of
the fact that the segments in the node lists are stored sorted we are able to report the
answer in these in constant time per object.

The largest or smallest element is accessed in constant time through the respective
root pointers. We then traverse the linked list of leaves until we reach a segment that
does not intersect the query segment. If the node under consideration lies on the path
to the left endpoint we begin the traversal of the linked list from the largest element
(rightmost leaf). If the node lies on the right we begin from the smallest element
(leftmost leaf). If the node lies on both of them, that is, on the path from root to the
split node of the two paths, we compare the endpoints of the query segment to the
largest and smallest elements and we proceed analogously.
For better comprehension of the above method we give a simple example. Assume
that we have a video and we are interested for only 5 objects. Each object appears in
the video in a sequence of series of frames defining frame segments. Figure 2 depicts
objects and their location in a video consisting of 5000 frames. Figure 3 depicts the
frame interval tree.

5 Reduction to Dominance

In the preceding sections we associated the problem of querying video content with
that of finding segments that intersect a specific segment.
In this section we outline a different approach to this problem. Specifically, we show
how to reduce the problem of querying video content to the dominance problem.
The dominance problem is a pure geometrical problem.

1419Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

The d-dimensional dominance problem is defined as follows: given a set Q of d-
dimensional points and a query point p, report all points Qp ∈′ such that p′ is
dominated by p. A point ()dpppp ′′′=′ ,,, 21 K is dominated by ()dpppp ,,, 21 K=
if and only if ipp ii ∀≤′ , . Here we consider the 2-dimensional dominance problem.

Let []21, fff = be a given frame segment. A query segment []21,qqq =
intersects f if and only if one of the following conditions holds:
(i) f contains q, that is 2211 fqqf ≤≤≤ (see figure 4(a)).
(ii) f partially intersects q, that is 211 fqf ≤≤ (f intersects q on the left) or

221 fqf ≤≤ (f intersects q on the right) (see figure 4(b) for the first case).
(iii) f is contained in q that is 2211 qffq ≤≤≤ (see figure 4(c)).

From the above cases it is trivial to see that it suffices to store the frame segments

in a two-dimensional dominance-searching problem. This structure stores each frame
segment []21, fff = as a two-dimensional point ()21, ff . Then, given a query
segment []21,qqq = we find all segments intersecting q by querying the structure
with ()21, qq − (case (i)), ()11, qq − (case (ii) left partial intersection), ()22 , qq −
(case (ii) right partial intersection) and ()21,qq− (case (iii)).

The two-dimensional dominance-searching problem has an optimal RAM dynamic

solution using linear space, exhibiting query time ()knnO +logloglog and update
time ()nnO logloglog , where k is the size of the output (number of reported
objects in our case) ([Willard, 1992]).

The static counterpart of this problem has an optimal RAM solution of linear space,
and ()()knnO +21logloglog query time (simple combination of persistence and
the search structure of [Beam, 1999]).
Finally, in secondary memory an optimal dynamic structure has been proposed
recently ([Arge, 1999]) that occupies ()BnO disk pages (B is the size of a page),

f1 f2q1 q2

q

f

(a)

f1 f2q1 q2

q

f

(b)

f1 f2q1 q2

q

f

(c)

Figure 4: Query segment q compared to a frame segment f, (a) q is contained in f,

(b) q’s left endpoint is contained in f and (c) q contains f.

1420 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

supports insertions and deletions in ()nO Blog I/Os and answers queries in
()BknO B +log I/O’s.

6 The fusion tree solution

First, we will briefly review the data structures used in this solution.

6.1 The fusion tree

Let S be an ordered set of n w-bit keys. The fusion tree [Willard, 1992] is a dynamic
data structure that supports ()nnO logloglog amortized time queries in linear
space. This structure is a two-level data structure where the upper level consists of an
ordinary B-tree while the lower level consists of weighted-balanced trees. The
amortized cost of searches and updates is ()bbnO logloglog + for any

()61wOb = . The first term corresponds to the number of B-tree levels and the second
to the height of the weighted-balanced trees.

The main advantage of the fusion technique is that we can decide in constant time
in which subtree to continue the search by compressing the b-keys of every B-tree
node using w-bit words.

6.2 The exponential search tree

The exponential search tree [Anderson, 1996] answers queries in one-dimensional
space. It is a multi-way tree where the degrees of the internal nodes decrease
exponentially as we traverse the levels of the tree starting from the root. Auxiliary
information is stored in each node to support efficient search queries. The exponential
search tree has the following properties:
1. Its root has degree ()51nΘ .
2. The keys of the root are stored in a local data structure. During a search procedure,

the local data structure is used to determine in which subtree of a node the search is
to be continued.

3. The subtrees are exponential search trees of size ()54nΘ .
4. The local data structure of each node of the tree is a combination of van Emde Boas

trees and perfect hashing. As a result we achieve ()nwO logloglog worst-case
time cost for a search query.
Anderson, by using an exponential search tree in the place of B-trees in the fusion

tree structure, avoids the need for weight-balanced trees at the bottom while at the
same time improves the complexity for large word sizes. This structure is a significant
improvement on linear space deterministic sorting and searching. On a unit-cost RAM
with word size w, an ordered set of n w-bit keys (viewed as binary strings or integers)
can be maintained in { }()nwnwnnO logloglog,loglogloglog,logmin + time per
operation, including insert, delete, member search and neighbour search. The cost for
searching is worst–case while the cost of updates is amortized. For range queries there

1421Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

is an additional cost of reporting the found keys. As an application, n keys can be
sorted in linear space at a worst-case time cost of ()nnO log . The best previous
method for deterministic sorting and searching in linear space has been the fusion
tree, which supports search queries in ()nnO logloglog amortized time and sorting
in ()nnnO logloglog worst–case time.

6.3 The fusion interval tree

Let T be a B-ary tree, that is a tree for which each node has B sons. We set the
branching factor ()nOB log= . Each node v in ordinary interval trees such that

()21, xxncav = (nca=nearest common ancestor), stores the
value () []21, xxvrange = . Thus, in each node v such that ()21, xxncav = we store
the following B slabs:

(] (] (]21212111 ,,,,,, xkslkkslkxsl BB −=== K
We define the structure of each node list ()vNL as follows: ()vNL ={s∈S; s spans

a slab of v and s is included in a slab of parent(v)}.
If ()vNLs ∈ , then s spans a continuous set of slabs kii slsl +,,K and s cuts the two

bound-slabs 11, ++− kii slsl . In the slabs kii slsl +,,K , s is stored in an unordered list but
in 11, ++− kii slsl s is stored in an ordered list (see figure 5) of endpoints that is
organized as an exponential search tree [Anderson, 1996]. Thus, the total required
space for the node lists is ()nBO .

v

x1 x2

xrange(v)=[x1,x2]
node v

K1 K2 Ki-2 Ki-1 Ki+k Ki+k+1 KB-1

sli-1 sli+k+1

s

B slabs

Figure 5: Depiction of the xrange of a node, of the slabs and their order inside
ordered lists.

1422 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

Lemma 2: Let ℜ⊆U be an ordered finite universe and let S be a set of n intervals
with left endpoints in U. To simplify our applications we assume that nUS == .

a) The fusion interval tree T for S requires ()nBO space.
b) The fusion interval tree T for S can be constructed in time ()nBO .
c) Intervals (with left endpoint in U) can be inserted into T in time ()BO . Deletions

are completely symmetric.
d) The intersection query t can be solved in ()tnnO +logloglog time.

Proof:
a) A B-tree for U clearly uses linear space () ()nOUO = . Furthermore, the total

space required for the node lists is ()nBO since every interval in S is stored in the B
slabs. The space complexity follows.

b) A B-tree can be built in time () ()nOUO = and has depth:

() () ()nnOBnOUO B loglogloglogloglog == It remains to construct the node

lists. We show how to insert an interval []21, xxs = in ()BO time. Let v be the
nearest common ancestor of the endpoints of s. This node can be computed in
constant time [Schieber, 1988]. It remains to insert the interval s in the B slabs of
node v. Assuming that s spans a continuous set of slabs kii slsl +,,K and cuts the two
bound-slabs 11, ++− kii slsl we can insert the interval s in the slabs kii slsl +,,K , in an
unordered list with ()BO cost. However, we have to insert interval s in the ordered

lists of 11, ++− kii slsl . This incurs ()nO log cost since the ordered list of each slab is
organized as an exponential search tree [Anderson, 1996]. Thus, the sequence of
insertions of n intervals require ()nBO time and as a result the total construction time
is () ()nBOnBnO =+ .

c) It is obvious from the construction above, that we can insert an interval
[]21, xxs = in ()BO time. The same holds for deletions.

d) We define sets P and C in the same way as in section 4. P consists of the nodes
on the search paths to x and y and C is the set of nodes between these paths. Let t the
output of intersection query I. Since [] ()vNLyx ∈, and [] ∅≠∩ Iyx, implies

() ∅≠∩ Ivxrange , t is defined as follows:

() () () []{ }∑ ∑
∈ ∈

∅≠∩∈∪=
Cv Pv

IyxvNLyxvNLt ,;, . In addition, the fact that Cv∈

clearly implies that () tvNL ⊆ . Now consider nodes v such that Pv∈ . Recall that
we organized ()vNL as two ordered lists, the list of left endpoints and the list of right
endpoints. Let kxxx ≤≤≤ K21 be the former list and let kyyy ≤≤≤ K21 be the
latter list. We have to discuss three cases, two of which are symmetric. Suppose first

1423Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

that () Ivxrange ⊆ . Then () AvNL ⊆ , since we know that () []yxvxrange ,⊆ for
all [] ()vNLyx ∈, .

Suppose that () [] Ixxvxrange ⊄⊆ 21, and 01 xx ≤ (the other case is symmetric).
Then, interval [] ()vNLyx ii ∈, intersects I if jyx ≤0 . We can thus find all such

intervals by inspecting K,, 1−kk yy in turn as long as they are at least as large as 0x .

Hence we can determine () tvNL ∩ in time proportional to () tvNL ∩ .

Thus, the time required for the computation of t is ()tCPO ++ . For the case of a
"small" universe U, which means that U contains only endpoints of intervals in S, it
holds that ()tOC = since all leaves in C are endpoints of intervals in t. Since

hP 2≤ , where ()nnOh logloglog= , the time bound follows.

x y

a b

b

a

a b

x y

a b

b

a

a b

x y

a b

b

a

x y

a b

b

a

bya
ax

≤≤
<

by
ax

>
<

bya
bxa

≤≤
≤≤

by
bxa

>
≤≤

a

a

b

b

Figure 6: The 2-D transformation of the four possible cases

1424 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

7 Reduction to Quadrant Range-Searching Problem

In this section we will show how we can transform the video content query to a static
quadrant range-searching problem giving two optimal linear space solutions in main
memory with O(k) query time, where k the size of the answer.

Considering the intersection between a video object (arbitrary interval [x,y]) and
a frame interval query (reference interval [a,b]) there are four possible cases as they
are depicted on the left side of the figure 6 above.

We can view each of the intersections above (between [x,y] and [a,b] intervals) as
the relation of a point (x,y) instead of an interval [x,y] with respect to a window
query [a,b] × [a,b] instead of reference interval [a,b]. According to this 2-D
transformation it’s obvious that the interval intersection query can be transformed to
the quadrant range query (-∝, b] × [a, +∝) as the result of the geometric union of the
2-d transformations (right side of figure 6) of the four possible cases depicted in the
figure above. We answer the quadrant range query (or 2-sided range query) in
optimal O(k) time using either the Cartesian Tree ([Gabow, 1984]) or the Modified
Priority Search Tree (MPST) ([Kitsios, 2000]). As we will prove theoretically the
solution presented in [Kitsios, 2000] is better. The theoretical comparison between
the Cartesian Tree and the Modified Priority Search Tree assumes that the dominant
operation is a table lookup. This is a valid assumption since both solutions given in
[Gabow, 1984] and [Kitsios, 2000] make heavy use of table lookups.

7.1 1st Solution (Cartesian Tree)

Lemma 3: The Cartesian tree is an optimal quadrant (and three-sided) searching data
structure and requires T(k)=2+2ktlca table lookups, where k the size of the answer and
tlca is the number of table lookups in order to perform a lowest common ancestor
computation.
Proof: Let S={(x1,y1), (x2,y2), …,(xN,yN)} be the set of stored points , with
x1≤x2≤…≤xN. A Cartesian tree T for S is a binary tree of N nodes with each node being
labeled by a point in S. The tree T is defined recursively as follows: the root is
labeled with (xm,ym), where ym=min{yi|i=1,…,N}. Its left subtree is a Cartesian Tree
for {(xi,yi)|i=1,…,m-1} and its right subtree is a Cartesian Tree for
{(xi,yi)|i=m+1,…,N}. Let p(v) be the point labeling the node v of T, px(v) be its x-
coordinate and py(v) be its y-coordinate. The structure makes also use of an array A of
size M (M denotes the universe size), which stores pointers to the nodes of T.
Specifically A[i] contains a pointer to the node of T which is labeled with the point in
S having maximum x-coordinate smaller or equal to i. The crucial property of the
above construction is that given two nodes u,w of T with px(u)=xi, px(w)=xj, i<j, then
py(nca(u,w))=min{yt |i ≤t≤j}.

So given a query range of the form (-∝, b] × [a, +∝) we firstly use the array A to
locate the two nodes u,w of T with A[-∝]=u (that means the leftmost leaf) and
A[b]=w. As a consequence we need 2 table lookups. Let z=lca(u,w) with p(z)=(xi,yi).
If yi>c then the query algorithm halts, otherwise we report the point (xi,yi) and we
continue recursively the same way, by probing lca(u,u1) and lca(u2,w) consuming
other two table lookups, where u1 is the predecessor (in symmetric order) of z in T
(that is the point that is stored in u1 is p(u1)=(xi-1,yi-1)) and u2 is the successor (in

1425Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

symmetric order) of z in T (that is the point that is stored in u2 is p(u2)=(xi+1,yi+1)).
Thus, the time complexity of the procedure above (in terms of table lookups) is
2+2ktlca. In order to compute the lowest common ancestor of two nodes in T, we will
use the algorithm described by Schieber and Vishkin ([Gusfield, 1994],[Schieber,
1988]) (this algorithm simplifies the approach described in Harel and Tarjan ([Harel,
1984])).

7.2 2nd Solution ([Kitsios, 2000])

Let’s remember the most basic components of the Modified Priority Search Tree
(MPST) (see fig.7) presented in [Kitsios, 2000]. We used an array A of size M, which
stores pointers to the leaves of a classic priority search tree of McCreight T.
Specifically A[i] contains a pointer to the leaf of T with maximum x-coordinate
smaller or equal to i. With this array we can determine in O(1) time the leaf of any
search path Pi for i (in our case the search path Pb for b). In each leaf u of the tree
with x-coordinate i we store the following lists L(u), PL(u): The list L(u) stores the
points of the nodes of Li (Left children of nodes belonging on Pi). The list PL(u)
stores the points of the nodes of Pi which have x-coordinate smaller or equal to i. Both
lists also contain pointers to the nodes of T that contain these points. Lists L(u) and
PL(u), stores its nodes in increasing y-coordinate of their points.

Figure 7: The Modified Priority Search Tree

To answer a query with a range (−∞ , b] x (−∞ , c] we find in O(1) time the leaf
u of the search path Pb for b. Then we traverse the list PL(u) and report its points until
we find a point with y-coordinate greater than c. We traverse the list L(u) in the same
manner and find the nodes of Lb whose points have y-coordinate less than or equal to
c. For each such node we report its point and then we continue searching further in its
subtree as long as we find points inside the range. The size of each list is O(IogN) and

1426 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

the space of T is O(NlogN). The space of the whole structure is O(M+NlogN) because
of the size of the array A but making the lists partially persistent (for details see
[Kitsios, 2000]) the space becomes linear O(M+N).

Lemma 4: The MPST structure answers quadrant range queries of the form (-∝, b] ×
[a, +∝) consuming T(k)=3+k table lookups.

Proof: Our query algorithm firstly locates the leaf u that corresponds to the value b (1
table lookup) and then traverses the persistent lists PL(u) (1 table lookup) and L(u) (1
table lookup) in order to extract a number of k1 nodes whose points have y-coordinate
less than or equal to c and for each such node continues searching further in its
subtree as long as it finds k2 points inside the range,where k1+k2=k the size of the
answer. The theorem follows.

8 The External Modified Priority Search Tree (EMPST)

In this subsection we explain how we can convert the 2nd main memory solution
presented in previous section (fig.7) in external memory model of computation
(fig.8).

 Each point of S is stored in a leaf of T and the points are in sorted x-order from
left to right. The x-ordered points are organized in a block fashion.
 Each internal node v of T has O(B) fan-out, where B is the block size, and stores
a point p(v) of S. The point p(v) is the point with the minimum y-coordinate
amongst the points stored in the leaves of Tv.
 Each node v is equipped with a secondary list S(v). S(v) contains the points
stored in the leaves of Tv in increasing y-coordinate and in a block fashion.
In a similar and straight forward way of that presented in figure 7, we enhance the

base virtual tree T with the Array A, the List L(u) and the list PL(u). Due to external
memory model of computation we have to organize the array A [0,..M-1] and the
corresponding lists for the leaf_block u, L(u) [0,..,O(logN)] and PL(u) [0,..,O(logN)]
respectively, with consecutive blocks of size B. Thus, the length of the array A
becomes M/B and the lengths of the lists become O(logN/B). Due to the fact that we
have O(N/B) leaf blocks, the space of the whole structure becomes
O((N/B)logBN+M/B). The O(N/B logBN) term in the space bound is due to the size of
the lists PL(u) and L(u). Note that the height of T is O(logBN). We can reduce the total
space of these lists to O(N/B) by making them partially persistent. We show how to
implement the lists PL(u) using a partially persistent list. Let u be a leaf_block in T
and let w be its predecessor (the leaf_block on the left of block_u). We denote by xu
the left-most x-coordinate of block u and by xw, the left-most x-coordinate of block w.
The two root-to-leaf paths Pxu, Pxw, share the nodes from the root of T to the nearest
common ancestor of blocks u and w. So we can create PL(u) by updating PL(w) in the
following way: First we delete from list PL(w) the points that don't lie on Pxu. Then
we insert the points of Pxu which have x-coordinate smaller or equal to xu. In this way
we can construct all lists as versions of a persistent list: we begin from the leftmost
leaf and construct the list PL(u) of each leaf u by updating the one of its predecessor
(see Fig.9). The total number of insertions and deletions is O(N/B) because each point

1427Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

is inserted and deleted only once. Therefore the space of all the lists is O(N/B). In the
same way we can construct the lists L(u) for all leaves in O(N/B) space.

Block u

Pb

EMPST

|Α |/B
1 b

|L(u)|/B

|PL (u)|/B

rLb Pb

EMPST

|Α |/B
1 b

|L(u)|/B

|PL (u)|/B

rLb

T
vi

vi+1

vk

S(vi)

S(vi+1)

S(vk)

Figure 8: The External Modified Priority Search Tree equipped with the appropriate
external arrays and lists

Figure 9: We implement the lists PL(u) and L(u) as partially persistent lists by
performing a sweep from left to right

The query algorithm finds the k1 points of nodes of Pb that lie inside the query-
range in O(k1 /B) time and the k2 points of nodes v of Lb that lie inside the query-range
in O(k2 /B) time by simple traversals of the blocks of the y-ordered lists PL(u) and
L(u) respectively. The search in the corresponding subtrees Tv’s of Lb takes O(k3 /B)
additional time for reporting k=k1+k2+k3 points in total, by simple traversals of the
blocks of the secondary lists S(v)’s. Therefore the query algorithm takes O(k/B) time
and more precisely 3+k/B block transfers according to Lemma 4.

1428 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

9 Experimental Evaluation

We have conducted an experimental study making the customary assumption that the
page size is 4096 bytes, the length of each key is 8 bytes, and the length of each
pointer is 4 bytes. Consequently, each block contains B=341 elements. We considered
data sets of size N∈ [103,105], where N the number of multimedia objects. We
generated synthetic occurrences of multimedia objects. In particular, for each object
the time occurrences (the ends of intervals in time axis) draw a Gaussian distribution.
In a pre-processing step we transformed each occurrence of a multimedia object (time
interval) to a 2-dimensional point. Then we associated each point with the respective
multimedia object. We conducted a variety of video function queries FindOinV (v, Fi
,Fj), where the parameters Fi and, Fj draw a Gaussian distribution too. The specific
variety of the parameters above generated queries where the mean value of its
respective answer K varies between 1000 and 10000 objects.

Performance Comparison for K=1000

0
1
2
3
4
5
6
7
8
9

1,E+03 5,E+03 1,E+04 5,E+04 1,E+05 5,E+05 1,E+06

Number of multimedia objects (N)

Block
Transfers

MV3R-tree EMPST

Figure 10: Performance comparison between MV3R-tree and EMPST-tree for
K=1000

We compared the implementation of our solution (EMPST) with that of the best
current solution MV3R-tree on the same data sets. The implementation of EMPST
was carried out in C++ including particular libraries from LEDA v4.1. The source
code of MV3R-tree was found in the following URL:
http://www.rtreeportal.org/code.html.

Our main concern was to measure the performance, simulated block transfers
(I/Os), of video function queries. Our solution outperforms the best current solution,
since EMPST requires a constant number of 3 I/Os for locating the appropriate array
and list positions instead of a logarithmic number of block transfers required for

1429Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

locating the appropriate node paths of MV3R-tree. Both solutions require additionally
(K/B) I/Os for the total answer selection process.

Performance Comparison for K=5000

16
17
17
18
18
19
19
20

1,E+03 5,E+03 1,E+04 5,E+04 1,E+05 5,E+05 1,E+06

Number of multimedia objects (N)

Block
Transfers

MV3R-tree EMPST

Figure 11: Performance comparison between MV3R-tree and EMPST-tree for
K=5000

Performance Comparison for K=7000

22
23
23
24
24
25
25
26

1,E+03 5,E+03 1,E+04 5,E+04 1,E+05 5,E+05 1,E+06

Number of multimedia objects (N)

Block
Transfers

MV3R-tree EMPST

Figure 12: Performance comparison between MV3R-tree and EMPST-tree for
K=7000

1430 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

Figures 10, 11 and 12 depict that EMPST access method requires a constant number
of block transfers (6, 17 and 23 I/O’s respectively) while the performance of MV3R-
tree is increased logarithmically. Figure 13 depicts the number of required Block
Transfers as a function of answer size (K). In particular, we conducted a big variety of
video function queries where the parameter K varies between 1000 and 10000. As a
conclusion, concerning time interval queries our method outperforms the best
previous access method.

Block Transfers as a function of K

0

5

10

15

20

25

30

1,E+03 5,E+03 1,E+04 5,E+04 1,E+05 5,E+05 1,E+06

Answer Size (K)

Block Transfers

MV3R-tree EMPST

Figure 13: Block Transfers as a function of answer size K

9 Conclusion

We have discussed in this paper a way to store video metadata in order to perform
efficiently time interval queries. Metadata specifies either objects or activities in the
video. The solutions we suggest refer to both main and secondary memory model of
computation and perform efficiently special video functions involving time interval
queries. About external memory solution, an experimental evaluation is also included
that shows the performance, scalability and efficiency of our method.

References

[Anderson, 1996] Anderson, A. Faster deterministic sorting and searching in linear
space. In Proc. of 37th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 1996.

[Arge, 1999] L. Arge, V. Samoladas, J.S. Vitter. Two dimensional indexability and
optimal range search indexing. In Proceedings of the ACM Symposium Principles
of Database Systems (PODS), 1999.

1431Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

[Beam, 1999] Paul Beam and Faith Fich. Optimal Bounds for the Predecessor
Problem. In Proceedings of the Thirty First Annual ACM Symposium on Theory
of Computing (STOC), Atlanta, GA, May 1999.

[Bentley, 1977] Bentley J.L. Solution to Klee’s Rectangle Problem. Carnegie-Mellon
Univ., Dept. of Computer Science, unpublished notes, 1977.

[Dimitrova, 2002] Dimitrova, N., Zhang, H.J. Shahraray, B., Sezan, I., Huang, T.,
Zakhor, A. Applications of Video-Content Analysis and Retrieval, IEEE
MultiMedia, 09(3): 42-55, 2002.

[Gabow, 1984] H. N. Gabow, J. L. Bentley, and R. E. Tarjan, Scaling and related
techniques for geometry problems, in Proceedings, l6th Annual ACM Symp. on
Theory of Computing, 1984, pp. 135-143.

[Gusfield, 1994] D.Gusfield, Algorithms on Strings, Trees and Sequences, Computer
Science and Computational Biology, Cambridge University Press,1994.

[Gutierrez, 2005], Gilberto A. Gutierrez, Gonzalo Navarro, Andrea Rodrıguez,
Alejandro Gonzalez, Jose Orellana, A Spatio-Temporal Access Method based on
Shnapsots and Events, ACM GIS, November 4-5, 2005, Berlin, Germany.

[Guttman, 1984] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In Proc. of the ACM Intl. Conf. on Management of Data, SIGMOD,
pages 47–57, June 1984.

[Harel, 1984] D. Harel, R. E. Tarjan, Fast algorithms for finding nearest common ancestor,
SIAM J. Comput.13 (1984), pp. 338-355.

[Kitsios, 2000] Kitsios N., Makris C., Sioutas S. Tsakalidis A., Tsaknakis J.,
Vassiliadis B., 2-D Spatial Indexing in Optimal Time, in Proc. Current Issues in
Database and Information Systems, ADBIS-DASFAA 2000, Springer Verlang

[Kosch, 2005] Kosch, H., Boszormenyi, L., Doller, M., Libsie, M., Schojer, P.,
Kofler, A., The Life Cycle of Multimedia Metadata," IEEE MultiMedia, 12(1):
80-86, 2005.

[Madhwacharyula, 2006] Madhwacharyula CL., Davis, M., Mulhem, P., Kankanhalli,
M.S. Metadata handling: A video perspective. ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), 2(4): 358 – 388,
2006.

[Manolopoulos, 1990] Manolopoulos, Y., Kapetanakis, G. Overlapping B+trees for
Temporal Data. JCIT, 1990.

[Mark de Berg, 1997] Mark de Berg, Marc van Kreveld, Mark Overmars, Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer-
Verlag, Heidelberg, 1997.

[Mehlhorn, 1984] K. Mehlhorn. Data Structures and Algorithms 3: Multi-
dimensional Searching and Computational Geometry. EATCS Monographs on
Theoritical Computer Science, Springer-Verlag, 1984.

[Nack, 2005] Nack, F., van Ossenbruggen, J., Hardman, L. That Obscure Object of
Desire: Multimedia Metadata on the Web, Part 2," IEEE MultiMedia, 12(1): 54-
63, 2005.

[Nack, 2000] Nack, F. All Content Counts: The Future in Digital Media Computing is
Meta, IEEE MultiMedia, 7(3): 10-13, 2000.

[Nascimento, 1998] Nascimento, M., Silva, J. Towards Historical R-trees. ACM SAC,
1998.

[Preparata, 1985] F.P. Preparata, M.I. Shamos. Computational Geometry: An
introduction,. Springer-Verlag, New York, 1985.

1432 Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

[Samet, 1989] H. Samet. The Design and Analysis of Spatial Data Stuctures. MA:
Addison-Wesley, 1989.

[Schieber, 1988] B. Schieber, U. Vishkin. On finding lowest common ancestors:
simplifications and parallelization. SIAM J. of Comput., 17:1253-62, 1988.

[Subramanian, 1998] V.S. Subrahmanian. Principles of Multimedia Database
Systems. Morgan Kaufmann Publishers Inc., pp. 179-213, 1998.

[Tao, 2001] Y. Tao, D. Papadias: MV3R-Tree: A Spatio-Temporal Access Method
for Timestamp and Interval Queries. VLDB 2001: 431-440

[Willard, 1992] Dan E. Willard. Applications of the fusion tree method for
Computational Geometry and searching. In Proc. 3rd Symposium on Discrete
Algorithms (SODA), pp. 286-296, 1992.

[Vazirgiannis, 1998] Vazirgiannis M., Theodoridis, Y., Sellis, T. Spatio•Temporal
Composition and Indexing for Large Multimedia Applications. ACM Multimedia
Systems, 6(5), 1998.

[Xu, 1990] Xu, X., Han, J., Lu, W. RT-tree: An Improved R-tree Index Structures
for Spatiotemporal Data. SDH, 1990.

1433Sioutas S., Tsichlas K., Vassiliadis B., Tsolis D.: Efficient Access Methods ...

