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Abstract: Rule mining is an important issue in data mining. To address it, a novel
Immune Gene Expression Programming (IGEP) model was proposed. Concepts of
rule, gene, immune cell, and antibody were formalized. The dynamic evolution models
and the corresponding recursive equations of immune cell, self, immune-tolerance were
built. The novel key techniques of IGEP were presented. Experiment results showed
that the new method has good stability, scalability and flexibility. It can discover
traditional association rule, non-traditional rule including connective “OR” or “NOT”,
and meta-rule of strong rule. Furthermore, it can perform well in constrained pattern
mining.
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1 Introduction

Gene Expression Programming, Artificial Immune System, and Rule Mining are
all hot research themes.

Gene Expression Programming (GEP) [Ferreira 2001] is derived and im-
proved from Genetic Programming (GP) [Banzhaf 1994]. It is a new technique
to create programs, which can denote the learned models or discovered knowl-
edge. GEP can represent and solve complex problem with simple code.

Artificial Immune System (AIS) [Jerne 1974, Burnet 1978, Forrest et al. 94,
Castro et al. 1999, Castro et al. 2000, Dasgupta et al. 2003, Li et al. 2005] is a
rapidly growing field of information processing based on immune inspired parad-
igms of nonlinear dynamics. It is expected that AIS, based on immunological
principles, be good at modularity, autonomy, redundancy, adaptability, distri-
bution, diversity and so on.
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Rule Mining is an important data mining task since it generates a set of
symbolic rules that describe each class or category in a natural way. Rule is
easier to understand than other data mining model. So far fruitful research
results for Association Rule (AR) mining can be found in [Agrawal et al. 1993,
Fu and Han 1995, Han and Kambr 2001, Yin and Han 2003].

However, complex data mining application requires refined and rich-semantic
knowledge representation. For example, using traditional concepts and methods,
it is difficult to describe and discover the rule or meta-rule in Example 1.

Example 1 Suppose that customers probably purchase “laptop” if age is
“40-50”, either title is “prof.”, or address is not at “campus”. To describe this
fact, we need other new association rule in the form of

age(“40-50”)∧(title(“prof.”)∨¬address(“campus”))→purchase(“laptop”) (1)

age(x)∧(title(y) ∨ ¬address(z)) → purchase(u) (2)

where rule (2) is called meta-rule of rule (1) in this paper.
On the issue of mining the rule like Example 1, little related work can be

retrieved except [Zuo et al. 2002]. In 2002, Zuo proposed an effective approach
based on GEP [Zuo et al. 2002]. However, it can only mine single-dimensional
predicate AR, without concerning multi-dimensional rule or meta-rule. More-
over, its flexibility and stability are not so good.

To overcome the above defects and mine more general rules, it is necessary
to build a new model. GEP is strong on representing and discovering knowl-
edge with simply linear strings while AIS has many advantages in evolution. To
inherit and enhance their merits, we proposed a novel model “Immune Gene
Expression Programming” (IGEP). IGEP is able to discover traditional AR,
non-traditional rule including connective “OR” or “NOT”, and meta-rule of
strong rule. Furthermore, it can perform well in constrained pattern mining.

Main novel techniques of IGEP include: (a) distinctive structures of im-
mune cell and antibody, based on which an antibody can represent 8 rules, (b)
the Template-based Dual-Formula Generation Strategy (TDFGS) to guaran-
tee quality of immune cell, (c) the Dynamic Self-Tolerance Strategy to eliminate
both invalid and redundant immune cells, and (d) in “Affinity Computing”,
the rule Reduction Criterion (RC) that a strong rule is fine if and only if the
contra-positive of it is strong too.

The rest of the paper is organized as follows. Section 2 describes the back-
ground and our motivation. Section 3 presents the IGEP Model, including some
formal concepts and the framework. Section 4 gives the key techniques of IGEP.
Section 5 shows our experiment results. Finally, Section 6 draws conclusions and
gives directions of future work.
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2 Background and Motivation

2.1 Gene Expression Programming

Gene Expression Programming (GEP)[Ferreira 2001] is designed to solve com-
plex problem with simple code. GEP is somewhat similar to Genetic Algorithms
(GA) [Mitchell 1996] or Genetic Programming (GP) [Banzhaf 1994]. The chro-
mosome of GP is tree-formed structure directly, while that of GEP is linear
string. So GP’s genetic operations are designed to manipulate the tree forms
of chromosomes. However, GEP’s genetic operations are similar to but simpler
than those in GA. Compared with its ancestors, GEP innovated in structure and
method. It uses a very smart method to decode gene to a formula [Ferreira 2001,
Zuo et al. 2002]. Figure 1 demonstrates the decoding process in GEP. As an ex-
ample, if let “a”, “b” and “c” represent atomic predicates “age(x)”, “title(x)”
and “address(x)” respectively, then the expression in Figure 1 can express the
logic formula “(age(x)∨ age(x)) ∧ (tile(x)∨¬address(x))”. In this way, the new
model can represent and discover meta-rule.

Figure 1: Decoding for gene in GEP

2.2 Artificial Immune System

The Biology Immune System (BIS) can defend the body against harmful dis-
eases and infections. It is capable of recognizing virtually any foreign cell or
molecule and eliminating it from the body. As a member of nature-inspired
computing, AIS imitates BIS, aiming not only at a better understanding of the
system, but also at solving engineering problems [Castro et al. 1999]. It is ex-
pected that AIS, based on immunological principles, be good at modularity,
autonomy, redundancy, adaptability, distribution, diversity and so on. Although
it has many features in common with neural networks, there are some differ-
ences: the immune system is more complex, more diverse, and it performs many
different functions simultaneously.
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With the development of applications, AIS gets more and more hot recently.
The immune network theory [Jerne 1974], the clonal selection and affinity matu-
ration algorithms [Burnet 1978], negative selection algorithm [Forrest et al. 94]
and so on have greatly promoted the research of computer immune system.
Moreover, there are many models and techniques for AIS based on different prin-
ciples or representations. According to [Castro et al. 1999, Castro et al. 2000,
Dasgupta et al. 2003], the main representations used include binary strings, real-
valued vectors, strings from a finite alphabet, java objects and so on.

2.3 Motivation

GEP is strong on representing and discovering knowledge with simply linear
strings. AIS has many advantages in evolution. It is natural to assume that
embedding GEP in AIS will enhance the capability of both AIS and GEP. We
call the new model as Immune Gene Expression Programming (IGEP).

3 IGEP Model

In this section, we will introduce some notations, concepts and our IGEP model.
Notations and basic concepts on relational algebra are the same as those in
[Han and Kambr 2001].

3.1 Concepts for Rule

Like [Yin and Han 2003], a literal p can be defined as an attribute-value pair,
taking the form of (Ai, v), in which Ai is an attribute and v a value. A tuple t

satisfies a literal p = (Ai, v) if and only if ti = v, where ti is the value of the
ith attribute of t.

In addition, ϑp denotes the atomic first-order predicate that corresponds to
literal p, which means that the value of attribute Ai is v. Let ζ be a literal set
and we write the atomic predicate set ζϑ = {x |x = ϑy, ∀y ∈ζ}.

The definition of rule in this paper, distinguished from [Fu and Han 1995,
Yin and Han 2003], is as follows.

Definition 1. Let ζ be a literal set, OP={¬, ∧, ∨} be a connective set,X ,Y ⊂
ζϑ, X , Y �= φ, and X∩Y = φ. A rule r is an expression in the form of P→Q
where

– P , called antecedent , is a well-formed first-order logic formula composed of
atomic formulas in Xand connectives in OP .

– Q, called consequent , is a well-formed first-order logic formula composed
of atomic formulas in Y and connectives in OP .

1487Zeng T., Tang C., Xiang Y., Chen P. Liu Y.: A Model of Immune Gene ...



– If ∀ p = (Ai, v) ∈ ζ , the v in p is replaced with a variable, then the new rule
is the meta-rule of the origin one.

Let f(p, t) denote whether a tuple t satisfies a literal p.

f(p, t) =
{

true if t satisfies p

false otherwise
(3)

Given L ∈ {P , Q, P ∧ Q} and t be a tuple in relation, we write the nota-
tion S(L, t) for the Boolean formula substituted for L, where, for each literal p

corresponding to the atomic first-order predicate in L, we replace all ϑp with
f(p,t).

Definition 2. A tuple t support L ∈ {P , Q, P ∧Q} if and only if the evaluation
result of S(L, t) is true; otherwise, not support .

Let ρ(L|D) denote the number of records that support L ∈{P , Q, P ∧Q} on a
data set D. #(D) is the total number of records in D. Then the support degree

supp(r|D) and the confidence degree conf (r|D) of a rule r can be valuated as
follows.

supp(r|D) = ρ(P∧Q|D)
#(D) ) (4)

conf (r|D) = ρ(P∧Q|D)
ρ(P |D) (5)

Let min conf, min sup∈[0, 1]. r is strong if and only if supp(r | D) ≥ min sup
and conf (r | D) ≥ min conf like [Han and Kambr 2001].

It is easy to prove that the rule referred to in Definition 1 is equivalent to the
traditional AR if and only if (a) OP={∧}, (b) each of atomic predicates in it
occurs only once, and (c) the order of atomic predicates in it is not considered.
Thus the rule referred to in this paper is more general than traditional AR.

Lemma3. If FS={A, B} be the set composed of antecedent and consequent of a
rule, then FS can be used to construct 8 rules, which can be grouped as 4 pairs.
Each pair of these 4 pairs are equivalent in logic each other.

Proof. we can construct the following 8 rules: a) A → B, b) ¬B → ¬A, c)
B → A, d) ¬A → ¬B, e) ¬A → B, f) ¬B → A, g) A → ¬B, and h) B → ¬A. In
them, a) and b), c) and d), e) and f), g) and h) are the contra-positive each other
respectively. Since the contra-positive is equivalent to the original statement, two
statements in pair are equivalent each other.

Lemma4. Let FS={A, B} be the set of antecedent and consequent of a rule,
and a relation instance D. If ρ(A|D),ρ(B|D),ρ(A∧B|D) and #(D) were given,
then all of support degree and confidence degree for 8 rules constructed by FS
can be evaluated.
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Proof. Figure 2 shows the support space for rule. Because in our system, arbi-
trary tuple can either support a rule or not, we can compute the following value:
1) ρ(¬A|D) = #(D) - ρ(A|D), 2) ρ(¬B|D) = #(D) - ρ(B|D), 3) ρ(A∧¬B|D) =
ρ(A|D) - ρ(A∧B|D), 4) ρ(¬A∧B|D) = ρ(B|D) - ρ(A∧B|D), 5) ρ(¬A∧¬B|D)
= #(D) - ρ(A|D) - ρ(B|D) + ρ(A ∧ B|D). Using these values, we can evaluate
support degrees and confidence degrees for these rules by Equation (4) and (5).

Figure 2: Support space for rule

3.2 Concepts for IGEP

The gene in IGEP can represent complex expression with simple structure like
GEP [Ferreira 2001, Zuo et al. 2002]. The formal description is as follows.

Definition 5. Let T be the terminal set and OP be the operator set. A Gene

is a linear string composed of the elements in T and OP.

In this paper, T=ζϑ, and OP can be one element of 2{¬,∧,∨} - {φ}.

Definition 6. The Decoding is a procedure where a gene can be decoded into
a well-formed expression tree or string.

Immune cell and antibody are very important for AIS. In general, antigen is
corresponding to the problem to be solved and antibody to the solution for it.

For rule mining problem, records in data set can be antigen and rules can be
antibody. The formal descriptions of immune cell and antibody are as follows.

Definition 7. An immune cell, BCell , is a 3-tuple (C, F, η) where

– C = (gA, gB) is a 2-tuple, called Chromosome , where gA and gB are genes.

– F = (eA, eB) is a 2-tuple, called dual-formula , which were decoded from
genes in C respectively.
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– η∈{-1, 0, 1, 2} is the state value of BCell, where -1, 0, 1 and 2 indicate cell
is dead, immature, mature and memorized respectively.

Definition 8. An antibody is a 3-tuple, (F, S, I), where

– F comes from the immune cell that produces it.

– S = (sA, sB) is a 2-tuple, where sA and sB are the substitution formulas for
those in F respectively by atomic predicates derived from literals.

– I = (pA, pB, pAB, ptotal) is a 4-tuple, which stores affinity information. In I,
pA, pB, pAB and ptotal are the support numbers of sA, sB and sA ∧ sB and
the total number of records that were matched respectively.

Theorem 9. An antibody can represent and evaluate 8 rules.

Proof. Let Ab denote an antibody, and A=Ab.S.sA, B=Ab.S.sB. Then by Lemma
3 an antibody can represent 8 rules by using {A, B}. After affinity maturation,
there are ρ(A|D)=Ab.I.pA, ρ(B|D)=Ab.I.pB , ρ(A∧B|D)=Ab.I.pAB , and #(D)=
Ab.I.ptotal. We can evaluate these 8 rules by Lemma 4.

It shows our antibody is good at representation and discovery of rules.

3.3 IGEP Framework

Since GEP is strong on representing and discovering knowledge with simply
linear strings while AIS has many advantages in evolution, we propose the new
method as Immune Gene Expression Programming (IGEP).

The framework of IGEP is somewhat similar to the hybrid of clonal selection
principle [Burnet 1978] and negative selection algorithm [Forrest et al. 94]. In
contrast to other models [Dasgupta et al. 2003], IGEP has distinctive structures
of immune cell and antibody, and other novel key techniques. The flowchart of
IGEP is described in Figure 3.

4 Key Techniques of IGEP

4.1 Dual-Formula Generation Strategy for Immune Cell Generation

It is possible to focus on mining some rules with special form or those who
represent the correlation of special attributes or items. For example, we want
only to mine rules in which each literal occurs only once such as “a∧(b∨¬c) → d”.
However, traditional GEP may randomly generate formulas like “(a∨a)∧(b∨¬c)”
too. So the rule we do not want can be also constructed. Because the cost of
removing fault antibody will be relatively high, we proposed the Template-based
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Figure 3: The flowchart of IGEP

Dual-Formula Generation Strategy (TDFGS). It is via TDFGS that IGEP can
always generate valid dual-formulas according to system requirements.

Given a literal set ζ and the atomic predicate set ζϑ, main steps of TDFGS
are:

Step 1: Let terminal set T = {#}, function set OP, call “Generate gene
templates” to generate genes and decode them into expression strings, called
Formula Templates (FTemp).

Step 2: Take two FTemps ftA and ftB from FTemp pool according to re-
quirements for the form of dual-formula. If lost, then do nothing and return
NULL; else success, (ftA, ftB) is selected.

Step 3: Suppose W ⊆ ζϑ, and take predicates in W to fill “#” in ftA and
ftB where the attribute or items can be filtered and controlled. So dual-formula
is generated according to system requirements.

The functions of TDFGS are as follows.

– It guarantees each of dual-formula of BCell can construct valid rules.

– It is easy to inject vaccine into the AIS of IGEP. Filter out or select formula
templates by certain pattern and we can concentrate on those rules that we
just want but not face all possible rules.

– In Step 3, the attributes or items in rules can be selected and we can focus
on discovering the correlation between certain attributes or items.
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4.2 Dynamic Immune Tolerance Strategy

The part of self-tolerance in IGEP develops from negative select algorithm
[Forrest et al. 94] and looks like that in [Li et al. 2005]. But there are many
differences from them. The formal descriptions of dynamic immune tolerance
strategy of IGEP are as follows.

BCSetmature(t)=BCSet immature(t)- BCSetdead(t) (6)

BCSetdead(t)=BCSet immature(t)∩(SelfBCs(t-1)∪SelfBCsequivalent (t-1)) (7)

SelfBCs(t) =
{{x|x is the BCell involved in vaccine} t = 0

SelfBCs(t − 1) ∪ BCSetimmature(t) t ≥ 1
(8)

where

BCSetmature(t)={x|x is the mature BCell generated at generation t} (9)

BCSet immature(t)={x|x is the immature BCell generated at generation t}
(10)

BCSetdead(t) = {x|x is the BCell eliminated at generation t} (11)

SelfBCs(t)={x|x is the BCell involved in self at generation t} (12)

SelfBCsequivalent(t)={x|x ∈BCsequivalent(bc), bc∈SelfBCs(t)} (13)

BCsequivalent(bc)={x|x is the BCell, x.F is one of (eB, eA), (¬eA, eB),
(eB, ¬eA), (eA, ¬eB), (¬eB, eA), (¬eA, ¬eB ), and (¬eB, ¬eA),

where bc is a BCell, bc.F=(eA,eB) }
(14)

Equation (6) and (7) depict the dynamic immune tolerance strategy, while
Equation (8) describes the dynamic evolution of self. It is because there is Self-
BCsequivalent(t-1) in Equation (7) that IGEP can avoid generating cells with
redundant representation.

The functions of our dynamic tolerance strategy are as follows.

– Avoid generating redundant cells that are equivalent to represent rule.

– Avoid generating fault cells that cannot represent valid rules.

– Be able to inject vaccine.
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4.3 Affinity Computing

In course of affinity maturation, for each antibody, its affinity information for
all records (antigens) will be computed. After affinity maturation, there are
ρ(Ab.S.sA|D) = Ab.I.pA, ρ(Ab.S.sB|D) = Ab.I.pB , ρ(Ab.S.sA∧Ab.S.sB|D) =
Ab.I.pAB, and #(D) = Ab.I.ptotal. According to Theorem 9, Equation (4) and
(5), we can scan database once but evaluate 8 times more rules than antibodies.
Then system will be able to mine strong rules for output.

Additionally, IGEP can reduce result set based on the heuristic Reduction
Criterion (RC) that a strong rule is fine if and only if the contra-positive of it
is strong too, for the statement and contra-positive is logically equivalent.

5 Experimental Evaluation

5.1 Experimental Setup

Our test platform is as follows. CPU: AMD XP 2500+, memory: 1GB, hard disk:
160GB, OS: MS Windows XP Pro. SP2, compiler: JDK1.5.03. All of 3 data sets
we used in our experiments come from UCI Machine Learning Repository1 .

The data sets are Tic-Tac-Toe Endgame database (ttt) with 9 attributes plus
1 class column and 958 rows, Car Evaluation Database (car) with 7 attributes
and 1728 rows, and Contraceptive Method Choice(cmc) with 10 attributes and
1473 rows. Table 1 gives us notation definitions for this section.

Additionally, we call a rule as h-rule if and only if the number of attributes
involved in it is h, and those attributes occur only once in it. As an example, the
rule (1) in Example 1 is a 4-rule. In our experiments, the objective to mine is
h-rule but not general rule, for h-rule not only has smaller solution space but also
is more extractive and heuristic for us to understand. In fact, because there are
more constraints to h-rule than general rule, it needs more complex algorithms
to mine h-rule than general rule.

5.2 Mining Rule

We take the mining results via Apriori algorithm [Agrawal and Srikant 1994] as
a baseline to verify IGEP. In order to utilize Apriori algorithm to mine multi-
dimensional AR, we always preprocess data sets for it in the following way. For
each value of attribute in a data set d, we add a string of its attribute in front
of it to construct a new value, whose type become string, then store it into
a new data set d′. After preprocessing, in d′, original equal values in different
attributes in d became unequal. Potential value-collisions between dimensions
1 http://www.ics.uci.edu/~mlearn/MLRepository.html
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have been eliminated before Apriori runs on d′. So we can take such record sets
as transaction set to mine multi-dimensional AR via Apriori.

In Table 2, extensional tests showed that 1) our algorithm is stable, 2) the
efficiency of our heuristic reducing criterion RC is notable by comparison between
No 4 and 5 or 6 and 7, 3) the capability of generating new immune cells is strong,
and 4) the function of vaccine is sound and effective. As an example, a 5-rule
from results of No.9 in Table 2 is as follows.

D7(1)∧D8(4)∧(D6(1)∨D2(1))→ ¬D3(2) supp=14.53% conf=99.53% (15)

D3(2) → ¬( D7(1)∧D8(4)∧(D6(1)∨D2(1))) supp=12.02% conf =99.44% (16)

D7(x7)∧D8(x8)∧(D6(x6)∨D2(x2))→ ¬D3(x3) (17)

where Di(c) denotes the value of ith attribute is c.
Rule (15) and (16) can be reduce to a 5-rule, because they are equivalent

each other in logic. Rule (17) is the meta-rule of strong 5-rule (15).

Table 1: More notations for section 5

Notation Definition
cellnum The maximum of BCells per generation
PO Whether to consider the order of atomic predicates in a rule
NC Number of cells
SR Number of strong rules
MR Number of meta-rules
SAR Number of strong traditional multi-dimensional ARs
ECN Number of cells eliminated by self tolerance

5.3 Scalability Study

Firstly, we study on time wasted by main processes of IGEP. Figure 4 showed
information about time wasted of someone generation on different data sets. It
indicated 1) for each generation, time wasted by processes of IGEP was relatively
stable, and 2) the process of “Maturate affinity” consumed most time while
“Generate BCell” took less time. Thus, based on 2) above, it is valuable to spend
more time on improving the quality of BCell generated. We infer our IGEP, due
to having TDFGS and dynamic immune tolerance strategy, be stronger than the
method only based on traditional GEP.

Secondly, we evaluate scalability of IGEP on different data sets in the follow-
ing way. Basic parameters are fixed and each data set is divided to 4 segments.
For line “incremental”, data sets, built on these 4 segments incrementally, were
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Table 2: Results for minig h-rule min supp=5.0% min conf=98.5% cellnum=20

No. Data h PO OP RC NC ECN
IGEP Apriori
MR SR SAR

1 ttt 2 to 10 No {∧} No 2850177846 10 12 12
2 car 2 to 7 No {∧} No 966 125247 12 40 40
3 cmc 2 to 10 No {∧} No 2850178132 126 228 228
4 cmc 3 Yes {¬, ∧, ∨} No 5760 30966 10412 316292 Disable
5 cmc 3 Yes {¬, ∧, ∨} Yes 5760 58411 1424/2 1960/2 Disable
6 cmc 4 Yes {¬, ∧, ∨} No 1000046 19998 1334128 Disable
7 cmc 4 Yes {¬, ∧, ∨} Yes 1000064 4314/2 13592/2 Disable
8 car 2 to 7 No {¬, ∧, ∨} Yes 100003250 3326/2 412784/2 Disable
9 cmc 2 to 6 Yes {¬, ∧, ∨} Yes 10000878 4096/2 12862/2 Disable
10 car 5 Yes {¬, ∧, ∨} No 2520 86314 24 336 Disable

Notes:

– All of data sets used by Apriori algorithm had been preprocessed and their
results are presented as antitheses to those of IGEP.

– The numbers of independent MR and SR are the original values divided by
2 if RC was used.

– For No. 1 to 5 and 10, MR and SR are stable while the others can change
within a certain range in different tests.

– In No. 9, attributes were restricted to 2nd, 3rd, 4th, 6th, 7th and 8th.

– In No. 10, the dual-formula template was (“#”, “(#∨¬#)∧(#∨#)”).
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Figure 4: Time wasted study on different data sets for mining 4-rule, cell-
num=20,PO = No, and OP = {¬, ∧, ∨}. The data set is (a) ttt, (b) car, and (c)
cmc respectively.
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Figure 5: Relationship between average running time per generation and the
number of records taken from different data sets incrementally for mining 4-
rule, cellnum=20,PO =No, and OP= {¬, ∧, ∨}. The data set is (a) ttt, (b) car,
and (c) cmc respectively.

mined 4 times respectively. For “baseline”, data sets come from the first segment
d, double of d, triple of d, and quadruple of d respectively.

Figure 5 described results about scalability study on ttt, car, and cmc. It
showed the average running time per generation depends on the number of
unique records in data set, and increases approximately linearly with the num-
ber of records on these data sets. Table 3 gives the comparison between IGEP,
PAGEP in [Zuo et al. 2002], and Apriori[Agrawal and Srikant 1994].

Table 3: Comparison between IGEP, PAGEP, and Apriori

Function IGEP PAGEP Apriori
Mining traditional association rule Yes Yes Yes
Mining rule including connective “OR” or “NOT” Yes Yes No
Mining meta-rule of strong rule Yes No No
Mining rule complying with constrained pattern Yes No No
Mining rule related to constrained attributes Yes No No

6 Conclusions and Future Work

We proposed the IGEP model for rule mining, formalized basic concepts and
presented some novel key techniques of IGEP. Experiment results showed that
the new method has good stability, scalability and flexibility. It can discover
traditional association rule, non-traditional rule including connective “OR” or
“NOT”, and meta-rule of strong rule. Furthermore, it also can perform well in
constrained pattern mining.
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Our future works will be focused on improvement of performance, discovery
of rule on data streams, and application of text mining or web log mining.
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