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Abstract: A novel support vector machine method for classification is presented in
this paper. A modified kernel function based on the similarity metric and Rieman-
nian metric is applied to the support vector machine. In general, it is believed that
the similarity of homogeneous samples is higher than that of inhomogeneous samples.
Therefore, in Riemannian geometry, Riemannian metric can be used to reflect local
property of a curve. In order to enlarge the similarity metric of the homogeneous sam-
ples or reduce that of the inhomogeneous samples in the feature space, Riemannian
metric is used in the kernel function of the SVM. Simulated experiments are performed
using the databases including an artificial and the UCI real data. Simulation results
show the effectiveness of the proposed algorithm through the comparison with four
typical kernel functions without similarity metric.

Key Words: Support vector machine, Riemannian metric, Similarity metric

Category: H.3.7, H.5.4

1 Introduction

Support vector machine (SVM) is a novel machine learning method based on sta-
tistical learning theory. SVM is a powerful tool for solving problems with small
samples, nonlinearities, high dimension and local minima. The theory of support
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vector machines was first introduced by Vapnik and was developed from the the-
ory of the structural risk minimization [Vapnik 1995, Cortes and Vapnik 1995,
Cherkassky and Mulier 1998]. In recent years, SVM has been used in many ap-
plications successfully, such as pattern recognition, regression analysis, function
approximation and signal processing, etc.

Currently, the study on SVM theory concentrates mainly on the following
three aspects: the first aspect is that the classical algorithms for SVM are mod-
ified to achieve higher computation speed and expand application scope; the
second one is that the kernel function is modified to improve the performance
of a SVM classifier, and the last one is that the decision functional forms are
simplified for SVM. The work in this paper is related to the second topic.

The study on the kernel function is mostly keeping a watchful eye on how
to improve its classifying ability of a given kernel function. Steinwart et al.
[Steinwart 2001, Cristianini et al. 2000] have studied deeply on the properties
of the kernel function. Because of their outstanding work on this subject, their
idea becomes almost the main aspect of the current study on the kernel function.
But a given kernel function only reflects the inner product measure of the input
samples in the feature space. Considering the same measure, there might be
many different types of mapping. Therefore, what degree can the properties of
the kernel function be analyzed? Is it enough to solve the problem of the kernel
function selection based on the analysis? It is worthy to considering that whether
the corresponding kernel function can be selected according to different data set
in stead of the present method in which the given kernel function does not have
any changed to be used to all the data set. At present, the theory of the kernel
function selection isn’t enough to be used in guiding the selection of the kernel
function. In practical, different kernel functions will be tried out according to
the given data set. And then the kernel function having the best test result will
be selected as the kernel function in SVM. But improving the kernel function
based on the properties of kernel function is effective, as we will demonstrate in
the following sections.

2 Similarity Metric

In the field of machine learning, what we need to do in most cases is to derive
some rules and to discover knowledge from the relational database. Similarity
should be considered here. For instance, in a classification problem let the train-
ing set be

T = {(x1, y1), . . . , (xl, yl)} ∈ (X × Y )l,

where xi ∈ X ⊂ Rn, yi ∈ Y = {−1, 1}, i = 1, 2, . . . , l.
A decision function will be derived from the above training samples, and

then the corresponding output y should be predicted for an input x according to
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this decision function to decide its class label. An intuitionistic idea to solve this
problem is to estimate which samples the input x is similar with, the positive
or negative samples, and then to decide the corresponding class that it belongs
to. If the input x is similar to the positive samples, the corresponding output y

should be +1, or else−1. This idea is reasonable because the similar inputs lead
to the same output values. For this reason, it would be necessarily to describe
the similarity metric.

The similarity of points in space Rn can be measured by the distance and
cosine of two vectors, i. e.,

‖x − x
′‖ =

√
(x · x) − 2(x · x′) + (x′ · x′), (1)

and

cosβ =
(x · x′

)
‖x‖ · ‖x′‖ =

(x · x′
)√

(x · x) · (x′ · x′)
. (2)

Thus it can be seen that we could directly use the inner product of vectors
as a similarity measure.

In general, the form of the SVM decision function turns out to be

f(x) =
∑

i∈SV

αiyiK(xi, x) + b. (3)

From Eq. (3), we can realize that the final output value of the SVM decision
function is only dependent on the inner product in the transformed Hilbert space.

K(xi, x
′
j) = (Φ(xi) · Φ(x

′
j)), i, j = 1, 2, . . . , l. (4)

SVM performs a nonlinear mapping of the input vector from the input space
X = Rn into a higher dimensional Hilbert space, where the mapping is deter-
mined by the kernel function. Selecting different kernel functions or different
mapping and the corresponding Hilbert space is equivalent to selecting the dif-
ferent forms of the inner product. It means that the similarity is estimated using
different criterions. Thus it can be seen that the nature of the classification prob-
lem is a similarity problem. In this sense, we can regard support vector machine
as an algorithm for solving similarity problem.

For the samples of homogeneous input, their corresponding output samples
should have greater similarity, namely the similarity of the homogeneous sam-
ples is stronger than that of the inhomogeneous ones. Thus we can compute a
probability pi for each possible output label i given any new input sample x,
which can be performed by taking the weighted average of the known correct
outputs of a number of nearest neighbors [Lowe 1995, Cover and Hart 1967].

Let nj be the weight that is assigned to each of the J (e.g.J = 15) nearest
neighbors, and sij be the known output probability (usually 0 or 1) for label i
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of each neighbor. Then, we obtain a positive scalar function

c(x) = epi = exp(

∑J
j=1 njsij∑J

j=1 nj

) ≥ 0, (5)

where the weight nj assigned to each neighbor is determined by a Gaussian
kernel centered at x

nj = exp(−d2
j/2σ2), (6)

where dj is the distance of the neighbor from x

d2
j =

∑
k

(xk − cjk)2, (7)

where k is the dimension of the input sample, and cj is the input location of
each neighbor.

3 Riemannian Metric

In this section we introduce the Riemannian metric [Palais and Terng 1988,
Schölkopf et al. 1999]. Riemannian metric is a second-order symmetrical non-
degenerate tensor used to measure the distance and angle in a metric space.
When a local coordinate system is selected, metric tensor can be expressed in
the form of a matrix, denoted as G . The symbol gij denotes the component of
the metric tensor traditionally (that is the matrix elements). From the geometri-
cal point of view, the mapping Φ(x) defines an embedding of S into F as a curved
submanifold. When F is a Euclidean or Hilbert space, a Riemannian metric is
thereby induced in the space S , where the length of a small line element dx is
defined by the length in the larger space F .

Denote z as the mapped sample in the feature space, i.e., z = ϕ(x). A small
vector dx is mapped to

dz = ∇ϕ · dx =
∑

i

∂

∂xi
dxi (8)

where ∇ϕ = ( ∂
∂xi

ϕ(x)). The squared length of dz = dzα is written in the
quadratic form as

‖dz‖2 =
∑
α

(dzα)2 =
∑
i,j

gij(x)dxidxj (9)

where
gij(x) = (

∂

∂xi
ϕ(x)) · ( ∂

∂xj
ϕ(x)), (10)
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and the n×n positive definite matrix G(x) = (gij(x)) is the Riemannian metric
tensor induced in S. It can be obtained directly from the kernel

Gij(x) =
∂

∂xi

∂

∂xj
K(x, x

′
)|x=x′ (11)

There are some typical kernel functions. One is radial,

K(x, x
′
) = f(x − x

′
) (12)

which includes the Gaussian RBF kernel,

K(x, x
′
) = e−‖x−x

′‖/2σ2
(13)

The other is the function of the inner product

K(x, x
′
) = f(x · x′

) (14)

which includes the linear kernel K(x, x
′
) = x·x′

, the polynomial kernel of degree
d K(x, x

′
) = (1 + x · xx)d, and the multi-layer perceptron kernel K(x, x

′
) =

tan(K(x · x′
) + θ).

The Riemannian metric for the first case is given by

gij(x) =
∂

∂xi

∂

∂xj
K(x, x

′
)

= −δijf
′
(
1
2
‖x − x

′‖2)|x=x′

−f
′′
(
1
2
‖x − x

′‖2)(xi − x
′
i)(xj − x

′
j)‖x=x′

= −f
′
(0)δij (15)

In particular for the Gaussian RBF kernel, we have

gij(x) =
1
σ2

δij (16)

The metric for the inner product case can be calculated in a similar way, and
is given by

gij(x) = f
′
(0)δij + xixjf

′′
(0) (17)

The volume form in a Riemannian space is defined as

dV =
√

g(x)dx1 · · ·dxl (18)

where g(x) = det|gij(x)| . The factor
√

g(x) represents how a local area is
magnified or reduced in F under the mapping Φ(x)[Wu et al. 2002].
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4 Improving Kernel Function Based on the Similarity Metric

In Section 3, some knowledge on the kernel function and similarity metric are
described. Now, introducing the similarity metric function Eq. (5) into the kernel
function, we could have a new kernel function as follows [Wu et al. 2002]

K̃(x, x
′
) = c(x)c(x

′
)K(x, x

′
) (19)

Lemma1. (Positivity Condition for Mercer kernels [Cristianini et al. 2000])
A kernel K : Rn × Rn → R : is a Mercer kernel if and only if the matrix
[K(xi, xj)] ∈ Rn×n is positive semi-definite for all choices of points x1, x2, · · · , xn

⊂ X (X is a compact subset of Rn) and all n = 1, 2, · · ·.
Theorem 2. Let X be a compact subset of Rn. ∀x ∈ X, a positive scalar func-
tion c(x) and a kernel function K(x, x

′
) on X × X, the function K̃(x, x

′
) =

c(x)c(x
′
)K(x, x

′
) is Mercer kernel.

Proof Since K(x, x
′
) is a kernel function on X ×X , there exists a mapping

Φ from X to the Hilbert space H , subject to

K(x, x
′
) = (Φ(x) · Φ(x

′
)). (20)

For x1, x2, · · · , xl ∈ X , construct Gram matrix

(Kij)l
i,j=1 = (K(xi, xj))l

i,j=1 (21)

by using kernel K(·, ·) on x1, x2, · · · , xl. Because c(x) is a positive scalar function,
according to Eq. (20), ∀α1, α2, · · · , αl , we have

∑
i,j

αiαjK̃(xi, xj)

=
∑
i,j

αiαj(c(xi)Φ(xi)) · (c(xj)Φ(xj))

= (
∑

i

αic(xi)Φ(xi)) · (
∑

j

αjc(xj)Φ(xj))

= ‖
∑

i

αic(xi)Φ(xi)‖2

≥ 0

It is shown that the Gram matrix of K̃(x, x
′
) with respect to x1, · · · , xl ∈ X

is positive semi-definite. According to the positivity condition for Mercer kernel,
K̃(x, x

′
) is Mercer kernel.

For the Riemannian metric of the new kernel function (19) and Eq. (11), we
have

g̃ij(x) = c2(x)gij(x) + ci(x)cj(x) + 2ci(x)c(x)Ki(x, x) (22)
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where ci(x) = ∂c(x)/∂xi and Ki(x, x) = ∂K(x, x
′
)/∂xi|x=x′ .

For the RBF kernel, we have Ki(x, x) = 0. For the linear kernel, we have
Ki(x, x) = xi. For the polynomial kernel, we have Ki(x, x) = dxi. For the
Sigmoid kernel, we have Ki(x, x) = kxi sec2 θ. Therefore, if choosing c(x) in
this way, we can really achieve the purpose of enlarging the similarity metric of
homogeneous samples.

In summary, the main steps of the proposed method can be stated as follows:

1. Find the similarity metric for any training set according to Eqs. (5), (6) and
(7);

2. Modify the kernel according to Eq. (19);

3. Train SVM using the modified kernel;

4. Find the similarity metric for any testing set according to Eqs. (5), (6) and
(7);

5. Examine the testing samples using the trained SVM and similarity metric.

5 Simulated Experiments

In order to evaluate the performance of the proposed method, we performed
simulations on artificial data and UCI standard data set.

Firstly, an artificial two-dimensional data set is used in our method. All
samples in the data set are uniformly distributed in the region [−1, 1]× [−1, 1].
The two classes are separated by a nonlinear boundary determined by y =
cos(3x), as shown in Figure 1.

Figure 1: A two-dimensional artificial data set.

In the simulation, there are four training sets where each has 100 samples and
one test set having 400 samples. They are generated randomly and uniformly for
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each classification problem. The performance of SVM is measured by the test
correct rate. Simulation results are displayed in Table 1.

Table 1: Comparison of the testing ratios(%) using artificial data

Line Poly RBF Sigmoid
Test Prototype Improved Prototype Improved Prototype Improved Prototype Improved

1 67.25 72.00 72.75 85.50 62.00 65.25 67.25 68.25
2 64.75 77.25 76.00 80.25 89.75 93.00 71.50 72.25
3 74.00 81.75 70.25 74.00 90.50 94.00 74.50 82.00
4 63.25 66.00 64.00 64.25 92.00 93.25 69.75 67.00

Average 67.31 74.25 70.75 76.00 83.56 86.38 70.75 72.38

From Table 1, it can be seen that different kernel functions have great in-
fluence on the same testing data set. The performance of the modified SVM
is improved obviously compared with the original method. The testing correct
rate increases by 7%, 7%, 4% and 2% for linear kernel, polynomial kernel, RBF
kernel and Sigmoid kernel, respectively.

In order to further illustrate the effectiveness of the proposed method, we
selected 4 data sets from the UCI standard data set, which are Iris, Cancer,
Sonar and Wdbc respectively. Because the quantity of samples in some of UCI
data set is less relatively, we randomly draw 50 data as the training sample and
100 data as the test sample. Table 2 summaries the simulation results.

Table 2: Comparison of the testing ratios(%) using the UCI data set

Iris Cancer Sonar Wdbc
Kernel Prototype Improved Prototype Improved Prototype Improved Prototype Improved

Poly 97.0 99.00 94.0 96.0 58.0 60.0 68.0 84.0
RBF 99.0 99.00 99.0 99.0 90.0 92.0 96.0 98.0

Linear 92.0 94.00 96.0 96.0 60.0 60.0 60.0 78.0
Sigmoid 94.0 96.00 98.0 98.0 60.0 62.0 60.0 86.0

Average 95.5 97.0 96.8 97.3 67.0 68.5 71.0 86.5

Through analyzing the simulation results in Table 2, we can see that the
performance of our method is better in the selected data set. About 5% of
test correct rate is increased in the data sets of Iris, Cancer, Sonar and Wdbc,
respectively. However, the test results for data sets of Sonar and Wdbc are not
ideal except for the RBF kernel.
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6 Conclusions

In this paper, a novel method of modifying a kernel function is proposed to
improve the performance of the support vector machine classification. The theory
of modifying a kernel function is based on the Riemannian metric and similarity
metric. The main idea is to enlarge or reduce the similarity among samples so
as to increase the homogeneous samples’ similarity measure and to increase the
ability of classification. Kernel function modifying is performed on four classical
kernel functions with artificial data and UCI standard dataset. Simulation results
show the effectiveness of the proposed algorithm.
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