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Abstract: At Eurocrypt 2005, Boneh, Boyen and Goh presented a constant-size ci-
phertext hierarchical identity-based encryption (HIBE) protocol. Our main contribu-
tion is to present a variant of the BBG-HIBE. The new HIBE is proved to be secure
(without any degradation) in an extension of the s-ID model (denoted the s+-ID model)
and the components of the identities are from Zp, where p is a suitable large prime. The
BBG-HIBE is proved to be secure in the selective-ID (s-ID) security model and the
components of the identities are from Z

∗
p. In the s+-ID model the adversary is allowed

to vary the length of the challenge identity whereas this is not allowed in the s-ID
model. The new HIBE shares all the good features of the BBG-HIBE. The drawback is
that the public parameters and the private key are longer than that of the BBG-HIBE.
We also provide two more extensions of the basic constant-size ciphertext HIBE. The
first is a constant-size ciphertext HIBE secure in the generalised selective-ID model
M2. The second one is a product construction composed of two HIBEs and a trade-off
is possible between the private key size and the ciphertext size.
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1 Introduction

An identity-based encryption (IBE) protocol offers certain flexibility over usual
public key encryption protocols by allowing the public key to be any binary
string. This notion was introduced by Shamir [Shamir, 1984] and the first effi-
cient implementation with a proof of security in an appropriate security model
was given by Boneh and Franklin [Boneh and Franklin, 2003]. In an IBE, the
private key corresponding to an identity is generated by a private key genera-
tor (PKG) and is securely transmitted to the appropriate entity. Encryption is
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done using the identity and the public parameters of the PKG whereas decryp-
tion requires the private key of the identity under which the message has been
encrypted.

The role of the PKG is to distribute private keys. A generalization of IBE is
the notion of a hierarchical IBE (HIBE) introduced by [Horwitz and Lynn, 2002]
and [Gentry and Silverberg, 2002], which allows the task of generating private
keys to be delegated to lower levels. Several constructions of HIBE exist in litera-
ture [Gentry and Silverberg, 2002, Boneh and Boyen, 2004, Boneh et al., 2005].
In the constructions of [Gentry and Silverberg, 2002, Boneh and Boyen, 2004]
the length of the ciphertexts, the size of the private keys and consequently,
the time required for encryption and decryption grow linearly with the number
of levels in the HIBE.

In a recent work, a very interesting construction of HIBE was presented
by Boneh, Boyen and Goh [Boneh et al., 2005], which we call BBG-HIBE. The
main novelty of the BBG-HIBE is that the size of the ciphertext is independent
of the depth of the HIBE. This also improves the efficiency of encryption and
decryption. Perhaps more importantly, the constant-size ciphertext BBG-HIBE
leads to improved constructions of forward secure public key and identity-based
encryption where all messages encrypted before the secret key is compromised
remain secret and public-key broadcast encryption protocols.

The full security model for IBE was introduced in [Boneh and Franklin, 2003]
and later extended to HIBE in [Gentry and Silverberg, 2002]. A weaker secu-
rity model was introduced in [Canetti et al., 2003, Canetti et al., 2004] and is
called the selective-ID model (s-ID model in short). The selective-ID differs
from the full model by restricting the adversary to commit to the challenge
identity even before setting up the protocol. The HIBE proposed by Boneh-
Boyen [Boneh and Boyen, 2004], which we call BB-HIBE, and the BBG-HIBE
[Boneh et al., 2005] are the only known HIBE protocols secure in the selective-
ID model. In [Chatterjee and Sarkar, 2006a] the selective-ID security model has
been generalised to two new models, M1 and M2, and the authors proposed
two HIBEs H1 and H2 secure in the respective models. The BBG-HIBE has
been extended to model M2 in [Chatterjee and Sarkar, 2006b] and the authors
also proposed a construction secure in the full model.
Our Contributions: We modify the BBG-HIBE to obtain a new constant-size
ciphertext HIBE, G1. Compared to the BBG-HIBE, the new HIBE G1 has the
following advantages – it is secure (without any degradation) in an extension of
the s-ID model (see below) and the components of the identity tuples are from
Zp, where p is a suitable large prime. On the other hand, the disadvantage is
that the size of the public parameters and the private key is longer than that
of the BBG-HIBE. Note that even though the size of the private key is longer,
the size of the decryption subkey is the same as that of BBG-HIBE. Since for
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decryption, only the decryption subkey needs to be loaded onto a smart card, to
a certain extent this mitigates the disadvantage of the private key being longer.

In the s-ID model, the adversary commits to an identity v∗ = (v∗1 , . . . , v
∗
m) and

in the challenge phase obtains an encryption under v∗. In particular, the length
m of the challenge identity is fixed by the adversary in the commit stage itself.
In the augmented version of the selective-ID model, which we call selective+-ID
model, in the challenge phase, the adversary is allowed to ask for an encryption
under v+ = (v∗1, . . . , v

∗
m′), where 1 ≤ m′ ≤ m. This provides the adversary

additional flexibility in choosing the target identity.
In the s-ID model, the adversary is restricted from making private key queries

for any prefix of v∗. Consequently, a “natural” intuition is that the adversary
be allowed to choose any prefix of v∗ as a challenge identity. Unfortunately, the
s-ID model does not allow this flexibility to the adversary. In the s+-ID model,
this flexibility is introduced and the challenge identity is allowed to be any prefix
of v∗. Clearly, any protocol secure in the s+-ID model is also secure in the s-ID
model, though the converse is not necessarily true.

We show that the security reduction for BB-HIBE [Boneh and Boyen, 2004]
satisfies the notion of s+-ID security. On the other hand, the security proof of the
BBG-HIBE given in [Boneh et al., 2005] does not go through in the s+-ID model.
A simple modification of this proof gives a proof of security for the BBG-HIBE
in the s+-ID model. But this proof yields a multplicative security degradation
by a factor of h, where h is the maximum number of levels in the HIBE.

Our idea of modifying the proof of the BBG-HIBE protocol can be utilised to
show that any protocol secure in the s+-ID model is also secure in the s-ID model
with a security degradation by a factor of h. Admittedly, a security degradation
by a factor of h is not much. However, the s-ID and the s+-ID models are really
restrictive models and hence one would like to obtain a protocol without any
security degradation.

We next modify this construction to obtain a constant-size ciphertext HIBE,
G2 which is proved to be secure in the generalised s-ID model M2 (see Section 4.2
and [Chatterjee and Sarkar, 2006a]) augmented in the line of s+-ID model.

Our third construction is a product construction, in the sense that the con-
structed HIBE can be seen to be a “product” of two individual HIBEs. A product
construction combining the BB-HIBE and the BBG-HIBE has been presented
earlier in [Boneh et al., 2005].

We consider the product of H1 of [Chatterjee and Sarkar, 2006a] with G2 to
obtain a new HIBE G3. This HIBE is secure in generalised s-ID model M1

(see Section 4.2 and [Chatterjee and Sarkar, 2006a]) and reduces the size of the
ciphertext in H1 by a factor of h, where h is the number of levels in G2. The
decryption subkey (i.e., the part of the private key required for decryption) for
both G1 and G2 are equal to that of BBG-HIBE. While in G3 the size of the
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decryption subkey is reduced by a factor of h over the size of the decryption
subkeys in H1.

2 Definitions

2.1 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups of the same prime order p and such that
G1 = 〈P 〉, i.e., P generates the group G1, where we write G1 additively and
G2 multiplicatively. A mapping e : G1 × G1 → G2 is called a cryptographic
bilinear map if it satisfies the following properties:

– Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ Zp.

– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), the map e also satisfies the sym-
metry property. The modified Weil pairing [Boneh and Franklin, 2003] and the
Tate pairing [Barreto et al., 2002, Galbraith et al., 2002] are examples of cryp-
tographic bilinear maps.

2.2 HIBE Protocol

Following [Horwitz and Lynn, 2002, Gentry and Silverberg, 2002] a hierarchical
identity-based encryption (HIBE) scheme is specified by four algorithms: Setup,
Key Generation, Encryption and Decryption. Note that, for a HIBE of height
h (henceforth denoted as h-HIBE) any identity v is a tuple (v1, . . . , vτ ) where
1 ≤ τ ≤ h.

Setup: It takes as input a security parameter and returns the system param-
eters together with the master key. The system parameters include a description
of the message space, the ciphertext space and the identity space. These are
publicly known while the master key is known only to the private key generator
(PKG).

Key Generation: It takes as input an identity v = (v1, . . . , vτ ) and the
private key dv|τ−1 for the identity (v1, . . . , vτ−1) and returns a private key dv for
v. The identity v is used as the public key while dv is the corresponding private
key.

Encrypt: It takes as input the identity v and a message from the message
space and produces a ciphertext in the cipher space.

Decrypt: It takes as input the ciphertext and a private key dv of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.
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2.3 Hardness Assumption

Security of our HIBE scheme is based on the so-called decisional weak bilinear
Diffie-Hellman inversion problem (wDBDHI∗) introduced by Boneh-Boyen-Goh
in [Boneh et al., 2005]. An instance of the h-wDBDHI∗ problem in 〈G1, G2, e〉
consists of the tuple (P, Q, aP, a2P, . . . , ahP, Z) for some a ∈ Zp and the task is
to decide whether Z = e(P, Q)ah+1

or Z is random.
The advantage of a probabilistic algorithm B that outputs a bit in solving

this decision problem is defined as

Advh-wDBDHI∗
B =

∣∣∣Pr[B(P, Q,
−→
Y , e(P, Q)ah+1

) = 1] − Pr[B(P, Q,
−→
Y , Z) = 1]

∣∣∣
where −→

Y = (aP, a2P, . . . , ahP ), and Z is a random element of G2. The proba-
bility is calculated over the random choices of a ∈ Zp and Z ∈ G2 and also the
random bits used by B. The quantity Advh-wDBDHI∗(t) denotes the maximum of
Advh-wDBDHI∗

B where the maximum is taken over all algorithms running in time
at most t.

3 Previous HIBE Constructions

We briefly describe the BB-HIBE and the BBG-HIBE. Let G1, G2 and e be as
defined in Section 2.

3.1 BB-HIBE

Identities of depth u are of the form (v1, . . . , vu) where each vi ∈ Zp. Messages
are elements of G2. Setup: Select a random generator P ∈ G∗

1, a random x ∈ Zp

and set P1 = xP . Also pick random elements Q1, . . . , Qh, P2 ∈ G1. The public
parameters are

(P, P1, P2, Q1, . . . , Qh)

whereas the master secret key is xP2. The maximum height of the HIBE is h.
Define a publicly computable family of functions Fj : Zp → G1 for j ∈ {1, . . . , h}:
Fj(α) = αP1 + Qj.

Key Generation: Given an identity v = (v1, . . . , vj) of depth j ≤ h, pick
random r1, . . . , rj ∈ Zp and compute

dv = xP2 +
j∑

i=1

riFi(vi), r1P, . . . , rjP.

Note that, dv can also be generated given the private key dv|j−1 of v|j−1 =
(v1, . . . , vj−1).
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Encrypt: Encrypt M ∈ G2 for v = (v1, . . . , vj) as

C = (e(P1, P2)s × M, sP, sF1(v1), . . . , sFj(vj))

where s is a random element of Zp.
Decrypt: Decrypt C = (A, B, C1, . . . , Cj) using the private key

dv = (d0, d1, . . . , dj) as

A ×
∏j

i=1 e(Ci, di)
e(B, d0)

= M

3.2 BBG-HIBE

Here, identities of depth u are of the form (v1, . . . , vu) where each vi ∈ Z
∗
p.

(In contrast, recall that, in BB-HIBE identity components are elements of Zp).
Messages are elements of G2.

Setup: Choose a random α ∈ Zp and set P1 = αP . Choose random elements
P2, P3, Q1, . . . , Qh ∈ G1. Set the public parameter as (P, P1, P2, P3, Q1, . . . , Qh)
while the master key is P4 = αP2.

Key Generation: Given an identity v = (v1, . . . , vk) of depth k ≤ h, pick a
random r ∈ Zp and output

dv = (αP2 + r(v1Q1, . . . , vkQk + P3), rP, rQk+1, . . . , rQh).

Encrypt: To encrypt M ∈ G2 under the identity v = (v1, . . . , vk), pick a
random s ∈ Zp and output

CT = (e(P1, P2)s × M, sP, s(v1Q1 + . . . + vkQk + P3)) .

Decrypt: To decrypt CT = (A, B, C) using the private key
dv = (a0, a1, bk+1, . . . , bh), compute

A × e(a1, C)
e(B, a0)

= M.

4 Security Models

We now discuss variants of the selective-ID security models. The security of
a HIBE protocol is defined in terms of a game between an adversary and a
simulator. [Boneh and Franklin, 2003] introduced the full security model for
IBE. Extension to HIBE was made by [Gentry and Silverberg, 2002]. The weaker
selective-ID model was introduced in [Canetti et al., 2003, Canetti et al., 2004].
We define the selective identity, chosen-ciphertext security (IND-sID-CCA) of a
HIBE of maximum height h, in terms of the following game.
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4.1 Selective-ID Model

Initialization: The adversary outputs a target identity v∗ = (v∗1 , . . . , v
∗
u) with

u ≤ h, on which it wishes to be challenged. Setup: The challenger sets up the
HIBE and provides the adversary with the system public parameters.

Phase 1: Adversary A makes a finite number of queries where each query
is addressed either to the decryption oracle or to the key-extraction oracle. In a
query to the decryption oracle it provides the ciphertext as well as the identity
under which it wants the decryption. Similarly, in a query to the key-extraction
oracle, it asks for the private key of the identity it provides. Further, A is allowed
to make these queries adaptively, i.e., any query may depend on the previous
queries as well as their answers. The only restriction is that it cannot ask for the
private key of v∗ or any of its ancestors such as (v∗1 , . . . , v

∗
j ), j < u.

Challenge: At this stage A outputs two equal length messages M0, M1 and
gets a ciphertext C∗ which is an encryption of Mγ under v∗, where γ is chosen
uniformly at random from {0, 1}.

Phase 2: A now issues additional queries just like Phase 1, with the (obvious)
restriction that it cannot ask the decryption oracle for the decryption of C∗ under
v∗ nor the key-extraction oracle for the private key of any prefix of v∗.

Guess: A outputs a guess γ′ of γ.
The advantage of the adversary A in attacking the HIBE scheme is defined as:

AdvHIBE
A = |Pr[(γ = γ′)] − 1/2| .

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the max-

imum is taken over all adversaries running in time at most t and making at most
qC queries to the decryption oracle and qID queries to the key-extraction oracle.
Any HIBE scheme secure against such an adversary is said to be secure against
chosen-ciphertext attack (in short, IND-sID-CCA-secure ). We may restrict the
adversary from making any query to the decryption oracle. A HIBE protocol
secure against such an adversary is said to be secure against chosen-plaintext
attacks (in short, IND-sID-CPA-secure). AdvHIBE(t, q) in this context denotes the
maximum advantage where the maximum is taken over all adversaries running
in time at most t and making at most q queries to the key-extraction oracle.

Generic [Canetti et al., 2004, Boneh and Katz, 2005] as well as non-generic
techniques [Boyen et al., 2005] are known for converting a CPA-secure HIBE to
a CCA-secure HIBE. In view of this, it is more convenient to initially construct
a CPA-secure HIBE and then convert it into a CCA-secure one.

4.2 Generalised Selective-ID Model

[Chatterjee and Sarkar, 2006a] introduced two new security models, M1 and
M2. Here we briefly describe these two models.
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In M1 the adversary fixes a set of target identities I∗ before the protocol is
set up where |I∗| = n. In Phase 1 and 2 the adversary cannot make any query
to the key extraction oracle for the private key of an identity tuple v all of whose
components are in I∗. On the other hand, in the Challenge stage it must ask for
encryption under an identity tuple v∗ all of whose components are in I∗. This
model is parametrised by the maximum height h of the HIBE and n. This is
explicitly written as (h, n)-M1 model.

M2 generalises the s-ID model in the following manner. Before the set-up
of the protocol, the adversary commits to sets of identities I∗

1 , . . . , I∗
τ , where

1 ≤ τ ≤ h and h is the maximum number of levels of the HIBE. Let |I∗
i | = ni.

The adversary’s commitment fixes the length of the challenge identity to be τ .
Also, the set I∗

i corresponds to the set of committed identities for the ith level
of the HIBE.

In Phases 1 and 2, the adversary is not allowed to query the key extraction
oracle on any identity (v1, . . . , vj) such that j ≤ τ and vi ∈ I∗

i for all 1 ≤ i ≤ j.
The challenge identity is a tuple (v∗1 , . . . , v

∗
τ ) where v∗i ∈ I∗

i for all 1 ≤ i ≤ τ .
The model M2 is parametrized by h and a tuple (n1, . . . , nh) of positive

integers. This is explictly written as (h, n1, . . . , nh)-M2 model. This model is a
generalization of the s-ID-model which can be seen by fixing all the I∗

i s to be
singleton sets. More specifically, (h, 1, . . . , 1)-M2 is the s-ID-model.

4.3 Selective+-ID Model

We modify the challenge phase of the selective-ID model to give more power to
the adversary. Challenge: A outputs two equal length messages M0, M1 and an
identity v+ where v+ is either v∗ or any of its prefixes. In response it receives an
encryption of Mγ under v+, where γ is chosen uniformly at random from {0, 1}.

We refer to this new model as the selective+-ID model (s+-ID model in short).
This model is more general than the s-ID model because now the adversary is
allowed to ask for a challenge ciphertext not only on v∗ but also on any of its
prefixes. In case of IBE both the models are same as we have only one level. For
HIBE, a protocol secure in the selective+-ID model is obviously secure in the
selective-ID model.

5 Constant Size Ciphertext HIBE Secure in Selective+-ID
Model

We augment the BBG-HIBE to obtain a new constant-size ciphertext HIBE
secure in the selective+-ID model without any security degradation. We call this
new protocol G1. The basic idea is to replace P3 in BBG-HIBE by a vector−→
P 3 = (P3,1, . . . , P3,h) where P3,i corresponds to the ith level of the HIBE. It is
this feature that allows identity components to be elements of Zp and a proof
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(without security degradation) in the s+-ID model. Also, it is this feature which
increases the size of the public parameters and the private key.

Let G1, G2 and e be as defined in Section 2. Let the maximum height of the
HIBE be h. The identities at a depth u ≤ h are of the form v = (v1, . . . , vu)
where each vi ∈ Zp. Note that, unlike the BBG-HIBE, we allow 0 as a valid
identity component. Messages are elements of G2.

Setup: Choose a random α ∈ Zp and set P1 = αP . Choose a random element
P2 ∈ G1 and two random h length vectors −→

P 3,
−→
Q where −→

P 3 = (P3,1, . . . , P3,h)
and −→

Q = (Q1, . . . , Qh). Set the public parameters to be (P, P1, P2,
−→
P 3,

−→
Q) while

the master key is P4 = αP2. Instead of P1, P2, e(P1, P2) can also be kept as part
of PP. This avoids the pairing computation during encryption.

Key Generation: Given an identity v = (v1, . . . , vk) of depth k ≤ h, pick a
random r ∈ Zp and output

dv =

⎛
⎝αP2 + r

k∑
j=1

Vj , rP, rP3,k+1, . . . , rP3,h, rQk+1, . . . , rQh

⎞
⎠

where Vj = P3,j + vjQj . The private key at level k consists of 2(h − k + 1)
elements of G1. Among these 2(h−k+1) elements only the first two are required
in decryption, the rest are used to generate the private key for the next level
as follows: Let the secret key corresponding to the identity (v1, . . . , vk−1) be
(A0, A1, Bk, . . . , Bh, Ck, . . . , Ch), where A0 = αP2 + r′

∑k−1
j=1 Vj , A1 = r′P , and

for k ≤ j ≤ h, Bj = r′P3,j , Cj = r′Qj . Pick a random r∗ ∈ Zp and compute

dv = (A0 + Bk + vkCk + r∗
∑k

j=1 Vk, A1 + r∗P,

Bk+1 + r∗P3,k+1, . . . , Bh + r∗P3,h,

Ck+1 + r∗Qk+1, . . . , Ch + r∗Qh).

If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).
Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vk), pick a random

s ∈ Zp and output

CT =

⎛
⎝e(P1, P2)s × M, sP, s

⎛
⎝ k∑

j=1

Vj

⎞
⎠

⎞
⎠

where Vj is as defined in Key Generation.
Decrypt: To decrypt CT = (A, B, C) using the private key dv = (d0, d1, . . .),

compute

A × e(d1, C)
e(B, d0)

= e(P1, P2)s × M ×
e
(
rP, s

∑k
j=1 Vj

)

e
(
sP, αP2 + r

∑k
j=1 Vj

) = M.
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5.1 Discussion

The protocol G1 is a modification of the BBG-HIBE with a different P3,i for
each level of the HIBE. This is required to get a proof of security in the aug-
mented s+-ID model without any security degradation as is shown in the next
section. Additionally, it allows identities to be elements of Zp, instead of Z

∗
p

as in BBG-HIBE. On the other hand, this modification only affects the effi-
ciency of the BBG-HIBE in a small way. The first thing to note is the size of
the ciphertext is still constant (three elements). Secondly, the size of the pub-
lic parameter as well as private key is linear in the length of the HIBE and
decreases as we “go down” the HIBE. These two properties ensure that the
applications mentioned in [Boneh et al., 2005] also hold for the new HIBE de-
scribed above. In particular, it is possible to combine the new HIBE with the
BB-HIBE of [Boneh and Boyen, 2004] to get an intermediate HIBE with con-
trollable trade-off between the size of the ciphertext and the size of the private
key. Further, the application to the construction of forward secure encryption
protocol mentioned in [Boneh et al., 2005] can also be done with the new HIBE.
The resulting protocols will be secure in the augmented selective+-ID model.
However, the actual details for these applications will be a little different from
what is mentioned in [Boneh et al., 2005].

A comparison of the features of G1 with the BB-HIBE and the BBG-HIBE
is given in Table 1 for h-level HIBEs. Here the column “decryption subkey size”
denotes the number of elements of the private key which is actually required for
decryption. The entire private key is required for key delegation, i.e., generating
private keys for the lower level identities , which is a relatively infrequent activ-
ity. As mentioned above, the BBG-HIBE has many applications. The modified
protocol G1 can be used for all such applications.

6 Security

Semantic security (i.e., (CPA-security) of the above scheme in the s+-ID model
is proved under the h-wDBDHI∗ assumption.

Theorem 6.1. For t ≥ 1, q ≥ 1; AdvG1(t, q) ≤ Advh-wDBDHI∗(t + O(τq)), where
τ is the time for a scalar multiplication in G1.

Proof : Suppose A is a (t, q)-CPA adversary for the G1, then we construct
an algorithm B that solves the h-wDBDHI∗ problem. B takes as input a tuple
(P, Q, Y1, . . . , Yh, Z) where Yi = αiP for some random α ∈ Z

∗
p and Z is either

equal to e(P, Q)αh+1
or a random element of G2. We define the s+-ID game

between B and A as follows.
Initialization: A outputs an identity tuple v∗ = (v∗1 , . . . , v∗u) ∈ Z

u
p for any

u ≤ h. The restriction on A is that it cannot ask for the private key of v∗ or
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Table 1: Comparison of HIBE protocols Secure in s-ID/s+-ID Model.

protocol security id public max pvt decryption
model comp parameter key size subkey size

G1 s+-ID Zp 3 + 2h 2h 2

BBG s+-ID Z
∗
p 4 + h h + 1 2

BBG s-ID Z
∗
p 4 + h h + 1 2

BB s+-ID Zp 3 + h h + 2 h + 2
protocol ciphertext encryption decryption Security

expansion efficiency efficiency degradation

G1 2 h + 2 2 Nil

BBG in s+-ID 2 h + 2 2 h

BBG in s-ID 2 h + 2 2 Nil
BB h + 1 2h + 1 h + 1 Nil

For a HIBE of maximum height h, the columns for public parameter, max pvt key
size, decryption subkey size and ciphertext expansion denote the number of ele-
ments of G1, encryption efficiency denotes the number of scalar multiplications
in G1 and decryption efficiency denotes the number of pairing computations.

any of its prefix and in challenge it asks for an encryption under v∗ or any of its
prefix. In case u < h, B chooses random v∗u+1, . . . , v

∗
h from Zp and keeps these

extra elements to itself. (Note that B is not augmenting the target identity to
create a new target identity.)

Setup: B picks random β, β1, . . . , βh and c1, . . . , ch in Zp. It then sets

P1 = Y1 = αP ; P2 = Yh + βP = (αh + β)P ;

and

for 1 ≤ j ≤ u, Qj = βjP − Yh−j+1; P3,j = cjP + v∗jYh−j+1;
for u < j ≤ h, Qj = βjP ; P3,j = cjP + v∗jYh−j+1.

The public parameters are (P, P1, P2,
−→
P 3,

−→
Q), where −→

Q = (Q1, . . . , Qh), −→P 3 =
(P3,1, . . . , P3,h). The corresponding master key αP2 = Yh+1 +βY1 is unknown to
B. B defines the functions Fj = v∗j − vj for 1 ≤ j ≤ u and Fj = v∗j for u < j ≤ h

and Jj = cj + βjvj for 1 ≤ j ≤ h.
Phase 1: Suppose A asks for the private key corresponding to an identity

v = (v1, . . . , vτ ) for τ ≤ h. Note that for any j ≤ u,

Vj = P3,j + vjQj

= cjP + v∗j Yh−j+1 + vj(βjP − Yh−j+1)
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= (v∗j − vj)Yh−j+1 + (cj + βjvj)P

= FjYh−j+1 + JjP.

Similarly, for u < j ≤ h

Vj = P3,j + vjQj = cjP + v∗jYh−j+1 + vjβjP = FjYh−j+1 + JjP.

Hence, Vj for 1 ≤ j ≤ h is computable from what is known to B.
Recall that u is the length of v∗ that the adversary committed to before the

set-up phase. If τ ≤ u, then there must be a k ≤ τ such that Fk �= 0, as otherwise
the queried identity is a prefix of the target identity. In case τ > u, it is possible
that F1 = · · · = Fu = 0. Then by construction, Fu+1 �= 0. We now proceed under
the assumption that there is a k such that Fk �= 0 and k is the smallest such
index. B picks a random r ∈ Zp and assigns d0|k = (−Jk/Fk)Yk +βY1 + rVk and
d1 = (−1/Fk)Yk + rP. Now,

d0|k = − Jk

Fk
Yk + βY1 + αkYh−k+1 − αk Fk

Fk
Yh−k+1 + rVk = αP2 + r̃Vk

where r̃ = (r − αk

Fk
). Also d1 = − 1

Fk
Yk + rP = −αk

Fk
P + rP = r̃P . For any

j ∈ {1, . . . , τ} \ {k} we have

r̃Vj = (r − αk

Fk
)(FjYh−j+1 + JjP )

= r(FjYh−j+1 + JjP ) − 1
Fk

(FjYh+k−j+1 + JjYk).

For j < k, Fj = 0, so B can compute all these r̃Vjs from what it has. It forms

d0 = d0|k +
∑

j∈{1,...,τ}\{k}
r̃Vj = αP2 + r̃

τ∑
j=1

Vj .

To form a valid private key B also needs to compute r̃P3,j and r̃Qj for τ < j ≤ h.
Now,

r̃P3,j =
(

r − αk

Fk

)
(cjP + v∗jYh−j+1)

= r(cjP + v∗j Yh−j+1) − 1
Fk

(
cjYk + v∗jYh+k−j+1

)
;

For j ≤ u,

r̃Qj =
(

r − αk

Fk

)
(βjP − Yh−j+1) = r(βjP − Yh−j+1) − 1

Fk
(βjYk − Yh+k−j+1)

and for u < j ≤ h,

r̃Qj =
(

r − αk

Fk

)
βjP = rβjP − 1

Fk
βjYk.
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All these values are computable from what is known to B. Hence, B forms the
private key as:

dv = (d0, d1, r̃P3,τ+1, . . . , r̃P3,h, r̃Qτ+1, . . . , r̃Qh)

and provides it to A.
Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈

G2 and the challenge identity v+ = v∗1 , . . . , v
∗
u′ where u′ ≤ u ≤ h. B picks a

random b ∈ {0, 1} and provides A the challenge ciphertext

CT =

⎛
⎝Mb × T × e(Y1, βQ), Q,

⎛
⎝ u′∑

j=1

(cj + βjv
∗
j )

⎞
⎠ × Q

⎞
⎠ .

Suppose, Q = γP for some unknown γ ∈ Zp. Then⎛
⎝ u′∑

j=1

cj + βjv
∗
j

⎞
⎠ × Q = γ

⎛
⎝ u′∑

j=1

cj + βjv
∗
j

⎞
⎠ P

= γ

u′∑
j=1

(
cjP + v∗j Yh−j+1 + v∗j (βjP − Yh−j+1)

)

= γ

u′∑
j=1

(
P3,j + v∗j Qj

)

= γ

⎛
⎝ u′∑

j=1

Vj

⎞
⎠ .

If the input provided to B is a true h-wDBDHI∗ tuple, i.e., Z = e(P, Q)(α
h+1),

then

Z × e(Y1, βQ) = e(P, Q)(α
h+1) × e(Y1, βQ) = e(Yh + βP, Q)α = e(P1, P2)γ .

So, the challenge ciphertext is

CT =

⎛
⎝Mb × e(P1, P2)γ , γP, γ

⎛
⎝ u′∑

j=1

Vj

⎞
⎠

⎞
⎠ .

CT is a valid encryption of Mb under v+ = (v∗1 , . . . , v
∗
u′). On the other hand,

when Z is random, CT is random from the view point of A.
Phase 2: This is similar to Phase 1. Note that A places at most q queries

in Phase 1 and 2 together.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}. B outputs 1 ⊕ b ⊕ b′.
A’s view in the above simulation is identical to that in a real attack. This

gives us the required bound on the advantage of the adversary in breaking the
HIBE protocol.
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7 More on the Selective+-ID Model

We analyse the BB-HIBE and the BBG-HIBE with respect to the s+-ID model.
It is easy to show that the BB-HIBE is secure in the s+-ID model without any
security degradation. The details are given in Section A. The case of BBG-HIBE
is more interesting and is discussed below.

7.1 Boneh-Boyen-Goh HIBE

The BBG-HIBE is proved to be secure in the s-ID model (Theorem 3.1 of
[Boneh et al., 2005]). We first argue that the given proof is not sufficient for
the s+-ID model. Using the intuition developed in the argument, we later sketch
a proof of security for the BBG-HIBE in the s+-ID model, though with a mul-
tiplicative security degradation by a factor of h.

In the s-ID model, an adversary declares an identity v∗ that it intends to
attack before the system is set up. Suppose v∗ = (v∗1 , . . . , v

∗
m) where m ≤ h. In

the reduction given in [Boneh et al., 2005], the following is done. If m < h then
the simulator appends (h − m) zeros to v∗ so that v∗ is a vector of length h.
Recall that, in the protocol, individual comonents of an identity are elements
of Z

∗
p so the adversary is restricted from making a query where one or more

components of the identity is 0. (BB-HIBE does not have this restriction.) The
reduction in [Boneh et al., 2005] crucially depends on this step.

In the protocol, a single element of G1 (i.e. Qi) is associated with the ith
level of the HIBE and we have another element, namely P3 which is required for
the security reduction.

The simulator B is given as input a random tuple (P, Q, Y1, . . . , Yh, T ) where
Yi = αiP s for 1 ≤ i ≤ h for some unknown α. The task of B is to decide whether
T = e(P, Q)αh+1

or T is a random element of G2.
We now reproduce the relevant steps of the reduction in Theorem 3.1 in

[Boneh et al., 2005].
Setup: B picks a random γ ∈ Zp and sets P1 = Y1 = αP and P2 = Yh + γP .

Next, B picks random γ1, . . . , γh ∈ Zp and sets Qj = γjP − Yh−j+1 for j =
1, . . . , h. B also picks a random δ ∈ Zp and sets P3 = δP +

∑h
j=1 v∗jYh−j+1. B

gives A the public parameters (P, P1, P2, P3, Q1, . . . , Qh).
Note that, the effect of v∗ = (v∗1 , . . . , v

∗
m) is assimilated in P3. In case, m

(the depth of the challenge identity tuple v∗) is less than h, we have v∗m+1 =
· · · = v∗h = 0, so v∗jYh−j+1 for m < j ≤ h has no effect on P3. The Qjs in the
public parameter are independent of the target identity and depend only on the
Yjs after suitable randomization. In contrast, in case of the BB-HIBE, each Qj

depends on v∗j i.e., the component corresponding to level j in target identity v∗.
Given this setup, Boneh, Boyen and Goh show that all the private key

queries of A can be answered (see Phase 1 in the proof of Theorem 3.1 in
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[Boneh et al., 2005] for details).
Now, suppose in the challenge phase A asks the encryption under v+ which is

a prefix of v∗, i.e., v+ = (v∗1 , . . . , v
∗
μ), μ ≤ m. If μ = m, then the original reduction

goes through and we get a proper encryption of Mb provided the input instance
is a true h-wDBDHI∗ instance. However, if μ < h, then the original reduction in
[Boneh et al., 2005] does not give a proper encryption of Mb even if the input is
a true h-wDBDHI∗ instance as we show below.

Let Q = cP for some unknown c ∈ Zp, then the third component of the
challenge ciphertext is

C =

⎛
⎝δ +

h∑
j=1

v∗jγj

⎞
⎠ Q = c

⎛
⎝ h∑

j=1

v∗j (γjP − Yh−j+1) + δP +
h∑

j=1

v∗j Yh−j+1

⎞
⎠

= c(v∗1Q1 + . . . , v∗mQm + P3) since v∗m+1 = · · · = v∗h = 0

However, this corresponds to an encryption under v∗ and not v+. To get a valid
encryption under v+ = v∗1 , . . . , v

∗
μ, the third component of the ciphertext should

be of the form

C′ = c(v∗1Q1 + · · · + v∗μQμ + P3)

= c

⎛
⎝ μ∑

j=1

v∗j (γjP − Yh−j+1) + δP +
h∑

j=1

v∗jYh−j+1

⎞
⎠

= c

⎛
⎝ μ∑

j=1

v∗jγjP + δP +
m∑

j=μ+1

v∗j Yh−j+1

⎞
⎠

=

⎛
⎝δ +

μ∑
j=1

v∗jγj

⎞
⎠ Q + c

m∑
j=μ+1

v∗jYh−j+1

This C′ cannot be computed by B without the knowledge of c. To see this note
that B knows Q, the Y ’s, the γ’s and δ. If B can compute C′ then using the
knowledge of these quantities, B can also compute c.

A difference in the BB-HIBE and the BBG-HIBE is that in the former,
components of identities are elements of Zp, whereas in the later the identity
components are elements of Z

∗
p. It is an easy observation that if zero is allowed

to be an identity component, then the BBG-HIBE is not secure. A sketch of
the argument is as follows. In the s-ID game, an adversary has to commit to
an identity before the HIBE is set-up. Let adersary A commit to an identity
v∗ = (v∗1 , . . . , v∗k) for some k with 1 ≤ k < h. In the query phase, A issues a
private key query for the identity v = (v∗1, . . . , v

∗
k, 0) which is a valid query if 0

is allowed. In return, A is provided the private key of dv = (d0, d1, . . .). Then
d0 = αP2 + r(v∗1Q1, . . . , v

∗
kQk + 0 · Qk+1 + P3) and d1 = rP for some random
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r ∈ Zp. Using (d0, d1), A can decrypt any message encrypted for v∗. Removing 0
from the identity space avoids this situation and allows a proof of the BBG-HIBE
in the s-ID model.

7.2 Modified Security Reduction for the BBG-HIBE.

We modify the security reduction of BBG-HIBE in the following way. Suppose,
as before that the adversary committed to an identity tuple v∗ = (v∗1 , . . . , v∗m) in
the commitment stage. During setup, B choses a random μ from {1, . . . , m} and
forms the public parameters as in the original reduction of [Boneh et al., 2005]
assuming that v+ = (v∗1 , . . . v

∗
μ) will be the target identity in challenge stage.

This means that during setup, the simulator augments v+ by appending zeros
and forming a tuple of length h.

The above change does not affect the simulator’s ability to answer key-
extraction queries. During the challenge phase, the simulator can form a proper
encryption only if the target identity tuple is v+. The actual target identity
submitted by the adversary has to be a prefix of v∗. If this is not equal to
v+, the simulator aborts the game and outputs one with probability half. Oth-
erwise, it returns a proper challenge ciphertext as in the original reduction
in [Boneh et al., 2005].

Since, 1 ≤ μ ≤ m ≤ h and μ is chosen uniformly at random, we have
Pr[abort] ≥ 1/h. This leads to a multiplicative degradation by a factor of h, i.e.,
ε ≤ hε′, where ε is the maximum advantage of attacking the BBG-HIBE and ε′

is the maximum advantage of solving h-wDBDHI∗.

7.3 Passing From s-ID model to the s+-ID model.

It is not difficult to see that the idea of modifying the proof of the BBG-HIBE
protocol to attain security in the s+-ID model is quite general. This idea does
not depend upon the particular algebraic construction of the BBG-HIBE and
hence can be applied to any HIBE which is secure in the s-ID model. Thus, any
HIBE which is secure in the s-ID model is also secure in the s+-ID model but
with a security degradation by a factor of h. Though small, in certain cases this
can be avoided, e.g., the BB-HIBE and G1 as shown earlier. The other issue is
that the s-ID and the s+-ID models are really restrictive security models and it
would be nice to obtain tight security reductions in these models.

8 Augmenting to M+
2

Like the augmentation of the selective-ID model to selective+-ID model, we can
augment M2 proposed in [Chatterjee and Sarkar, 2006a] in an obvious way to
M+

2 . Suppose the adversary of an h-HIBE has committed to a set of target
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identities, I∗
1 , . . . , I∗

u where u ≤ h. Then in the challenge phase it outputs a
target identity v∗1 , . . . , v

∗
u′ where 1 ≤ u′ ≤ u and each v∗j ∈ I∗

j .
The HIBE H2 proposed in [Chatterjee and Sarkar, 2006a] is also secure in

M+
2 . ccHIBE of [Chatterjee and Sarkar, 2006b] secure in M2 can be proved to

be secure in M+
2 with a multiplicative security degradation of h. Here, we show

how G1 can be augmented to M+
2 .

8.1 Construction

We augment G1 to obtain security in model M+
2 and call this new protocol

(h, n1, . . . , nh)-G2 or simply G2.
The maximum height of the HIBE be h. The identities at a depth u ≤ h are

of the form v = (v1, . . . , vu) ∈ (Zp)u. Messages are elements of G2.
Setup: Let 〈P 〉 = G1. Choose a random α ∈ Zp and set P1 = αP . Choose a

random element P2 ∈ G1 and a random h length vector −→
P 3 = (P3,1, . . . , P3,h),

where each P3,i ∈ G1. Also choose random vectors −→
Q1, . . . ,

−→
Qh where each −→

Q i

consists of ni elements of G1. Set the public parameter as

PP = (P, P1, P2,
−→
P 3,

−→
Q1, . . . ,

−→
Qh)

while the master key is P4 = αP2. Instead of P1, P2, e(P1, P2) can also be kept
as part of PP. This avoids the pairing computation during encryption.

Note that, while the original BBG scheme and
ccHIBE of [Chatterjee and Sarkar, 2006b] had a single element P3 in the public
parameter, we have a vector −→

P 3 of length h.
Key-Gen: Let, V (i, y) = yniQi,ni + · · · + yQi,1 for any y ∈ Zp. Given an

identity v = (v1, . . . , vk) ∈ Z
k
p of depth k ≤ h, pick a random r ∈ Zp and output

dv =

⎛
⎝αP2 + r

k∑
j=1

Vj , rP, rP3,k+1, . . . , rP3,h, r
−→
Qk+1, . . . , r

−→
Qh

⎞
⎠

where Vj = P3,j + V (j, vj). The private key at level k consists of (2 + h − k +∑h
i=k+1 ni) elements of G1. Among these, only the first two are required in

decryption, the rest are used to generate the private key for the next level as
follows:
Let the secret key corresponding to the identity v|k−1 = (v1, . . . , vk−1) be

dv|k−1 = (A0, A1, Bk, . . . , Bh,
−→
C k, . . . ,

−→
C h)

where A0 = αP2 + r′
∑k−1

j=1 Vj , A1 = r′P , and for k ≤ j ≤ h, Bj = r′P3,j ,−→
C j = r′Qj,1, . . . , r

′Qj,nj = 〈Cj,nj 〉 Pick a random r∗ ∈ Zp and compute

dv = (A0 + Bk +
∑nk

i=1 vi
kCk,i + r∗

∑k
j=1 Vj , A1 + r∗P,

Bk+1 + r∗P3,k+1, . . . , Bh + r∗P3,h,−→
C k+1 + r∗−→Qk+1, . . . ,

−→
C h + r∗−→Qh).
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If we put r = r′ + r∗, then dv is a proper private key for v = (v1, . . . , vk).
Encrypt: To encrypt M ∈ G2 under the identity (v1, . . . , vk) ∈ (Zp)k, pick

a random s ∈ Zp and output

CT =

⎛
⎝e(P1, P2)s × M, sP, s

⎛
⎝ k∑

j=1

Vj

⎞
⎠

⎞
⎠

where Vj is as defined in Key Generation.
Decrypt: To decrypt CT = (A, B, C) using the private key dv = (d0, d1, . . .)

of v = (v1, . . . , vk), compute

A × e(d1, C)
e(B, d0)

= e(P1, P2)s × M ×
e
(
rP, s

∑k
j=1 Vj

)

e
(
sP, αP2 + r

∑k
j=1 Vj

) = M.

8.2 Security

Semantic security (i.e., CPA-security) of the above scheme in model M+
2 is

proved under the h-wDBDHI∗ assumption. Note that, the additional flexibility
in terms of choosing the target identity that we allowed to the adversary in the
s+-ID model is also applicable here.

Theorem 8.1. Let n1, . . . , nh, q and n′
1, . . . , n

′
h be two sets of positive integers

with n′
i ≤ ni for 1 ≤ i ≤ h. Then for t ≥ 1, q ≥ 1

Adv
(h,n1,...,nh)-G2

(h,n′
1,...,n′

h)-M+
2

(t, q) ≤ Advh-wDBDHI∗(t + O(τnq))

where n =
∑h

i=1 ni.

Proof : Suppose A is a (t, q)-CPA adversary for G2, then we construct an
algorithm B that solves the h-wDBDHI∗ problem. B takes as input a tuple
〈P, Q, Y1, . . . , Yh, T 〉 where Yi = αiP for some random α ∈ Z

∗
p and T is either

equal to e(P, Q)αh+1
or a random element of G2. We define the modified M+

2

game between B and A as follows.
Initialization: A outputs sets of target identities for each level of the HIBE

as (I∗
1 , . . . , I∗

u) where each I∗
i is a set of cardinality n′

i for any u ≤ h.
Setup: B defines polynomials F1(x), . . . , Fh(x) where for 1 ≤ i ≤ u,

Fi(x) =
∏

v∈I∗
i

(x − v)

= xn′
i + ai,n′

i−1x
n′

i−1 + . . . + ai,1x + ai,0
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For u < i ≤ h, define Fi(x) = ai,0 where ai,0 is a random element of Z
∗
p. For

1 ≤ i ≤ u, let ai,n′
i

= 1 and ai,ni = · · · = ai,n′
i+1 = 0. For u < i ≤ h we set

n′
i = 0 and ai,ni = · · · = ai,1 = 0. For 1 ≤ i ≤ h define

Ji(x) = bi,nix
ni + bi,ni−1x

ni−1 + . . . + bi,1x + bi,0

where bi,j are random elements of Zp. It then sets

P1 = Y1 = αP ; P2 = Yh + βP = (αh + β)P ;
and for 1 ≤ i ≤ h, 1 ≤ j ≤ ni,

Qi,j = bi,jP + ai,jYh−i+1;
P3,j = bi,0P + ai,0Yh−i+1.

B declares the public parameters to be

(P, P1, P2,
−→
P 3,

−→
Q1, . . . ,

−→
Qh),

where −→
P 3 = (P3,1, . . . , P3,h) and −→

Q i = (Qi,1, . . . , Qi,ni). The corresponding
master key αP2 = Yh+1 + βY1 is unknown to B. The distribution of the public
parameter is as expected by A. Phase 1: Suppose A asks for the private key
corresponding to an identity v = (v1, . . . , vh′) for h′ ≤ h. Note that for any
i ≤ η′,

Vi = P3,i +
ni∑

j=1

vj
i Qi,j

= bi,0P + ai,0Yh−i+1 +
ni∑

j=1

vj
i (bi,jP + ai,jYh−i+1)

= Fi(vi)Yh−i+1 + Ji(vi)P.

Hence, Vi is computable from what is known to B.
Recall that A initially committed to sets of identities up to level u before the

set-up phase. If h′ ≤ u, then there must be a k ≤ h′ such that Fk(vk) �= 0, as
otherwise vj ∈ I∗

j for each j ∈ {1, . . . , h′} – which the adversary is not allowed
by the rules of the Game. In case h′ > u, it is possible that F1(v1) = · · · =
Fu(vu) = 0. Then by construction Fu+1 �= 0. So, in either case there is a k such
that Fk(vk) �= 0. Moreover, k is the first such index in the range {1, . . . , h′}. B
picks a random r ∈ Zp and assigns d0|k = (−Jk(vk)/Fk(vk))Yk + βY1 + rVk and
d1 = (−1/Fk(vk))Yk + rP. Now,

d0|k = − Jk(vk)
Fk(vk)

Yk + βY1 + αkYh−k+1 − αk Fk(vk)
Fk(vk)

Yh−k+1 + rVk

= − Jk(vk)
Fk(vk)

αkP + αP2 − αk Fk(vk)
Fk(vk)

Yh−k+1 + rVk

= αP2 + r̃Vk
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where r̃ = (r − αk

Fk(vk) ). Also d1 = − 1
Fk(vk)Yk + rP = − αk

Fk(vk)P + rP = r̃P . For
any j ∈ {1, . . . , h′} \ {k} we have

r̃Vj = (r − αk

Fk(vk)
)(Fj(vj)Yh−j+1 + Jj(vj)P )

= r(Fj(vj)Yh−j+1 + Jj(vj)P ) − 1
Fk(vk)

(Fj(vj)Yh+k−j+1 + Jj(vj)Yk).

Recall that, k is the smallest in the range {1, . . . , h′}, such that, Fk(vk) �= 0.
Hence, for j < k, Fj(vj) = 0 and r̃Vj = rJj(vj)P − Jj(vj)Yk

Fk(vk) . For j > k, Yh+k−j+1

varies between Y1 to Yh. So B can compute all these r̃Vjs from the information
it has. It forms

d0 = d0|k +
∑

j∈{1,...,h′}\{k}
r̃Vj = αP2 + r̃

h′∑
j=1

Vj .

To form a valid private key, B also needs to compute r̃P3,i and r̃
−→
Q i for h′ < i ≤ h.

Now,

r̃P3,i =
(

r − αk

Fk(vk)

)
(bi,0P + ai,0Yh−i+1)

= r(bi,0P + ai,0Yh−i+1) − 1
Fk(vk)

(bi,0Yk + aj,0Yh+k−i+1) ;

r̃Qi,j =
(

r − αk

Fk(vk)

)
(bi,jP + ai,jYh−i+1)

= r(bi,jP + ai,jYh−i+1) − 1
Fk(vk)

(bi,jYk + ai,jYh+k−i+1) .

All these values are computable from what is known to B. Hence, B forms the
private key as:

dv =
(
d0, d1, r̃P3,τ+1, . . . , r̃P3,h, r̃

−→
Qτ+1, . . . , r̃

−→
Qh

)

and provides it to A.
Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈

G2 together with a target identity v∗ = (v∗1 , . . . , v∗u′), u′ ≤ u, on which it wishes
to be challenged. The constraint is each v∗j ∈ I∗

j and hence Fj(v∗j ) = 0 for
1 ≤ j ≤ u′ ≤ u. B picks a random b ∈ {0, 1} and provides A the challenge
ciphertext

CT =

⎛
⎝Mb × T × e(Y1, βQ), Q,

⎛
⎝ u′∑

i=1

Ji(v∗i )

⎞
⎠ × Q

⎞
⎠ .
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Suppose, Q = γP for some unknown γ ∈ Zp. Then

u′∑
j=1

Jj(v∗j )Q = γ

u′∑
j=1

(
Jj(v∗j )P + Fj(v∗j )Yh−j+1

)

= γ

⎛
⎝ u′∑

j=1

Vj

⎞
⎠ .

If the input provided to B is a true h-wDBDHI∗ tuple, i.e., T = e(P, Q)(α
h+1),

then

T × e(Y1, βQ) = e(P, Q)(α
h+1) × e(Y1, βQ) = e(Yh + βP, Q)α = e(P1, P2)γ .

So, the challenge ciphertext is

CT =

⎛
⎝Mb × e(P1, P2)γ , γP, γ

⎛
⎝ u′∑

j=1

Vj

⎞
⎠

⎞
⎠ .

CT is a valid encryption of Mb under v∗ = (v∗1 , . . . , v
∗
u′). On the other hand,

when T is random, CT is random from the view point of A.
Phase 2: This is similar to Phase 1. Note that A places at most q queries

in Phase 1 and 2 together.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}. B outputs 1 ⊕ b ⊕ b′.
A’s view in the above simulation is identical to that in a real attack. This

gives us the required bound on the advantage of the adversary in breaking the
HIBE protocol.

9 Product Scheme

Boneh-Boyen-Goh [Boneh et al., 2005] had proposed a “product” construction
based on the BBG-HIBE and the BB-HIBE. A similar construction is possible
based on the HIBE G1 of Section 5 and BB-HIBE. The resulting HIBE is secure
in s+-ID model. On the other hand,
in [Chatterjee and Sarkar, 2006a] we have presented a construction H1 which is
secure in model M1. This construction is in a sense an extension of the BB-
HIBE. We propose a composite scheme based on H1 and G2 which we denote as
(h, n)-G3 or simply G3, where h is the maximum number of levels in G3 and n is
a parameter that comes from the underlying security model M1.

The essential idea, as in [Boneh et al., 2005] is to form a product of two
HIBEs. For this we represent an identity tuple in the form of a matrix (say II)
having (a-priori) fixed number of columns, 	2 (say). When we look at a row of
II, it forms a constant-size ciphertext HIBE, H, while each row taken together
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as a single identity forms another HIBE, H′. We obtain a product construction
by instantiating H′ to be H1 of [Chatterjee and Sarkar, 2006a] and H to be the
constant-size ciphertext HIBE G2 of Section 8. In this case, the components of
the identity tuples are from Zp and we obtain security in M1. Since M1 allows
the target identity to be of any length up to the maximum height of the HIBE,
the adversary has the flexibility to choose the length of the target identity in the
challenge phase.

9.1 Construction

Let the maximum depth of the HIBE be h ≤ 	1 × 	2. Here individual identity
components are elements of Zp. Setup: Let P be a generator of G1. Choose a
random secret x ∈ Zp and set P1 = xP . Randomly choose P2; an 	1 × 	2 matrix
R where

R =

⎡
⎢⎣

R1,1 · · · R1,�2
...

...
...

R�1,1 · · · R�1,�2

⎤
⎥⎦

and 	2 many vectors −→
U1, . . . ,

−→
U�2 from G1, where each −→

Ui = (Ui,1, . . . , Ui,n), n

being a parameter. The public parameters are 〈P, P1, P2,R,
−→
U1, . . . ,

−→
U�2〉, while

the master secret is xP2.
Key Generation: Given an identity v = (v1, . . . , vu), for any u ≤ h, this

algorithm generates the private key dv of v as follows.
Let u = k1	2 + k2 with k2 ∈ {1, . . . , 	2}. We represent v by a (possibly

incomplete) (k1 + 1) × 	2 matrix I where the last row has k2 elements. Choose
(k1 + 1) many random elements r1, . . . , rk1 , rk2 ∈ Zp and output

dv = (xP2 +
k1∑

i=1

ri

�2∑
j=1

(Vi,j + Ri,j) + rk2

k2∑
j=1

(Vk1+1,j + Rk1+1,j) , r1P, . . . , rk1P,

rk2P, rk2Rk1+1,k2+1, . . . , rk2Rk1+1,�2 , rk2

−−−→
Uk2+1, . . . , rk2

−→
U�2

)
= (a0, a1, . . . , ak1 , ak1+1, bk2+1, . . . , b�2 ,

−→c k2+1, . . . ,−→c �2) say.

where Vi,j =
∑n

k=1 vk
i,jUj,k and rk2

−→
Ui denotes that each element of −→Ui is multi-

plied by the scalar rk2 .
Note: Here u = k1	2 + k2, so the first k1	2 components of the identity tuple

can be arranged as the first k1 rows of a matrix having 	2 many columns. Each
of these rows taken separately can be viewed as an identity tuple for a constant-
size ciphertext HIBE, H, having maximum depth 	2. Similarly, the last k2 ≤ 	2

components of the identity tuple can be viewed as a separate identity tuple of
the same constant-size ciphertext HIBE. Next, we view each of the first k1 rows
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as a single identity component of another HIBE, H′. We now take a closer look
at the structure of dv. Let,

a0 = xP2 +
k1∑
i=1

ri

�2∑
j=1

(Vi,j + Ri,j) + rk2

k2∑
j=1

(Vk1+1,j + Rk1+1,j)

= A1 + A2 + A3

Here, A1 = xP2 is the master key and A2 + A3 is used to generate the private
key for v by suitably masking the master secret. A2 =

∑k1
i=1 ri

∑�2
j=1 (Vi,j + Ri,j)

– the inner sum is over a single row which forms a full-length identity tu-
ple for the constant-size ciphertext HIBE H; while the outer sum is over the
first k1 rows where we treat each row as a single identity component for H′.
A3 = rk2

∑k2
j=1 (Vk1+1,j + Rk1+1,j) is for the remaining row having k2 ≤ 	2

many elements and this row forms an identity tuple of depth k2 for H. Alto-
gether we have k1 + 1 levels in H′ and a1, . . . , ak1+1 correspond to each of these
levels. These elements i.e, (a0, a1, . . . , ak+1) are sufficient for decryption as we
will see in the Decryption algorithm. The rest of the elements, i.e., bis and −→c is
are required for generating the private key for the next level as we show below.

The private key of v can also be generated given the private key of v|u−1 =
v1, . . . , vu−1 as required. There are two cases to be considered.

Case 1: Suppose u − 1 = k1	2 + 	2 = (k1 + 1)	2, then

dv|u−1
=

⎛
⎝xP2 +

k1+1∑
i=1

ri

�2∑
j=1

(Vi,j + Ri,j) , r1P, . . . , rk1P, rk1+1P

⎞
⎠

= (a0, a1, . . . , ak1 , ak1+1) (say)

Choose a random r∗ ∈ Zp and form dv as

dv = (a0 + r∗(Vk1+2,1 + Rk1+2,1), a1, . . . , ak1+1, r
∗P,

r∗Rk1+2,2, . . . , r
∗Rk1+2,�2 , r

∗−→U2, . . . , r
∗−→U�2).

Case 2: Let, u − 1 = k1	2 + k′
2 with k′

2 < 	2 then,

dv|u−1
= xP2 +

k1∑
i=1

ri

�2∑
j=1

(Vi,j + Ri,j) + r′k2

k′
2∑

j=1

(Vk1+1,j + Rk1+1,j) , r1P, . . . ,

rk1P, r′k2
P, r′k2

Rk1+1,k′
2+1, . . . , r

′
k2

Rk1+1,�2 , r
′
k2

−→
U k′

2+1, . . . , r
′
k2

−→
U �2

)
= (a0, a1, . . . , ak1 , ak1+1, bk′

2+1, . . . , b�2,
−→c k′

2+1, . . . ,
−→c �2) (say)

Choose a random r∗ ∈ Zp and form dv as

dv = a0 +
n∑

j=1

vj
uck′

2+1,j + bk′
2+1 + r∗

k′
2+1∑
j=1

(Vk1+1,j + Rk1+1,j) , a1, . . . , ak1 ,
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ak1+1 + r∗P, bk′
2+2 + r∗Rk1+1,k′

2+2, . . . , b�2 + r∗Rk1+1,�2 ,

−→c k′
2+2 + r∗−→U k′

2+2, . . . ,−→c �2 + r∗−→U �2

It can be verified that dv is a proper private key for v.
Encrypt: To encrypt a message M ∈ G2 under the public key

v = (v1, . . . , vu) choose a random s ∈ Zp and then the ciphertext is

C =

 
e(P1, P2)

s × M, sP, s

�2X
j=1

(V1,j + R1,j),

. . . ,

�2X
j=1

(Vk1,j + Rk1,j) , s

k2X
j=1

(Vk1+1,j + Rk1+1,j)

!

= (A,B, C1, . . . , Ck1 , Ck1+1) (say)

where Vi,j is as defined in Key Generation part. Each Ci correponds to the ith
row of the identity matrix for v.

Decrypt: Let CT = (A, B, C1, . . . , Ck1 , Ck1+1) be a cipher text and v =
v1, . . . , vu be the corresponding identity represented as a (k1 + 1) × 	2 matrix.
Then we decrypt CT using dID = (d0, d1, . . . , dk1+1, . . .) as

A ×
∏k1+1

i=1 (di, Ci)
e(B, d0)

= M.

9.2 Security

Security of the above hybrid construction in the generalised selective-ID model
(h, n′)-M1 of [Chatterjee and Sarkar, 2006a] can be reduced from the hardness
of 	2-wDBDHI∗ problem. Here we give a sketch of the proof.

Theorem 9.1. Let h, n, q be positive integers and n′ be another positive integer
with n′ ≤ n. Then

Adv
(h,n)-G3

(h,n′)-M1
(t, q) ≤ Adv�2−wDBDHI∗(t + O(τnq)).

Proof : We want to prove (h, n)-G3 secure in model (h, n′)-M1 using a re-
ductionist security argument where 1 ≤ n′ ≤ n. This means that the public
parameters of the HIBE depend on n, while the adversary commits to a set I∗

of size n′ in the commit phase.
The simulator is provided with a tuple 〈P, Q, Y1, . . . , Y�2 , T 〉 ∈ G�2+2

1 × G2.
It has to decide whether this is a proper 	2-wDBDHI∗ instance or not.

Adversary’s commitment: A commits to a set I∗, where |I∗| = n′. The
restriction on the adversary is that in the private key extraction query at least
one component of the identity tuple should be outside I∗; while in the challenge
phase it asks for the encryption under an identity v∗ all of whose components
are from I∗.
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Set-up: The simulator defines

F (x) =
∏

v∈I∗
(x − v) = xn′

+ · · · + a1x + a0

J
(j)
i (x) = bi,nxn + · · · + bi,1x + b

(j)
i,0 for 1 ≤ i ≤ 	1, 1 ≤ j ≤ 	2

where each bi,k and b
(j)
i,0 is chosen at random from Z

∗
p. Define an′ = 1 and

an = an−1 = · · · = an′+1 = 0. The simulator defines P1 = Y1, P2 = Y�2 + βP in
a similar manner as in the set-up of Section 6. It further defines Ui,j = bi,jP +
aiYh−i+1 for 1 ≤ i ≤ 	2, 1 ≤ j ≤ n and Rk,j = b

(j)
k,0P + a0Y�2−j+1 for 1 ≤ k ≤ 	1,

1 ≤ j ≤ 	2.
The simulator gives the public parameters 〈P, P1, P2,R,

−→
U1, . . . ,

−→
U�2〉 to A,

while the corresponding master secret is unknown to the simulator.
Phase 1: Suppose A asks for the private key of an identity v = v1, . . . , vm

where m = k1 × 	2 + k2. The simulator first forms the (k1 + 1) × 	2 matrix
I where v1 is indexed as v1,1 and vm as vk1+1,k2 . The last row of the ma-
trix may have elements less than 	2. As per the rule of the game there is at
least one identity, say vl, such that F (vl) �= 0. Suppose, vl is indexed as k′

1, k
′
2

in I. Now consider the identity tuple (vk′
1,1, . . . , vk′

1,k′
2
). This by itself can be

seen as a valid identity tuple of depth k′
2 for the HIBE H. Using the tech-

nique of Section 6, the simulator forms a private key for (vk′
1,1, . . . , vk′

1,k′
2
) as

(a′
0, ak′

1
, bk′

2+1, . . . , b�2 ,
−→c k′

2+1, . . . ,−→c �2). Note that, this is a valid private key for
an identity tuple of depth k′

2 in the constant-size ciphertext HIBE H. It next
chooses r1, . . . , rk′

1−1 ∈ Zp and computes the private key for (v1, . . . , vl) as

a0 = a′
0 +

k′
1−1∑
i=1

ri

�2∑
j=1

(Vi,j + Ri,j)

ai = riP for 1 ≤ i ≤ k′
i − 1

Note that, Vi,j =
∑n

k=1 vk
i,jUj,k, so

Vi,j + Ri,j =
n∑

k=1

vk
i,jUj,k + Ri,j

=
n∑

k=1

vk
i,j(bj,kP + ajY�2−j+1) + b

(j)
i,0P + a0Y�2−j+1

= F (vi,j)Y�2−j+1 + J
(j)
i (vi,j)P

The simulator can compute all these from the information it possesses. Hence,

(a0, a1, . . . , ak′
i−1, ak′

1
, bk′

2+1, . . . , b�2 , ck′
2+1, . . . , c�2)

is a proper private key for v1, . . . , vl from which the simulator forms a private
key for v and gives it to A.
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Challenge: At this stage, A produces two equal length messages M0, M1 ∈
G2 and a challenge identity v∗. The challenge identity v∗ = (v∗1 , . . . , v

∗
u) should

have each vj ∈ I∗ and hence F (v∗j ) = 0 for 1 ≤ j ≤ u. Based on this fact the
simulator is able to form a proper encryption of Mγ where γ is chosen uniformly
at random from {0, 1}, if the tuple provided to it is a true h-wDBDHI∗ instance.

Phase 2: The key extraction queries in this stage are handled as in Phase 1.
Guess: The adversary outputs a guess γ′. The simulator outputs 1 if γ = γ′,

else it outputs 0.
A’s view in the above simulation is identical to that in a real attack if the

given instance is a true 	2-wDBDHI∗ instance.
The above shows that an adversary’s ability to attack (h, n)-G3 HIBE in

model (h, n′)-M1 can be converted into an algorithm for solving 	2-wDBDHI∗

problem. The bound on the advantage follows from this fact.
Note that, in the commitment stage we may give the adversary some more

flexibility by allowing it to commit to sets of identities I∗
1 , . . . , I∗

h, where I∗
j

corresponds to the commitment for the jth level of the constant-size ciphertext
HIBE. In this case the restrictions in M2 regarding the private key queries and
challenge generation apply. This added flexibility, however, does not affect the
efficiency of the protocol.

10 Discussion

The private key corresponding to an identity in a HIBE has two roles. The first
role is to enable decryption of a message encrypted using this identity, while
the second role is to enable generation of lower level keys. Not all components
of the private key are necessarily required for decryption, i.e., the decryption
subkey can have strictly fewer components than the whole private key. This
has also been observed in [Boneh et al., 2005] and in case of the BBG-HIBE, the
decryption subkey consists of only two components. In G1 and G2, the decryption
subkeys also consist of two components as in the BBG-HIBE. In G3 the size of
the decryption subkey is reduced by a factor of h compared to the size of the
decryption subkeys in H1.

Having a small decryption subkey is important, since the decryption subkey
may need to be loaded on to smart cards for frequent and online decryptions.
This is achieved in all the HIBE constructions described in this work. On the
other hand, the entire private key is required for key delegation to lower level
entities. Key delegation is a relatively infrequent activity which will typically be
done by an entity from a workstation. Storage in a workstation is less restrictive
and a larger size private key required only for key delegation is more tolerable.

The size of the private key in the BBG-HIBE and G1 is proportional to the
number of levels in the HIBE. For G2 this size is proportional to n× h, where h
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is the number of levels of the HIBE and n is the maximum number of challenge
identities that the adversary can commit to for any level. The size of the private
key in G3 varies cyclically with the number of components j in the identity. Let
j = j1h+j2, where h is the number of levels in H used in the product construction
and j2 ∈ {1, . . . , h}. The size of the private key then varies as j1+n×j2, where n

is the number of elements in the set from which the adversary can construct the
challenge identity. Since j2 varies in a cyclic manner with period h, the size of the
private key also shows a similar behaviour. (A similar behaviour is also shown by
the size of the private key in the product construction in [Boneh et al., 2005].) A
modification of the protocols eliminates the dependence of the size of the private
key on j2. Suppose that key delegation is only allowed to be performed by the
PKG and entities at levels h, 2h, 3h, . . .. For example, in a big organisation,
the hierarchy may be divided into sub-hierarchies. The entities at levels h, 2h

etcetera are the system administrators for the sub-hierarchy of depth h and
the delegation of private key is solely managed by them. The other entities in
the sub-hierarchy are not involved with the business of key-delegation but they
can still access the secret information encrypted for their subordinates. In this
scenario, the size of the private key varies only with j1 and in fact, the private
key and the decryption subkey become identical.

11 Conclusion

In this work, we have augmented the selective-ID security model for hierarchical
identity-based encryption by allowing the adversary some flexibility in choosing
the target identity tuple during the challenge phase of the security reduction.
We have denoted this model by selective+-ID model (s+-ID model). The Boneh-
Boyen HIBE satisfies this notion of security while the constant-size ciphertext
HIBE of Boneh, Boyen and Goh needs some modification in the security reduc-
tion to do so. This modification introduces a multiplicative security degradation.
We have further augmented the BBG-HIBE to construct a new protocol secure
in s+-ID model without any degradation which maintains all the attractive fea-
tures of BBG-HIBE. We build on this new construction another constant-size
ciphertext HIBE. The security of our second construction is proved under a gen-
eralization of the selective-ID security model. Our third construction of HIBE
is a “product” construction that allows a controllable trade-off between the ci-
phertext size and the private key size.
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A The Case of Boneh-Boyen HIBE

The original reduction in [Boneh and Boyen, 2004] goes through without almost
any modification for the s+-ID model. The only change is in challenge generation
as described below.

Initialization: A commits to a target identity v∗ = (v∗1 , . . . , v
∗
k) of height

k ≤ h. If k < h, B adds extra random elements from Zp to make v∗ an identity
of height h.

Setup: B picks random α1, . . . , αh ∈ Zp and defines Qj = αjP − v∗j P1 for
1 ≤ j ≤ h. It gives A the public parameters PP = 〈P, P1, P2, Q1, . . . , Qh〉. Here
the msk = aP2 = abP is unknown to B. Define the function Fj(x) = xP1 +Qj =
(x − v∗j )P1 + αjP for 1 ≤ j ≤ h.

Phase 1 and Phase 2: As in [Boneh and Boyen, 2004].
Challenge: After completion of Phase 1, A outputs two messages M0, M1 ∈

G2 and an identity tuple v+ = (v∗1 , . . . , v∗τ ), τ ≤ k. B chooses a random bit γ and
forms the ciphertext C = (Mγ ·Z, cP, α1cP, . . . , ατcP ). Note that, Fi(v∗i ) = αiP ,
so

C = 〈Mγ · Z, cP, cF1(v∗1), . . . , cFτ (v∗τ )〉.
If Z = e(P, P )abc = e(P1, P2)c then C is a valid encryption of Mγ .
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